ebook img

Infrared spectroscopy of triatomics for space observation PDF

231 Pages·2019·6.131 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Infrared spectroscopy of triatomics for space observation

Infrared Spectroscopy of Triatomics for Space Observation Infrared Spectroscopy Set coordinated by Pierre Richard Dahoo and Azzedine Lakhlifi Volume 2 Infrared Spectroscopy of Triatomics for Space Observation Pierre Richard Dahoo Azzedine Lakhlifi First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address: ISTE Ltd John Wiley & Sons, Inc. 27–37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA www.iste.co.uk www.wiley.com © ISTE Ltd 2019 The rights of Pierre Richard Dahoo and Azzedine Lakhlifi to be identified as the author of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. Library of Congress Control Number: 2018962436 British Library Cataloguing-in-Publication Data A CIP record for this book is available from the British Library ISBN 978-1-78630-393-6 Contents Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Symmetry of Triatomic Molecules . . . . . . . . . . . . . . . . . . . 1 1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. The symmetry group of the Hamiltonian of a triatomic molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Symmetry of the nonlinear triatomic molecule (O) . . . . . . . . . . . . . . . 6 3 1.3.1. The nonlinear asymmetric molecule O ( 16O16O18O (668)) . . . . . . . . . 8 3 1.3.2. The nonlinear symmetric molecule O (16O16O16O (666)) . . . . . . . . . . 9 3 1.3.3. Symmetry of eigenstates of a nonlinear molecule . . . . . . . . . . . . . . 11 1.4. Symmetry of the linear triatomic molecule (CO) . . . . . . . . . . . . . . . . 15 2 1.4.1. The linear asymmetric molecule CO (16O12C18O (628)) . . . . . . . . . . 17 2 1.4.2. The linear symmetric molecule CO (16O12C16O (626)) . . . . . . . . . . . 19 2 1.5. Selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.1. Symmetry of the eigenstates of a triatomic molecule taking into account the nuclei spins . . . . . . . . . . . . . . . . . . . . 21 Chapter 2. Energy Levels of Triatomic Molecules in Gaseous Phase . . . . 25 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2. Vibrational–rotational movements of an isolated molecule . . . . . . . . . . . 27 2.3. Vibrational movements of an isolated triatomic molecule . . . . . . . . . . . . 34 2.3.1. Nonlinear triatomic molecules . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.2. Linear triatomic molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.3. Introduction of the perturbative Hamiltonians H, H, H, … . . . . . . . . 37 1 2 3 2.3.4. Transitions between two vibrational levels: selection rules . . . . . . . . . 38 2.4. Rotational movement of an isolated rigid molecule . . . . . . . . . . . . . . . 40 vi Infrared Spectroscopy of Triatomics for Space Observation 2.4.1. Linear triatomic molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.2. Symmetric top molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.3. Nonlinear triatomic molecules . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.4. Transitions between rotational levels . . . . . . . . . . . . . . . . . . . . . 46 2.5. Vibrational–rotational energy levels of an isolated triatomic molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6. Rovibrational transitions: selection rules . . . . . . . . . . . . . . . . . . . . . 48 2.6.1. Dipole moment in terms of normal coordinates . . . . . . . . . . . . . . . 50 2.7. Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.7.1. Rotational matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.7.2. Perturbative Hamiltonians of vibration and vibration–rotation coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  2.7.3. Components of the angular momentum J . . . . . . . . . . . . . . . . . . 60 2.7.4. Rotational Hamiltonian of a symmetric top . . . . . . . . . . . . . . . . . . 60 2.7.5. Elements of the rotational matrix . . . . . . . . . . . . . . . . . . . . . . . 61 2.7.6. Vibrational anharmonic constants . . . . . . . . . . . . . . . . . . . . . . . 62 Chapter 3. Clathrate Nano-Cages . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2. Clathrate structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.3. Inclusion model of a triatomic molecule in a clathrate nano-cage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.1. Inclusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.2. Interaction potential energy . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4. Thermodynamic model of clathrates . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4.1. Occupation fractions and Langmuir constants . . . . . . . . . . . . . . . . 74 3.4.2. Determination of the Langmuir constants . . . . . . . . . . . . . . . . . . . 74 3.4.3. Application to triatomic molecules . . . . . . . . . . . . . . . . . . . . . . 75 3.5. Infrared spectrum of a triatomic in clathrate matrix . . . . . . . . . . . . . . . 79 3.5.1. Infrared absorption coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5.2. Hamiltonian of the system and separation of movements . . . . . . . . . . 79 3.5.3. Vibrational motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5.4. Orientational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5.5. Translational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.6. Bar spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.6. Application to the CO molecule . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2 3.6.1. Vibrational motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.6.2. Orientational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.6.3. Translational motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.6.4. Bar spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.7. Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Contents vii 3.7.1. Non-zero orientation matrix elements used to calculate the corrections to first-order perturbation energies . . . . . . . . . . 98 3.7.2. Correction to eigenenergies of the orientation Hamiltonian . . . . . . . . . 99 3.7.3. Expressions of the vector components derivatives of the dipole moment with respect to the normal vibrational coordinates . . . . . 102 3.7.4. Expressions of the orientational transition elements in the approximation of harmonic librators . . . . . . . . . . . . . . . . . . . . . . . 102 Chapter 4. Nano-Cages of Noble Gas Matrices . . . . . . . . . . . . . . . . . . 107 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.2. The theoretical molecule–matrix model . . . . . . . . . . . . . . . . . . . . . . 110 4.2.1. Site inclusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.2.2. 12-6 L-J potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.2.3. Site distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.2.4. Coupling of the molecule–matrix system . . . . . . . . . . . . . . . . . . . 118 4.2.5. Vibrational frequency displacements . . . . . . . . . . . . . . . . . . . . . 119 4.2.6. The calculation of the orientational modes . . . . . . . . . . . . . . . . . . 123 4.2.7. Bar spectra and spectral profiles . . . . . . . . . . . . . . . . . . . . . . . . 124 4.3. Application to triatomic molecules . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3.1. The triatomic molecule C . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3 4.3.2. The nonlinear triatomic molecule O . . . . . . . . . . . . . . . . . . . . . 135 3 4.4. Appendix: Program for determining the equilibrium configuration of an O molecule in a noble gas matrix nano-cage . . . . . . . . . . . . . . . . . . 140 3 Chapter 5. Effect of Nano-Cages on Vibration . . . . . . . . . . . . . . . . . . . 145 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.2. The theoretical molecule–matrix model . . . . . . . . . . . . . . . . . . . . . . 146 5.3. Calculation of the shift of vibrational frequencies . . . . . . . . . . . . . . . . 147 5.3.1. Calculation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3.2. Application of the MAPLE program . . . . . . . . . . . . . . . . . . . . . 151 5.4. Application to linear triatomic molecules . . . . . . . . . . . . . . . . . . . . . 155 5.4.1. Experimental study of linear triatomic molecules (CO, NO) . . . . . . . 155 2 2 5.4.2. Frequency shift calculation for degenerate mode ν . . . . . . . . . . . . . 156 2 5.4.3. Calculation results for linear triatomic molecules (CO, NO) . . . . . . . 158 2 2 5.5. Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.5.1. Transition from Cartesian coordinates to normal coordinates . . . . . . . . 163 5.5.2. MAPLE program for displacement/shifts of vibrational frequency modes of a CO molecule in a noble gas nano-cage matrix . . . . . . 166 2 viii Infrared Spectroscopy of Triatomics for Space Observation Chapter 6. Adsorption on a Graphite Substrate . . . . . . . . . . . . . . . . . . 173 6.1. Molecule adsorbed on a graphite substrate (1000) at low temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.1.1. Astrophysical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.1.2. Molecule adsorbed onto a graphite substrate . . . . . . . . . . . . . . . . . 175 6.1.3. Graphite substrate–molecule interaction energy . . . . . . . . . . . . . . . 176 6.2. Adsorption observables at low temperature . . . . . . . . . . . . . . . . . . . . 178 6.2.1. Equilibrium configuration and potential energy surface . . . . . . . . . . . 178 6.2.2. Adsorption energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.2.3. Diffusion constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.3. Interaction energy between two molecules . . . . . . . . . . . . . . . . . . . . 183 6.3.1. Electrostatic contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.3.2. Induction contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.3.3. Dispersion–repulsion contribution . . . . . . . . . . . . . . . . . . . . . . . 188 6.4. Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.4.1. Expressions of action tensors . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.4.2. Multipolar moments and dipolar polarizability of a molecule relative to the fixed (absolute) reference frame . . . . . . . . . . . . 191 6.4.3. Code in the FORTRAN language for the calculation of the interaction potential energy between two molecules . . . . . . 191 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Foreword Space is an extraordinary laboratory for glimpsing the extent and complexity of physical phenomena at work in nature. It offers extreme environments that humans cannot reproduce on Earth. Temperatures reach absolute zero in dense interstellar clouds and reach trillions of degrees around super massive black holes. The density of the diffuse nebulae is lower than that produced by the best terrestrial vacuum generators; the density of the residues of dead stars is so great that the matter becomes unstructured. Even if these laboratories are mostly inaccessible to humans and even to space probes (except for a few stars in the solar system), a colossal amount of information is contained in the light that passes through space. When light rays meet the mirrors of our telescopes, they are focused on increasingly powerful detectors and analytical instruments. The spectral analysis of light, split into an optical prism, is particularly rich in information about the physicochemical nature of stars and their environment. Like a fingerprint, each of the chemical elements leaves a unique signature in the spectrum of light, making it possible to specify the chemical composition of stars. The shape of these spectral lines also testifies to the physical conditions that reign at the source of this light. Nevertheless, according to the 19th-Century positivist philosopher Auguste Comte, all the chemical elements in the solar system – including those found in living beings – have a cosmic origin. The elements can thus be classified into a small number of families, which are defined by the process that created them: the Big Bang (hydrogen and helium), nuclear reactions in stars (carbon, nitrogen, etc.), explosions of supernovae (oxygen, phosphorus, sulfur, iron, etc.), fusion of neutron stars (francium, uranium, thorium, etc.) and the spallation of cosmic rays (boron, beryllium). x Infrared Spectroscopy of Triatomics for Space Observation “The surface of the Earth is the shore of the cosmic ocean […] We’re made of star stuff. We are a way for the cosmos to know itself.” Expressed in a poetic way by the astrophysicist Carl Sagan, it seems that our cosmic origin and the detailed understanding of atoms and molecules take on a meaning that surpasses us. In a famous analogy, Richard Feynman likens the physicist to an insect floating in the corner of a pool, rising and falling with the waves, and trying to reconstruct what is happening in this pool simply by measuring the height of the electromagnetic waves. The astrophysicist is also striving towards the goal of discovering and understanding what is happening in the cosmic ocean, by the mere observation of electromagnetic waves that reach the shore. Spectroscopy in all its facets (instruments, theoretical frameworks, analyses and techniques) is today a vast field with multiple ramifications. It is without a doubt the most powerful, the finest and most universally used tool available to translate these waves into a coherent vision of the universe on all scales, from the infinitely small to the infinitely large. An entity is more than just the sum of its parts, as Aristotle had already formulated several millennia ago. The authors, specialists in modeling and spectroscopy, show us the theoretical models of triatomic molecules and their infrared spectra in different environments of space. This book adds a string to the bow, adding to our understanding of this part of the entity. Céline REYLÉ Astrophysicist at Institut UTINAM Science Observatory at Univers Franche-Comté Bourgogne Preface In the preface to Volume 1 [DAH 17], the importance of spectroscopy was emphasized, both from a theoretical and an instrumental point of view, for the analysis of observations of chemical species, molecules, radicals and ions. In the infrared (IR), using various types of spatial observation instruments, it is possible to detect molecules or chemical species (ions, radicals, macromolecules, nano-cages, etc.) present in the atmospheres of planets, Earth included, and their satellites, in interstellar media, comets or exoplanets, for example. One of the most striking observations using ground-based instruments or embedded in space probes or telescopes was listed to show the diversity of discoveries that can lead to advances in the field of astrophysics or cosmology. Note, in particular, the observations mentioned in the preface to Volume 1 [DAH 17], that is: And very recently, on September 14, 2015, the LIGO (Laser Interferometer Gravitational-Wave Observatory) detects for the first time, the distortions caused by gravitational waves in space-time, predicted by Einstein’s theory of general relativity and generated by two black holes that collide nearly 1.3 billion light-years away. This earned its authors, Barry C. Barish, Kip S. Thorne and Rainer Weiss, the Nobel Prize in Physics in 2017. Advances in modern detection systems (Planck and Hubble telescopes) and large telescopes that are continually improved and programmed to be sent into space (NASA James Webb Space Telescope (2020), European Extremely Large Telescope (E-ELT) (2024)) can probe the universe to better understand its origin and what it comprises (less than 5% of visible matter, about 25% of dark matter and the rest of dark energy (70%) responsible for a force that repels gravity), to observe exoplanets

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.