ebook img

Information and communication theory PDF

363 Pages·2019·1.775 MB·English
by  HöstStefan
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Information and communication theory

INFORMATION AND COMMUNICATION THEORY IEEEPress 445HoesLane Piscataway,NJ08854 IEEEPressEditorialBoard EkramHossain,EditorinChief GiancarloFortino AndreasMolisch LindaShafer DavidAlanGrier SaeidNahavandi MohammadShahidehpour DonaldHeirman RayPerez SarahSpurgeon XiaoouLi JeffreyReed AhmetMuratTekalp INFORMATION AND COMMUNICATION THEORY STEFAN HO¨ ST LundUniversity,Sweden Copyright©2019byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved. PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada. Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,fax (978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermissionshould beaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ 07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat (317)572-3993orfax(317)572-4002. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat www.wiley.com. LibraryofCongressCataloging-in-PublicationDataisavailable. ISBN978-1-119-43378-1 PrintedintheUnitedStatesofAmerica. 10 9 8 7 6 5 4 3 2 1 CONTENTS PREFACE ix CHAPTER1 INTRODUCTION 1 CHAPTER2 PROBABILITYTHEORY 5 2.1 Probabilities 5 2.2 RandomVariable 7 2.3 ExpectationandVariance 9 2.4 TheLawofLargeNumbers 17 2.5 Jensen’sInequality 21 2.6 RandomProcesses 25 2.7 MarkovProcess 28 Problems 33 CHAPTER3 INFORMATIONMEASURES 37 3.1 Information 37 3.2 Entropy 41 3.3 MutualInformation 48 3.4 EntropyofSequences 58 Problems 63 CHAPTER4 OPTIMALSOURCECODING 69 4.1 SourceCoding 69 4.2 KraftInequality 71 4.3 OptimalCodewordLength 80 4.4 HuffmanCoding 84 4.5 ArithmeticCoding 95 Problems 101 CHAPTER5 ADAPTIVESOURCECODING 105 5.1 TheProblemwithUnknownSourceStatistics 105 5.2 AdaptiveHuffmanCoding 106 5.3 TheLempel–ZivAlgorithms 112 5.4 ApplicationsofSourceCoding 125 Problems 129 v vi CONTENTS CHAPTER6 ASYMPTOTICEQUIPARTITIONPROPERTYANDCHANNEL CAPACITY 133 6.1 AsymptoticEquipartitionProperty 133 6.2 SourceCodingTheorem 138 6.3 ChannelCoding 141 6.4 ChannelCodingTheorem 144 6.5 DerivationofChannelCapacityforDMC 155 Problems 164 CHAPTER7 CHANNELCODING 169 7.1 Error-CorrectingBlockCodes 170 7.2 ConvolutionalCode 188 7.3 Error-DetectingCodes 203 Problems 210 CHAPTER8 INFORMATIONMEASURESFORCONTINUOUSVARIABLES 213 8.1 DifferentialEntropyandMutualInformation 213 8.2 GaussianDistribution 224 Problems 232 CHAPTER9 GAUSSIANCHANNEL 237 9.1 GaussianChannel 237 9.2 ParallelGaussianChannels 244 9.3 FundamentalShannonLimit 256 Problems 260 CHAPTER10 DISCRETEINPUTGAUSSIANCHANNEL 265 10.1 M-PAMSignaling 265 10.2 ANoteonDimensionality 271 10.3 ShapingGain 276 10.4 SNRGap 281 Problems 285 CHAPTER11 INFORMATIONTHEORYANDDISTORTION 289 11.1 Rate-DistortionFunction 289 11.2 LimitForFixPb 300 11.3 Quantization 302 11.4 TransformCoding 306 Problems 319 CONTENTS vii APPENDIXA PROBABILITYDISTRIBUTIONS 323 A.1 DiscreteDistributions 323 A.2 ContinuousDistributions 327 APPENDIXB SAMPLINGTHEOREM 337 B.1 TheSamplingTheorem 337 BIBLIOGRAPHY 343 INDEX 347 PREFACE Informationtheorystartedasatopicin1948whenClaudeE.Shannonpublishedthe paper“Amathematicaltheoryofcommunication.”Asthenamereveals,itisathe- oryaboutwhatcommunicationandinformationareinamathematicalsense.Shan- non built a theory first to quantify and measure the information of a source. Then, by viewing communication as reproduction of information, the theory of commu- nication came into view. So, without information, or choices, there cannot be any communication. But these two parts go hand in hand. The information measure is basedontheamountofdataneededforreconstruction,andcommunicationisbased ontheamountofdataneededtobetransmittedtotransferacertainamountofinfor- mation.Inamathematicalsense,choicesmeanprobabilities,andthetheoryisbased onprobabilitytheory. Humans have always strived to simplify the process of communication and spreadingknowledge.Inthe1450swhenGutenbergmanagedtogethisprintingpress inoperation,itsimplifiedthespreadingofthewrittenwords.Sincethen,wehaveseen many different technologies that have spread the information—from the telegraph, viathetelephoneandtelevision,totheInternetasweknowittoday.Whatwillcome nextwecanonlyspeculate,butalltheseexistingandforthcomingtechnologiesmust complywiththetheoriesthatShannonstated.Therefore,informationtheoryasatopic isthebaseforeveryoneworkingwithcommunicationsystems,bothpast,present,and forthcoming. Thisbookisintendedtobeusedinafirstcourseininformationtheoryforcom- municationengineeringstudents,typicallyinhigherundergraduateorlowergraduate level.Sincethetheoryisbasedonmathematicsandprobabilitytheory,acertainlevel ofmaturityinthesesubjectsisexpected.Thismeansthatthestudentsshouldhavea coupleofmathematicscoursesintheirtrunk,suchasbasiccalculusandprobability theory.Itisalsorecommended,butnotrequired,thattheyhavesomeunderstandingof digitalcommunicationasaconcept.Thistogetherwillgiveasolidgroundforunder- standingtheideasofinformationtheory.Thefirstrequirementofalevelofmaturity inmathematicscomesfrominformationtheorythatsetsupamathematicalmodelof informationinverygeneralterms,inthesensethatitisvalidforallkindsofcommu- nication.Onsomeoccasions,thetheorycanbeseenasprettyabstractbystudentsthe firsttimetheyengagewithit.Then,tohavesomeunderstandingofcommunication onaphysicallayerbeforehandmighthelptheunderstanding. Theworkwiththisbook,aswellasthecontent,hasgrownwhilelecturingthe courseoninformationandcommunication.Bythetimeitstarted,Iusedoneofthe mostrecommendedbooksinthisfield.Butitlackedtheengineeringpartofthecourse, suchastheintuitiveunderstandingandadescriptionofwhatitmeansinreality.The ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.