ebook img

influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced PDF

173 Pages·2013·5.86 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced

INFLUENCE OF THE SHEAR WALL AREA TO FLOOR AREA RATIO ON THE SEISMIC PERFORMANCE OF EXISTING REINFORCED CONCRETE BUILDINGS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY AHMET ORHUN GÜNEL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING JANUARY 2013 i ii Approval of the thesis: INFLUENCE OF SHEAR WALL AREA TO FLOOR AREA RATIO ON THE SEISMIC PERFORMANCE OF EXISTING REINFORCED CONCRETE BUILDINGS submitted by AHMET ORHUN GÜNEL in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering Department, Middle East Technical University by, Prof. Dr. Canan Özgen Dean, Graduate School of Natural and Applied Sciences ____________ Prof. Dr. Ahmet Cevdet Yalçıner Head of Department, Civil Engineering ____________ Assist. Prof. Dr. Burcu Burak Supervisor, Civil Engineering Dept., METU ____________ Examining Committee Members Assoc. Prof. Dr. Murat Altuğ Erberik Civil Engineering Dept., METU ____________ Assist. Prof. Dr. Burcu Burak Supervisor, Civil Engineering Dept., METU ____________ Assoc. Prof. Dr. Alp Caner Civil Engineering Dept., METU ____________ Assoc. Prof. Dr. Afşin Sarıtaş Civil Engineering Dept., METU ____________ Yüksel İlkay Tonguç, M.Sc. PROMER Consultancy Engineering Ltd. Co. ____________ Date: 31 January 2013 iii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Ahmet Orhun GÜNEL Signature : iv ABSTRACT INFLUENCE OF SHEAR WALL AREA TO FLOOR AREA RATIO ON THE SEISMIC PERFORMANCE OF EXISTING REINFORCED CONCRETE BUILDINGS Günel, Ahmet Orhun M.Sc., Department of Civil Engineering Supervisor: Assist. Prof. Dr. Burcu Burak January 2013, 153 pages An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are designed. Consequently, twenty four buildings with different floor plans, number of stories, cross- sectional properties of the members and material strengths are acquired. Nonlinear time-history analyses are performed for all buildings by utilizing the software program, SAP2000 v14.2.0. under seven different ground motion records. The results indicated that roof drifts and plastic deformations reduce with increasing shear wall ratios, but the rate of decrease is lower for higher shear wall ratios. Buildings with 1.00% shear wall ratio have significantly lower roof drifts and plastic deformations when compared to buildings with 0.00% or 0.50% shear wall ratio. Roof drifts and plastic deformations are minimized when the shear wall ratio is increased to 1.50%. After this limit, addition of shear walls has only a slight effect on the seismic performance of the analyzed buildings. Keywords: Shear Wall Ratio, Seismic Performance, Reinforced Concrete Structures, Nonlinear Time History Analysis v ÖZ PERDE DUVAR ALANININ KAT ALANINA ORANININ MEVCUT BETONARME BİNALARIN DEPREM YÜKLERİ ALTINDAKİ YAPISAL PERFORMANSLARINA ETKİSİ Günel, Ahmet Orhun Yüksek Lisans, İnşaat Mühendisliği Bölümü Tez Yöneticisi: Yrd. Doç. Dr. Burcu Burak Ocak 2013, 153 sayfa Betonarme perde duvar alanlarının kat alanına oranlarının, mevcut orta katlı betonarme binaların deprem yükleri altındaki davranışlarına etkisini değerlendirmek için analitik bir çalışma yapılmıştır. Birbirine dik her iki yönde %0.00 ve %2.50 arasında değişen betonarme perde duvar oranlarına sahip, beş mevcut okul binası ve bunların güçlendirilmiş hallerinin yapısal performansları incelenmiştir. Mevcut binaların yapısal özellikleri göz önüne alınarak farklı perde oranları olan yeni binalar tasarlanmıştır. Böylece kat planları, kat sayıları, yapısal elemanlarının kesit özellikleri ve malzeme dayanımları farklı olan yirmi dört bina oluşturulmuştur. Bu binaların doğrusal olmayan zaman tanım alanı analizleri, SAP2000 v14.2.0 yazılımı kullanılarak yedi farklı yer hareketi kaydı altında yapılmıştır. Sonuçlar, perde duvar oranları arttıkça çatı katı ötelenmelerinin ve plastik deformasyonların azaldığını göstermiştir, fakat bu düşüş oranı, yüksek perde duvar oranları için daha azdır. Perde duvar oranı %1.00 olan bir bina, bu oranın %0.00 veya %0.50 olduğu binalara kıyasla oldukça düşük çatı katı ötelenmeleri ve plastik deformasyonlara sahiptir. Perde duvar oranı %1.50’a arttırıldığında, çatı katı ötelenmeleri ve plastik deformasyonlar minimize edilir. Fakat, kullanılan perde duvar oranı bu değeri aştığı takdirde, eklenen perde duvarların, binaların deprem yükleri altındaki performanslarına olan etkisi oldukça azalır. Anahtar Sözcükler: Perde Duvar Oranı, Deprem Yükü Altındaki Yapı Performansı, Betonarme Yapılar, Doğrusal Olmayan Zaman Tanım Alanı Analizi vi To my Dear Family vii ACKNOWLEDGEMENTS First of all, I am grateful and I would like to thank my supervisor, Asst. Prof. Dr. Burcu Burak because of continuous supports, endless guidance and limitless encouragement during the investigation. Then, I am deeply indebted to my family for support, patience and faith anytime when I need. Finally, I would also like to thank my friends. viii TABLE OF CONTENTS ABSTRACT ......................................................................................................................................... v ÖZ………………. ............................................................................................................................ viii ACKNOWLEDGEMENTS .............................................................................................................. viii TABLE OF CONTENTS .................................................................................................................... ix LIST OF TABLES ............................................................................................................................. xii LIST OF FIGURES ........................................................................................................................... xiv LIST OF SYMBOLS AND ABBREVIATIONS ............................................................................ xviii CHAPTERS 1. INTRODUCTION ............................................................................................................................ 1 1.1 General ..................................................................................................................................... 1 1.2 Objective and Scope ................................................................................................................. 1 1.3 Thesis Outline ........................................................................................................................... 2 2. LITERATURE REVIEW ............................................................................................... 3 2.1 General Properties, Description and Classification of Shear Walls.......................................... 3 2.2 Modeling of Shear Walls .......................................................................................................... 6 2.2.1 Macroscopic Models of Shear Walls ................................................................................. 7 2.2.2 Microscopic Models of Shear Walls ................................................................................ 13 2.3 Shear Wall Ratio of the Structures ......................................................................................... 14 2.4 Correlation between Shear Wall Ratio and Drift .................................................................... 19 3. ANALYTICAL MODELING OF SCHOOL BUILDINGS........................................................... 23 3.1 Introduction ............................................................................................................................ 23 3.2 Description of Existing School Buildings .............................................................................. 23 3.2.1 Description of Güngören Haznedar Abdi İpekçi Primary School Block B ..................... 23 3.2.2 Description of G.O.P. Ülkü Primary School Block B...................................................... 26 3.2.3 Description of Sarıyer MEV Dumlupınar Primary School .............................................. 28 3.2.4 Description of Fatih Gazi Primary School ....................................................................... 29 3.2.5 Description of Eminönü Çemberlitaş Anatolian High School Block A ........................... 32 3.2.6 Description of Designed Buildings .................................................................................. 35 3.2.7 Summary of Structural Characteristics of the Buildings used in the Analytical Study ………………………………………………………………………………………. 38 3.3 Analytical Modeling ............................................................................................................... 40 3.3.1 Selection of Ground Motion Records .............................................................................. 40 3.3.2 Applied Loads .................................................................................................................. 42 3.3.3 Analytical Modeling of the School Buildings.................................................................. 43 4. ANALYTICAL RESULTS OF THE buıldıng MODELS.............................................................. 49 4.1 Introduction ............................................................................................................................ 49 4.2 Analytical Results of the Designed Buildings ........................................................................ 49 4.2.1 Modal Periods of the Designed Buildings ....................................................................... 49 4.2.2 Analytical Results of the Designed Building-First Case.................................................. 50 4.2.3 Analytical Results of Designed Building-Second Case ................................................... 77 4.3 Analytical Results of the Existing School Buildings .............................................................. 89 4.3.1 Base Shear Carried by Reinforced Concrete Shear Walls ............................................... 91 4.3.2 Roof Drift ........................................................................................................................ 92 4.3.3 Base Shear versus Roof Drift Relationship...................................................................... 98 4.3.4 Comparison of the Seismic Performance of the Existing Buildings ................................ 99 5. SUMMARY AND CONCLUSIONS ........................................................................................... 105 5.1 Summary ............................................................................................................................... 105 5.2 Conclusions ........................................................................................................................... 105 5.3 Recommendations for Future Research ................................................................................. 107 ix REFERENCES ................................................................................................................................. 108 APPENDIX A PROCEDURE FOLLOWED IN THE ANALYTICAL MODEL ............................ 113 A.1 Prepared Spreadsheet to obtain the Moment-Curvature Diagram of the Beams ................. 113 Example: .................................................................................................................................... 113 A.2 Example Moment-Curvature Diagram of a Beam ............................................................... 114 A.3 Prepared Spreadsheet to obtain the Moment-Curvature Diagram of the Columns.............. 115 Example: .................................................................................................................................... 115 A.4 Example Moment-Curvature Diagram of a Column ........................................................... 116 A.5 Prepared Spreadsheet to obtain the Interaction Diagram of the Columns ........................... 117 Example: .................................................................................................................................... 117 A.6 Example Interaction Diagram for Interacting P-M2-M3 Hinge of SAP2000 v14.2.0 (2009)…………………. ................................................................................................... 118 A.7 Example Moment-Curvature Diagram of a Shear Wall ...................................................... 119 A.8 Example Interaction Diagram of a Shear Wall .................................................................... 119 A.9 Prepared Spreadsheet to obtain the Moment-Curvature Diagram of the Shear Walls ......... 120 Example: .................................................................................................................................... 120 A.10 Prepared Spreadsheet to obtain the Interaction Diagram of the Shear Walls.................... 121 Example: .................................................................................................................................... 121 A.11 Maximum Base Shear and Maximum Roof Drift Values ................................................. 122 A.12 Maximum Base Shear vs. Maximum Roof Drift for the Designed Building with 1.00% Shear Wall Ratio for the First Case in the X and Y-Directions ........................................ 125 A.13 Maximum Base Shear vs. Maximum Roof Drift for the Designed Building with 1.50% Shear Wall Ratio for the First Case in the X and Y-Directions ........................................ 126 A.14 Maximum Base Shear vs. Maximum Roof Drift for the Designed Building with 2.00% Shear Wall Ratio for the First Case in the X and Y-Directions ........................................ 127 A.15 Maximum Base Shear vs. Maximum Roof Drift for the Designed Building with no Shear Wall for the Second Case in the X and Y-Directions ....................................................... 128 A.16 Maximum Base Shear vs. Maximum Roof Drift for the Designed Building with 0.50% Shear Wall Ratio for the Second Case in the X and Y-Directions .................................... 129 A.17 Maximum Base Shear vs. Maximum Roof Drift for the Designed Building with 1.50% Shear Wall Ratio for the Second Case in the X and Y-Directions .................................... 130 A.18 Maximum Base Shear vs. Maximum Roof Drift for the Designed Building with 2.00% Shear Wall Ratio for the Second Case in the X and Y-Directions .................................... 131 A.19 Base Shear Percentage Carried by Shear Walls vs. Shear Wall Ratio for Eminönü Çemberlitaş Anatolian High School Block A in the X and Y-Directions ......................... 132 A.20 Base Shear Percentage Carried by Shear Walls vs. Shear Wall Ratio for Güngören Haznedar Abdi İpekçi Primary School Block B in the X and Y-Directions ..................................... 133 A.21 Base Shear Percentage Carried by Shear Walls vs. Shear Wall Ratio for Sarıyer MEV Dumlupınar Primary School in the X and Y-Directions ................................................... 134 A.22 Roof Drift vs. Shear Wall Ratio for Güngören Haznedar Abdi İpekçi Primary School Block B in the X and Y-Directions ............................................................................................. 135 A.23 Roof Drift vs. Shear Wall Ratio for Sarıyer MEV Dumlupınar Primary School in the X and Y-Directions ..................................................................................................................... 136 A.24 Maximum Base Shear vs. Maximum Roof Drift for Fatih Gazi Primary School with 0.50- 0.00% Shear Wall Ratio in the X and Y-Directions ......................................................... 137 A.25 Maximum Base Shear vs. Maximum Roof Drift for Fatih Gazi Primary School with 0.50- 0.50% Shear Wall Ratio in the X and Y-Directions ......................................................... 138 A.26 Maximum Base Shear vs. Maximum Roof Drift for Fatih Gazi Primary School with 1.00- 1.00% Shear Wall Ratio in the X and Y-Directions ......................................................... 139 A.27 Maximum Base Shear vs. Maximum Roof Drift for Fatih Gazi Primary School with 1.50- 1.50% Shear Wall Ratio in the X and Y-Directions ......................................................... 140 A.28 Maximum Base Shear vs. Maximum Roof Drift for Eminönü Çemberlitaş Anatolian High School Block A with no Shear Wall in the X and Y-Directions ....................................... 141 A.29 Maximum Base Shear vs. Maximum Roof Drift for Eminönü Çemberlitaş Anatolian High School Block A with 0.50-0.50% Shear Wall Ratio in the X and Y-Directions ............... 142 x

Description:
behavior of existing mid-rise reinforced concrete buildings under Shear Wall Ratio, Seismic Performance, Reinforced Concrete Structures, Gediz (1970) Earthquakes damage lots of structures, especially public buildings Typical side views of squat and slender walls can be seen in Figure 2.1.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.