ebook img

Information Theoretic Analysis of Watermarking Systems PDF

193 Pages·2001·1.134 MB·English
by  Cohen
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Information Theoretic Analysis of Watermarking Systems

Information Theoretic Analysis of Watermarking Systems by Aaron Seth Cohen S.B., Electrical Engineering and Computer Science Massachusetts Institute of Technology (1997) M.Eng., Electrical Engineering and Computer Science Massachusetts Institute of Technology (1997) Submitted to the Department of Electrical Engineering and Computer Science in partial ful(cid:12)llment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2001 (cid:13)c Massachusetts Institute of Technology 2001. All rights reserved. Author............................................................................ Department of Electrical Engineering and Computer Science August 31, 2001 Certi(cid:12)ed by........................................................................ Amos Lapidoth Associate Professor of Electrical Engineering Thesis Supervisor Accepted by....................................................................... Arthur C. Smith Chairman, Department Committee on Graduate Students Information Theoretic Analysis of Watermarking Systems by Aaron Seth Cohen Submitted to the Department of Electrical Engineering and Computer Science on August 31, 2001, in partial ful(cid:12)llment of the requirements for the degree of Doctor of Philosophy Abstract Watermarking modelsa copyright protection mechanismwhere anoriginaldata sequence is modi(cid:12)ed before distribution to the public in order to embed some extra information. The embedding should be transparent (i.e., the modi(cid:12)ed data should be similar to the original data) and robust (i.e., the information should be recoverable even if the data is modi(cid:12)ed further). Inthisthesis, we describethe information-theoreticcapacity ofsuch a system as a functionofthestatisticsofthedatatobewatermarkedandthedesiredleveloftransparency and robustness. That is, we view watermarking from a communication perspective and describe the maximum bit-rate that can be reliably transmitted from encoder to decoder. We make the conservative assumptionthat there isa maliciousattacker who knows how the watermarking system works and who attempts to design a forgery that is similar to the original data but that does not contain the watermark. Conversely, the watermarking system must meet its performance criteria for any feasible attacker and would like to force theattackertoe(cid:11)ectivelydestroythedatainordertoremovethewatermark. Watermarking canthusbeviewedasadynamicgamebetweenthesetwoplayerswhoaretryingtominimize and maximize, respectively, the amount of information that can be reliably embedded. We compute the capacity for several scenarios, focusing largely on Gaussian data and a squared di(cid:11)erence similarity measure. In contrast to many suggested watermarking tech- niques that view the original data as interference, we (cid:12)nd that the capacity increases with the uncertainty in the original data. Indeed, we (cid:12)nd that out of all distributions with the same variance, a Gaussian distribution on the original data results in the highest capacity. Furthermore, for Gaussian data, the capacity increases with its variance. One surprising result is that with Gaussian data the capacity does not increase if the original data can be used to decode the watermark. This is reminiscent of a similar model, Costa’s \writing on dirty paper", in which the attacker simply adds independent Gaussian noise. Unlikewithamoresophisticatedattacker, weshowthatthecapacitydoesnotchange for Costa’s model if the original data is not Gaussian. Thesis Supervisor: Amos Lapidoth Title: Associate Professor of Electrical Engineering Acknowledgments First, I would like to thank my advisor, Prof. Amos Lapidoth, for all of his advice and encouragement. Even from long distance, he has graciously helped me overcome the many hurdles I have encountered throughout the writing of this thesis. I would also like to thank the members of my thesis committee, Prof. Bob Gallager and Prof. Greg Wornell, for their insightful comments. The many comments by Neri Merhav and Anelia Somekh-Baruch have also been extremely helpful. My briefvisit to the ISI in Zu(cid:127)rich was quite pleasant, thanks mainly to the friendlyand accommodating students there. I would speci(cid:12)cally like to thank Renate Agotai for taking care of all of the important details and Ibrahim Abou Faycal for being a great traveling companion. Theintellectualenvironmentcreatedbythefaculty, sta(cid:11)andstudentsofLIDShasmade it a wonderful place to pursue a graduate education. I would especially like to thank my many oÆce-mates in35-303 includingRandy Berry, AnandGanti, HishamKassab, Thierry Klein, Emre Koksal, Mike Neely, EdmundYeh and Won Yoon; the oÆce was always a good place for getting feedback about research or (more typically) discussing such important topics as sports or the stock market. Of course, I could not have done any of this without my parents, Michael and Jackie, who have always encouraged me to vigorously pursue my goals. I would like to thank them and the rest of my family for the support they have given me over the years. My(cid:12)nalandmost importantacknowledgment goes tomylovely wifeDinaMayzlin. She has motivated and inspired me, and she has made the many years we have spent together at MIT worthwhile. This research was supported in part by an NSF Graduate Fellowship. 6 Contents 1 Introduction 13 1.1 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Watermarking Model and Results 19 2.1 Precise De(cid:12)nition of Watermarking . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Capacity Results for Watermarking . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 Scalar Gaussian Watermarking Game . . . . . . . . . . . . . . . . . 23 2.2.2 Additive Attack Watermarking Game . . . . . . . . . . . . . . . . . 28 2.2.3 Average Distortion Constraints . . . . . . . . . . . . . . . . . . . . . 29 2.2.4 Vector Gaussian Watermarking Game . . . . . . . . . . . . . . . . . 30 2.2.5 Discrete Alphabets, No Covertext . . . . . . . . . . . . . . . . . . . 32 2.2.6 Binary Watermarking Game . . . . . . . . . . . . . . . . . . . . . . 34 2.3 Prior Work on Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.1 Practical Approaches to Watermarking . . . . . . . . . . . . . . . . 37 2.3.2 Information-Theoretic Watermarking . . . . . . . . . . . . . . . . . . 38 2.3.3 Similar Models: Steganography and Fingerprinting . . . . . . . . . . 39 2.3.4 Communication Games . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.4 Assumptions in Watermarking Model. . . . . . . . . . . . . . . . . . . . . . 41 2.4.1 Is Capacity Meaningful? . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.4.2 Randomization for Encoder/Decoder . . . . . . . . . . . . . . . . . . 41 2.4.3 Randomization for Attacker - Deterministic is SuÆcient . . . . . . . 42 2.4.4 Distortion Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.5 Statistics of Covertext . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7 2.5 Uncertainty in the Watermarking Model . . . . . . . . . . . . . . . . . . . . 45 2.5.1 Types of State Generators . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5.2 Communication with Side Information . . . . . . . . . . . . . . . . . 47 2.5.3 Arbitrarily Varying Channels . . . . . . . . . . . . . . . . . . . . . . 50 2.5.4 Extended Writing on Dirty Paper. . . . . . . . . . . . . . . . . . . . 52 3 Mutual Information Games 57 3.1 De(cid:12)nition and Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2 Proof of Mutual Information Game Result . . . . . . . . . . . . . . . . . . . 60 3.2.1 Optimal Attack Channel . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Optimal Watermarking Channel . . . . . . . . . . . . . . . . . . . . 61 3.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Game Theoretic Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4 Other Mutual Information Games . . . . . . . . . . . . . . . . . . . . . . . 68 4 The Scalar Gaussian Watermarking Game 71 4.1 Deterministic Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.1 Deterministic Additive Attack . . . . . . . . . . . . . . . . . . . . . 72 4.1.2 Deterministic General Attack . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Achievability for Private Version . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2.1 Coding Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.2.2 Analysis of Probability of Error . . . . . . . . . . . . . . . . . . . . . 76 4.3 Achievability for Public Version . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Coding Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Probability of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.3 Distribution of Chosen Auxiliary Codeword . . . . . . . . . . . . . . 87 4.3.4 Analysis for Additive Attack Watermarking Game . . . . . . . . . . 88 4.3.5 Analysis for General Watermarking Game . . . . . . . . . . . . . . . 90 4.4 Spherically Uniform Covertext is SuÆcient. . . . . . . . . . . . . . . . . . . 92 4.5 Converse for Squared Error Distortion . . . . . . . . . . . . . . . . . . . . . 94 4.5.1 Attacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.2 Analysis of Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.5.3 Analysis of Probability of Error . . . . . . . . . . . . . . . . . . . . . 100 8 4.5.4 Discussion: The Ergodicity Assumption . . . . . . . . . . . . . . . . 104 5 The Vector Gaussian Watermarking Game 105 5.1 Diagonal Covariance is SuÆcient . . . . . . . . . . . . . . . . . . . . . . . . 105 5.2 De(cid:12)nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 Outline of Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.4 Achievability for the Private Version . . . . . . . . . . . . . . . . . . . . . . 111 5.5 Achievability for the Public Version. . . . . . . . . . . . . . . . . . . . . . . 117 5.5.1 Codebook Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.5.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.5.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.5.4 Probability of Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.6 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.6.1 Proof of Lemma 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.6.2 Proof of (5.17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.7 The Optimal Attack and Lossy Compression . . . . . . . . . . . . . . . . . 128 5.7.1 Compression Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.7.2 Designing for a Compression Attack . . . . . . . . . . . . . . . . . . 130 6 Watermarking with Discrete Alphabets 133 6.1 No Covertext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.1 De(cid:12)nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.1.2 Achievability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.3 Converse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.2 Binary Covertext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.2.1 Private Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2.2 Public Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7 Conclusions 145 7.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 7.1.1 Gaussian Sources with Memory . . . . . . . . . . . . . . . . . . . . . 147 7.1.2 Discrete Memoryless Covertext . . . . . . . . . . . . . . . . . . . . . 148 7.1.3 Deterministic Code Capacity for Public Version . . . . . . . . . . . . 148 9 7.1.4 Multiple Rate Requirements . . . . . . . . . . . . . . . . . . . . . . . 150 A De(cid:12)nitions for Gaussian covertext 151 B Technical Proofs 155 B.1 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.2 Proof of Lemma 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 B.3 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 B.4 Proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 B.5 Proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 B.6 Proof of Lemma 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 B.7 Proof of Lemma 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 B.8 Proof of Lemma 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 B.9 Proof of Lemma 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 B.10 Proof of Lemma 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 B.11 Proof of Lemma 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 B.12 Proof of Lemma 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 B.13 Proof of Lemma 5.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Bibliography 185 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.