ebook img

Inhomogeneous Strichartz estimates for Schr\"odinger's equation PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inhomogeneous Strichartz estimates for Schr\"odinger's equation

INHOMOGENEOUS STRICHARTZ ESTIMATES FOR SCHRO¨DINGER’S EQUATION 6 1 0 YOUNGWOOKOHANDIHYEOKSEO 2 r Abstract. Foschi and Vilela in their independent works ([3],[13]) showed p that the range of (1/r,1/r) for which the inhomogeneous Strichartz estimate 3 A t(cid:13)(cid:13)hRe0tcelio(ste−ds)p∆eFnt(a·,gso)ndsw(cid:13)(cid:13)iLtqthLevrxer.tickeFskAL,qteB′L,rxeB′′,hPol,dPs′feoxrcseopmtethqe,qepoisinctsonPta,Pin′ed(seine 2 Figure1). WeobtaintheestimateforthecornerpointsP,P′. ] P A 1. Introduction . h In this paper we consider the following Cauchy problem for the Schr¨odinger t a equation: m i∂ u+∆u=F(x,t), t [ (u(x,0)=f(x), 2 where (x,t)∈Rn×R, n≥1. By Duhamel’s principle, we have the solution v 3 t 4 u(x,t)=eit∆f(x)−i ei(t−s)∆F(·,s)ds, 6 Z0 7 where eit∆ is the free Schr¨odinger propagator defined by 0 . eit∆f(x)=(2π)−n eix·ξ−it|ξ|2f(ξ)dξ. 1 0 ZRn 6 The Strichartz estimates for the solution play impobrtant roles in the study of 1 well-posedness for nonlinear Schr¨odinger equations (cf. [1, 12]). They actually : consist of two parts, homogeneous (F =0) and inhomogeneous (f = 0) part. The v i homogeneous Strichartz estimate X r keit∆fkLqtLrx .kfkL2 a holds if and only if (r,q) is admissible pair, that is, r,q ≥2, (n,r,q)6=(2,∞,2) and n/r+2/q=n/2 (see[11,4,9,6]andreferencestherein). Butdeterminingtheoptimalrangeof(r,q) and (r,q) for which the inhomogeneous Strichartz estimate t ei(t−s)∆F(·,s)ds .kFk (1.1) e e Lqe′Lre′ (cid:13)Z0 (cid:13)LqtLrx t x (cid:13) (cid:13) holds is not complete(cid:13)d yet when n≥3. It(cid:13)was observed that this estimate is valid (cid:13) (cid:13) on a wider range than what is given by admissible pairs (r,q), (r,q) (see [2], [5]). 2010 Mathematics Subject Classification. Primary35B45,35Q40. e e Key words and phrases. Strichartzestimates,Schro¨dinger equation. IhyeokSeowassupportedbytheTJParkScienceFellowshipofPOSCOTJParkFoundation. 1 2 YOUNGWOOKOHANDIHYEOKSEO Figure 1. The range of (1/r,1/r) for (1.1) when n ≥ 3. Here P =( n−2 , (n−2)2 ) and P′ =( (n−2)2 , n−2 ). 2(n−1) 2n(n−1) 2n(n−1) 2(n−1) e Foschi and Vilela in their independent works ([3],[13]) showed that the range of (1/r,1/r) for which (1.1) is valid for some q,q is contained in the closed pentagon with verticesA,B,B′,P,P′ except the points P,P′ (see Figure 1). The aim ofthis paper is to obtain (1.1) for the points P,P′. Our result is the following. e e Theorem 1.1. Let n≥3. Then (1.1) holds when 1 1 n−2 (n−2)2 n−2 1 1 n ( , )=P =( , ) if ≤ = < , r r 2(n−1) 2n(n−1) 2(n−1) q q′ 2(n−1) and when e e 1 1 (n−2)2 n−2 n−2 1 1 n ( , )=P′ =( , ) if < = ≤ . r r 2n(n−1) 2(n−1) 2(n−1) q q′ 2(n−1) Remark 1.2. Since 1/r+1/r = (n−2)/n, the condition q = q′ follows from the e e scaling condition 1 1 n 1 1 n e e + + ( + )= . (1.2) q q 2 r r 2 The conditions 1/q < n/2(n−1) and (n−2)/2(n−1) < 1/q′ when (1/r,1/r) = P and P′ correspond to the knowne necessaryeconditions ([3, 13]) 1 n 2 1 n 2 e e < (1− ) and < (1− ), q 2 r q 2 r respectively. In Section 3 we also give new necessary conditions for (1.1). Remark 1.3. Ourproofcanbeeasilymodifiedto coverthe rangeof(r,q)and(r,q) obtained by Foschi and Vilela. But we have chosen to present the proof only for the points P,P′ to keep the exposition as simple as possible. The case n ≥ 4 in e e Theorem 1.1 was already shown in [7] but the argument there does not suffice to obtain the same result in dimension n=3. INHOMOGENEOUS STRICHARTZ ESTIMATES 3 2. Proof of Theorem 1.1 Under the same conditions in Theorem 1.1, we will show t ei(t−s)∆F(·,s)ds .kFk (2.1) Lqe′Lre′ (cid:13)Z−∞ (cid:13)LqtLrx t x (cid:13) (cid:13) whichimplies(1.1). I(cid:13)ndeed,toobtain(1.1)f(cid:13)rom(2.1),firstdecomposetheLq norm (cid:13) (cid:13) t in the left-hand side of (1.1) into two parts, t ≥ 0 and t < 0. Then the latter can be reducedto the former by changing the variable t7→−t,and so it is only needed to consider the first part t≥0. But, since [0,t)=(−∞,t)∩[0,∞), applying (2.1) with F replaced by χ (s)F, one can bound the first part as desired. [0,∞) Let φ be a cut-off function with φ(ξ) = 1 if |ξ| ≤ 1, φ(ξ) = 0 if |ξ| > 2, and 0≤φ(ξ)≤1. Then it is enough to show that t eix·ξ−i(t−s)|ξ|2|φ(ξ)|2F\(·,s)(ξ)dξds .kFk . (2.2) Lqe′Lre′ (cid:13)Z−∞ZRn (cid:13)LqtLrx t x (cid:13) (cid:13) Once w(cid:13)e have this estimate, by the usual scaling we(cid:13)see that for all j ≥0 (cid:13) (cid:13) t eix·ξ−i(t−s)|ξ|2|φ(ξ/2j)|2F\(·,s)(ξ)dξds (cid:13)Z−∞ZRn (cid:13)LqtLrx (cid:13) (cid:13) (cid:13)(cid:13) .2−2j(1q+q1e−(cid:13)(cid:13)n2(1−r1−r1e))kFkLqe′Lre′ t x .kFk . Lqe′Lre′ t x Here, for the last inequality, we used the scaling condition (1.2). Since we may assumethatF is containedinthe SchwartzspaceonRn+1,by alimiting argument (j →∞), we now get (2.1) from the above estimate. Now, for fixed t, we define T f(x)= eix·ξ−it|ξ|2φ(ξ)f(ξ)dξ t Z and note that its adjoint operator Tt∗ is given by b T∗f(x)= eix·ξ+it|ξ|2φ(ξ)f(ξ)dξ. t Z Then the desired estimate (2.2) can be rewritten asb t T T∗F ds .kFk t s s Lqe′Lre′ (cid:13)Z−∞ (cid:13)LqtLrx t x (cid:13) (cid:13) where we use the notat(cid:13)ion F to denot(cid:13)e F (·) = F(·,s). By duality we are now (cid:13) s (cid:13) s reduced to showing the bilinear form estimate t hT∗F ,T∗G i dsdt .kFk kGk (2.3) (cid:12)ZRZ−∞ s s t t L2x (cid:12) Lqte′Lrxe′ Lqt′Lrx′ (cid:12) (cid:12) underthe same(cid:12)conditionsinTheorem1.1. T(cid:12)oshow(2.3),wewillusethe following (cid:12) (cid:12) lemma. Lemma 2.1. Let n≥3, and let 2≤r,r ≤∞ and 1≤q,q ≤∞. Define t−2j Bj(F,G)=ZRZt−2je+1hTs∗Fs,Tt∗GtiL2xedsdt 4 YOUNGWOOKOHANDIHYEOKSEO and assume one of the following conditions for (r,r;q,q): 1 n−21 1 1 1 i) ≤ and ≤ ≤ ≤1, r n r r q eq′ e n−21 1 1 n 1 1 1 1 ii) ≤ ≤ and − ( − )≤ ≤ ≤1, n r r re e 2 r er q q′ 1 1 n 1 1 1 n 1 1 iii) ≤ ≤ and 0≤ ≤ ≤1− ( − ), r re n−2re q q′e 2 er r n 1 1 1 1 1 iv) ≤ and 0≤ ≤ ≤1− . e n−2r re q qe′ r e Then we have |Bj(F,Ge)|.2jβ(r,re,q,qe)kFkLqe′Lre′ekGkLq′Lr′, (2.4) t x t x where 1 1 n−1 n + + − if i) holds, q q r 2  1 1 n 1 1 β(r,r,q,q)=q + qe− 2(e1− r − r) if ii) or iii) holds, 1 1 n−1 n e e + + − if iv) holds. Remark 2.2. The ranges oqf (1qe/r,1/rr′) in i)2, eii), iii) and iv) correspond to the triangular regions OB′C′, OABe′, OAB and OBC in Figure 1, respectively. e Proof of Lemma 2.1. One can easily get the above lemma by interpolating the es- timates (2.4) in the following four cases: (a) r =r =∞ (point O) and 1≤q′ ≤q ≤∞, (b) r =r =2 (point A) and 1≤q′ ≤q ≤∞, (c) r =2e, 2n ≤r ≤∞ (segment BCe) and 2≤q′ ≤q ≤∞, n−2 (d) 2n e≤r ≤∞, r =2 (segment Be′C′) and 1≤q′ ≤q ≤2. n−2 e e Thefirstandsecondones,(a)and(b),werealreadyshownin[7](seeLemma2.1 there). So we only needeto show (c) and (d). For (c) weedecompose F and G as Fk(x,s)=F(x,s)χ (s) and Gk(x,t)=G(x,t)χ (t) {2jk≤s<2j(k+1)} {2jk≤t<2j(k+1)} for fixed j. Then we see that t−2j |B (F,G)| = hT∗Fk,T∗G i dsdt j k∈ZZRZt−2j+1 s s t t L2x X ≤ hT∗Fk,T∗Gk+1i dsdt+ hT∗Fk,T∗Gk+2i dsdt k∈ZZRZR s s t t L2x k∈ZZRZR s s t t L2x X X because t∈(s+2j,s+2j+1). Using Ho¨lder’s inequality in x, we note that hT∗Fk,T∗Gk+1i dsdt ≤ T∗Fkds T∗Gk+1dt . (cid:12)(cid:12)Xk∈ZZRZR s s t t L2x (cid:12)(cid:12) Xk∈Z(cid:13)(cid:13)ZR s s (cid:13)(cid:13)L2x(cid:13)(cid:13)ZR t t (cid:13)(cid:13)L2x We(cid:12)also note that (cid:12) (cid:13) (cid:13) (cid:13) (cid:13) (cid:12) (cid:12) (cid:13) (cid:13) (cid:13) (cid:13) kTtfkLqLr .kfkL2 (2.5) t x holdsforr,q ≥2andn/r+2/q≤n/2. Indeed,bythestationaryphasemethod(see p. 344 in [10]), we see kT fk . (1+|t|)−n/2kfk . Then (2.5) follows directly t L∞x L1 INHOMOGENEOUS STRICHARTZ ESTIMATES 5 fromtheabstractStrichartzestimatesofKeelandTao[6]. Usingthedualestimate of (2.5), T∗F ds .kFk , t s Lq′Lr′ (cid:13)ZR (cid:13)L2x t x (cid:13) (cid:13) we now get (cid:13) (cid:13) (cid:13) (cid:13) hT∗Fk,T∗Gk+1i dsdt . kFkk kGk+1k (cid:12)k∈ZZRZR s s t t L2x (cid:12) k∈Z L2tLrxe′ L1tL2x (cid:12)X (cid:12) X where 2n(cid:12)(cid:12) ≤r ≤∞. On the other hand, b(cid:12)(cid:12)y Ho¨lder’s inequality in time, it follows n−2 that k∈ZkFekkL2tLrxe′kGk+1kL1tL2x ≤k∈Z2j(q1+q1e−12)kFkkLqte′Lrxe′kGk+1kLqt′L2x X X ≤2j(1q+1qe−12)kFkLqe′Lre′kGkLq′L2 t x t x if 2≤q′ ≤q ≤∞. Here, for the last inequality we used that |A B |≤ |A |p p1 |B |pe p1e if 1 + 1 ≥1. (2.6) e n n n n p p Xn (cid:16)Xn (cid:17) (cid:16)Xn (cid:17) Hence, e (cid:12)k∈ZZRZRhTs∗Fsk,Tt∗Gkt+1iL2xdsdt(cid:12)≤2j(q1+1qe−12)kFkLqte′Lrxe′kGkLqt′L2x. (cid:12)X (cid:12) Similarl(cid:12)y, (cid:12) (cid:12) (cid:12) (cid:12)k∈ZZRZRhTs∗Fsk,Tt∗Gkt+2iL2xdsdt(cid:12)≤2j(q1+1qe−12)kFkLqte′Lrxe′kGkLqt′L2x. (cid:12)X (cid:12) Consequ(cid:12)(cid:12)ently, we get (c). The case (d) ca(cid:12)(cid:12)n be shown in a similar way as (c). (cid:3) Now we return to (2.3). It suffices to show that |B (F,G)| .kFk kGk . (2.7) j Lqe′Lre′ Lq′Lr′ j∈Z t x t x X Weonlyconsiderthecase(1/r,1/r)=P sincethecase(1/r,1/r)=P′ followsfrom the same argument. Now let 1 1 n−2 (n−2)2 e n−2 1 e 1 n ( , )=( , )=P and ≤ = < . r r 2(n−1) 2n(n−1) 2(n−1) q q′ 2(n−1) NotethatthepointP liesonthesegmentOB,andsowewilluseLemma2.1under the coneditions iii) and iv) (see Figure 1 and Remark 2.2). Sincee 1− n(1 − 1) = 2 r re 1− 1 = n > 1, if we choose ǫ > 0 small enough so that ǫ≤ 1 ( n − 1), r 2(n−1) qe′ 20 2(n−1) qe′ we can use Lemma 2.1 under the conditions iii) and iv) for (a,b;q,q) with all (a,b)∈B((1,1),10ǫ), where r re 1 1 1 1 1 1 1 1 1 1 e B ( , ),10ǫ ={( , )∈[0, ]×[0, ] : | − |,| − |<10ǫ}. r r a b 2 2 r a r b Now, usin(cid:0)g Lemma 2(cid:1).1, we see that e |B (F,G)| .2jβ(a,b,q,qe)kFk kGk e, (2.8) j Lqe′Lb′ Lq′La′ t x t x 6 YOUNGWOOKOHANDIHYEOKSEO where 1 1 n 1 1 1 n 1 + − (1− − ) if ≤ , q q 2 a b a n−2b β(a,b,q,q)= 1 1 n−1 n 1 n 1  + + − if > . q qe a 2 a n−2b e Next we decompose F andG using the following lemma whose proof can be found in [6] (see Lemma 5.1 there): e Lemma 2.3 (AtomicdecompositionofLp). Let 1≤p<∞. Then any f ∈Lp can x be written as ∞ f = c χ k k k=−∞ X whereeach χ is a function boundedby O(2−k/p) andsupported on aset of measure k O(2k) and the c are non-negative constants with kc k .kfk . k k lp Lp By this lemma, we may write Fs(x)= fek(s)χek,s(x) and Gt(x)= gk(t)χk,t(x), Xek∈Z Xk∈Z where χe (x) is bounded by Oe(2−ek/re′) and supported on a set of measure O(2ek), k,s and χ (x) is bounded by O(2−k/r′) and supported on a set of measure O(2k). k,t Also, feek and gk satisfy 1 1 |fek(s)|re′ re′ .kFskLrxe′ and |gk(t)|r′ r′ .kGtkLrx′. (2.9) (cid:16)ekX∈Z (cid:17) (cid:16)Xk∈Z (cid:17) Combining (2.8) and this decomposition, we now get |Bj(F,G)|. 2jβ(a,b,q,qe)2ek(r1e−1b)2k(r1−a1)kfekkLqe′kgkkLq′. (2.10) Xj∈Z Xj∈ZeXk∈ZXk∈Z t t If 1 ≤ n 1, we use (2.10). But if 1 > n 1, we use (2.10) with 2j replaced by a n−2b a n−2b 2−j. (Since j ∈Z, we may replace 2j by 2−j in (2.10).) Then we conclude that |Bj(F,G)|. Hj,ek,k(a,b)kfekkLqe′kgkkLq′, Xj∈Z Xj∈ZeXk∈ZXk∈Z t t where 2(ek−n2j)(r1e−1b)+(k−n2j)(r1−a1) if 1 ≤ n 1, a n−2b Hj,ek,k(a,b)= 2ek(1re−1b)+(k+(n−1)j)(r1−a1) if 1 > n 1. a n−2b First we consider the cases where k 6= nj and k6= nj. Let us set 2 2 n n U = (j,k,k); k− j >0, k− j >0 , 1 2 e 2 n n (cid:8) (cid:9) U2 = (j,ke,k); k− j <0, ek− j >0 , 2 2 n n (cid:8) (cid:9) U3 = (j,ek,k); k− j <0, ek− j <0 , 2 2 n n U4 =(cid:8)(j,ek,k); k− j >0, ek− j <0(cid:9). 2 2 (cid:8) (cid:9) e e INHOMOGENEOUS STRICHARTZ ESTIMATES 7 Figure 2. Then we may write |Bj(F,G)|≤ Hj,ek,k(a,b)kfekkLqe′kgkkLq′ Xj∈Z (j,ek,k)∈XU1∪U2∪U3 t t + Hj,ek,k(a,b)kfekkLqe′kgkkLq′. (2.11) e t t (j,kX,k)∈U4 For each (j,k,k) ∈ U ∪U ∪U , we choose1 (1,1) ∈ B((1,1),10ǫ)\B((1,1),ǫ) 1 2 3 a b r re r re with 1 ≤ n 1 so that a n−2b e 2(ek−n2j)(r1e−1b)+(k−n2j)(r1−a1)kfekkLqe′kgkkLq′ t t U1∪XU2∪U3 ≤ 2−ǫ(|ek−n2j|+|k−n2j|)kfekkLqe′kgkkLq′. t t U1∪XU2∪U3 Bysumminginj,andusing(2.6)andYoung’sinequalitysinceK(·)=(1+|·|)2−ǫ|·| is absolutely summable, we see that 2−ǫ(|ek−n2j|+|k−n2j|)kfekkLqe′kgkkLq′ t t U1∪XU2∪U3 e . (1+|k−k|)2−ǫ|k−k|kfekkLqe′kgkkLq′ eXk∈ZXk∈Z t t e 1 1 . kfekkqLe′qe′ qe′ kgekkqL′q′ q′. (cid:16)Xek∈Z t (cid:17) (cid:16)Xek∈Z t (cid:17) 1ThelineOP intersectstheregions(b)and(c)sinceitsslopeis(n−2)/n(seeFigure2). Hence, if(j,ek,k)∈U1,choose(a1,1b)thatliesabovethelineOP intheregion(b). If(j,ek,k)∈U2,choose (a1,1b)inthe region(a). If(j,ek,k)∈U3, choose(a1,1b)thatliesabove thelineOP intheregion (c). 8 YOUNGWOOKOHANDIHYEOKSEO Since q′ ≥r′ and q′ ≥r′, by Minkowski’s inequality and (2.9), 1 1 1 1 (cid:16)Xek∈ZekfekkeqLe′qte′(cid:17)qe′(cid:16)Xek∈ZkgekkqL′qt′(cid:17)q′ .(cid:16)eXk∈ZkfekkrLe′qte′(cid:17)re′(cid:16)Xek∈ZkgekkrL′qt′(cid:17)r′ 1 q′ . |fe(s)|re′ re′ |ge(t)|r′ r′ k Lqe′ k Lq′ (cid:13)(cid:16)eXk∈Z (cid:17) (cid:13) t (cid:13)(cid:16)ekX∈Z (cid:17) (cid:13) t (cid:13) (cid:13) (cid:13) (cid:13) .(cid:13)kFkLqe′Lre′kGkLq′Lr(cid:13)′. (cid:13) ((cid:13)2.12) t x t x Consequently, we bound the first term in the right-hand side of (2.11) as desired. To bound the second term, we first write Hj,ek,k(a,b)= 2ek(r1e−1b)+(k+(n−1)j)(r1−a1)kfekkLqe′kgkkLq′ XU4 Xj∈ZekX<n2jkX>n2j t t = 2j(n−1)(r1−a1) 2ek(r1e−1b)kfekkLqe′ 2k(r1−a1)kgkkLq′ Xj∈Z ekX<n2j t kX>n2j t and note that 2ek(1re−1b)kfekkLqe′ 2k(r1−a1)kgkkLq′ ekX<n2j t kX>n2j t ≤ 2ek(r1e−1b)qe 1qe kfekkqLe′qe′ qe1′ 2k(1r−a1)q q1 kgkkqL′q′ q1′ (cid:16)ekX<n2j (cid:17) (cid:16)ekX<n2j t (cid:17) (cid:16)kX>n2j (cid:17) (cid:16)kX>n2j t (cid:17) .2n2j(r1e−1b)2n2j(1r−a1)kFkLqe′Lre′kGkLq′Lr′. t x t x Here we used (2.12) for the last inequality. Hence we get Hj,ek,k(a,b). 2n2j(r1e−1b)23n2−2j(r1−a1)kFkLqe′Lre′kGkLq′Lr′. XU4 Xj∈Z t x t x Now we choose2 (1,1)∈B((1,1),10ǫ)\B((1,1),ǫ) with a b r re r re 1 n 1 1 1 1 1 > , −10ǫ< − <−9ǫ, 2ǫ> − >ǫ a n−2b r a r b when j ≥0, and with 1 n 1 1 1 1e 1 > , −2ǫ< − <−ǫ, 10ǫ> − >9ǫ a n−2b r a r b when j <0. Then we get the desired bound e Hj,ek,k(a,b).kFkLqe′Lre′kGkLq′Lr′. t x t x XU4 Consequently, we get (2.7). Finally we consider the cases where k = nj or k = nj. When k = nj, we note 2 2 2 that Hj,ek,k(a,b)kfekkLqe′kgkkLq′ = e2(ek−k)(r1e−1b)kfekkLqe′kgkkLq′, Xj∈ZeXk∈ZXk∈Z t t eXk∈ZXk∈Z t t 2Choose(1,1)intheregion(d)whenj≥0andintheregion(e)whenj<0(seeFigure2). a b INHOMOGENEOUS STRICHARTZ ESTIMATES 9 where 1 ≤ n 1. Hence if we choose(a,b) inthe region(a) or(c) with 1 ≤ n 1, a n−2b a n−2b we see 2(ek−k)(r1e−1b)kfekkLqe′kgkkLq′ ≤ 2−ǫ|ek−k|kfekkLqe′kgkkLq′. eXk∈ZXk∈Z t t eXk∈ZXk∈Z t t From this, we get the desired bound as before. The other cases follow easily in a similar way. 3. Necessary conditions It was shown in [3] that n−2 2 n n−2 2 n − ≤ and − ≤ (3.1) r q r r q r are the necessary conditions for which the inhomogeneous estimate e e e t ei(t−s)∆F(·,s)ds .kFk (3.2) Lqe′Lre′ (cid:13)Z0 (cid:13)LqtLrx t x (cid:13) (cid:13) holds. (We refer the r(cid:13)eader to [3, 13, 8] for(cid:13)other necessaryconditions.) Compared (cid:13) (cid:13) with (3.1), we give here the following new necessary condition: n−2 2 n n−2 2 n − ≤ , − ≤ . (3.3) r q r r q r The first condition in (3.3) is stronger than the first one in (3.1) when 1/r ≤ 1/r, and the second conditionein (3.3) is stronger thanethe esecond one in (3.1) when 1/r≥1/r. e Proof of (3.3). If (3.2) holds with a pair (r,q) on the left and a pair (r,q) on the e right,then it must be alsovalid when one switches the roles of(r,q) and(r,q). By thisdualityrelation,weonlyneedtoshowthesecondcondition(n−2)/r−2/q≤n/r e e in (3.3). For this, we first write e e I(F):= tei(t−s)∆F(·,s)ds=(4π)−n2 t |t−s|−n2ei|4x|−t−ys|2|F(y,s)dyeds. e Z0 Z0 ZRn Let 0<ǫ<1/2 and F(y,s)=χ . Since {0<s<ǫ2,|y|<ǫ} |x−y|2 |x|2 t(|x−y|2−|x|2)+s|x|2 = + , 4(t−s) 4t 4t(t−s) for 0<s<ǫ2, |y|<ǫ, 10<t<11 and |x|− 1 <ǫ, we see that ǫ t(|x−y|2−|x|2)+s|x(cid:12)|2 1(cid:12)1·3+ǫ2· 2 1 (cid:12) < (cid:12) ǫ2 < . 4t|t−s| 4·10·9 2 (cid:12) (cid:12) Hence, if 10<t<(cid:12) 11 and |x|− 1 <ǫ, (cid:12) (cid:12) ǫ (cid:12) |I(F)(x,t)|≥ (4π)−n2(cid:12)(cid:12)ei|x4|t2 (cid:12)(cid:12)t |t−s|−n2eit(|x−y|42t−(t|−x|s2))+s|x|2F(y,s)dyds (cid:12) Z0 Z (cid:12) (cid:12)(cid:12) ǫ2 (cid:12)(cid:12) &(cid:12) dyds (cid:12) Z0 Z|y|<ǫ &ǫn+2. 10 YOUNGWOOKOHANDIHYEOKSEO This implies that kI(F)kLqtLrx ≥kI(F)kLqt(10<t<11)Lrx(||x|−1ǫ|<ǫ) &ǫn+2 (1/ǫ+ǫ)n−(1/ǫ−ǫ)n 1/r &ǫn+2(cid:0)ǫ−n((1+ǫ2)n−(1−ǫ2(cid:1))n) 1/r &ǫn+2(cid:0)ǫ−nr+2. (cid:1) 2 n On the other hand, kFkLqse′Lrye′ ∼ ǫqe′ǫre′. Now the estimate (3.2) leads us to ǫn+2ǫ−nr+2 .ǫqe2′ǫren′. Byletting ǫ→0,we concludethat2/q+n/r≥(n−2)/r. (cid:3) References e e [1] T.Cazenave, SemilinearSchr¨odinger equations,CourantLectureNotesinMathematics,10, NewYorkUniversity,CourantInstituteofMathematical Sciences, NewYork,2003. [2] T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schr¨odinger equation,Comm.Math.Phys.147(1992), 75-100. [3] D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ. 2 (2005), no. 1, 1-24. [4] J. Ginibre and G. Velo, The global Cauchy problem for the nonlinear Schr¨odinger equation revisited,Ann.Inst.H.Poincar´eAnal.NonLin´eare2(1985), 309-327. [5] T.Kato,AnLp,r theory fornonlinear Schrodinger equations, Spectral and scatteringtheory and applications, Adv.Stud.PureMath.,vol.23,Math.Soc.Japan,Tokyo(1994), 223-238. [6] M.Keel and T.Tao, Endpoint Strichartz estimates, Amer.J. Math. 120 (1998), no. 5, 955- 980. [7] Y.Koh,ImprovedinhomogeneousStrichartzestimatesfortheSchr¨odingerequation,J.Math. Anal.Appl.373(2011), 147-160. [8] S. Lee and I. Seo, A note on unique continuation for the Schr¨odinger equation, J. Math. Anal.Appl.389(2012), 461-468. [9] S. J. Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of the Schr¨odinger and wave equation,DukeMath.J.91(1998), 393-408. [10] E.M.Stein, Harmonic Analysis. Real-variable Methods, Orthogonality, and Oscillatory In- tegrals,PrincetonUniversityPress,Princeton,NewJersey,1993. [11] R. S. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solu- tionsof wave equations,DukeMath.J.44(1977), no.3,705-714. [12] T. Tao, Nonlinear dispersive equations, Local and global analysis. CBMS 106, eds: AMS, 2006. [13] M.C.Vilela,InhomogeneousStrichartzestimatesfortheSchr¨odingerequation,Trans.Amer. Math.Soc.359(2007), no.5,2123-2136(electronic). SchoolofMathematics,KoreaInstituteforAdvancedStudy,Seoul130-722,Repub- licof Korea E-mail address: [email protected] Departmentof Mathematics,SungkyunkwanUniversity, Suwon440-746,Republicof Korea E-mail address: [email protected]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.