Limnetica,29(2):x-xx(2011) Limnetica, 33 (1): 73-88 (2014). DOI: 10.23818/limn.33.07 (cid:13)c AsociaciónIbéricadeLimnología,Madrid.Spain.ISSN:0213-8409 Influence of the abiotic characteristics of sediments on the macrobenthic community structure of the Minho estuary saltmarsh (Portugal) ThaisC. Picanço1, C. Marisa R.Almeida1, CarlosAntunes1,2,3 and Pedro A. Reis 1,∗ 1 CIIMAR/CIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dosBragas,289,4050-123Porto,Portugal. 2 AquamuseudoRioMinho-ParquedoCastelinho,4920-290VilaNovadeCerveira,Portugal. 3 EscolaSuperiorGallaecia-LargodasOliveiras,4920VilaNovadeCerveira,Portugal. ∗ Correspondingauthor:[email protected] 2 Received:23/10/2013 Accepted:05/02/2014 ABSTRACT InfluenceofabioticcharacteristicsofsedimentsonthemacrobenthiccommunitystructureofMinhoestuarysaltmarsh (Portugal) ThisworkstudiedthespatialandseasonalvariationsofthemacrobenthiccommunitystructureoftheMinhoestuarysaltmarsh, which involved examining the relationships between the macrobenthic community and the abiotic characteristics of the surroundingsediments:texture,organicmattercontentandmetal(Cd,Cr,Cu,Fe,Ni,PbandZn)concentrations.Theseabiotic characteristics showed significant (p < 0.05) spatial and seasonal variations that demonstrated the complex sedimentary dynamicsofthissaltmarsh.Themacrobenthiccommunitystructureconsistedof37taxabelongingto5phyla:Annelida(10 taxa), Mollusca (4 taxa), Arthropoda (21 taxa), Chordata (1 taxon) and Sipuncula (1 taxon). The mean annual abundance was1530ind/m2,andthemostabundantspecieswereCyathuracarinata,ScolelepissquamataandHedistediversicolor.The macrobenthiccommunityshowednostandardspatialdistributionthroughoutthesaltmarsh,andspeciesabundancesshowed highseasonalvariationsthatweredirectlydependentonthenaturalenvironmentalconditionsofeachseason.Althoughthe Minhoestuarysaltmarshshowedevidenceofanthropogeniccontaminationbymetals,themacrobenthiccommunitywasnot significantlyinfluencedbytheirpresence,andthemainstructuringfactorwasthetextureofthesediments. Keywords: Macrobenthiccommunity,metal,saltmarsh,Minhoriver. RESUMEN Influenciadelascaracterísticasabióticasdelsedimentoenlaestructuradelacomunidadmacrobentónicadelestuariodel RíoMinho(Portugal) Este trabajo ha estudiado las variaciones espaciales y estacionales de la estructura de la comunidad macrobentónica del estuario del río Miño, incluyendo el estudio de las relaciones entre la comunidad macrobentónica y las características abióticasdelossedimentos:textura,contenidodemateriaorgánicayconcentracionesdemetales(Cd,Cr,Cu,Fe,Ni,PbyZn). Estascaracterísticasabióticas hanmostradovariacionesespacialesyestacionalessignificativas(p < 0.05),demostrando lascomplejasdinámicassedimentariasdeesteestuario.Laestructuradelacomunidadmacrobentónicafueconstituidapor treintaysietetaxadecincophyla:Annelida(dieztaxa),Mollusca(cuatrotaxa),Arthropoda(veintiunataxa),Chordata(un taxon)ySipuncula(untaxon).Lamediadelaabundanciaanualfuede1530ind/m2 ylasespeciesmásabundantesfueron Cyathura carinata, Scolelepis squamata y Hediste diversicolor. La comunidad macrobentónica no mostró una distribución espacial estándar a lo largo del estuario y sus abundancias mostraron elevadas variaciones estacionales directamente dependientes de las condiciones ambientales de cada estación. A pesar de que el estuario del Miño mostró evidencias de contaminacióndemetalesdeorigenantropogénico,lacomunidadmacrobentónicanoseviosignificativamenteafectadayel mayorfactorestructuralfuelatexturadelossedimentos. Palabrasclave: Comunidadmacrobentónica,metales,estuario,ríoMiño. 15293 Limnetica 33(1), pàgina 73, 15/05/2014 74 Picançoet al. INTRODUCTION biological assessment methods and indices is considered as a Quality Paradox (Dauvin, 2007; Thestudyofmacrobenthiccommunitystructures Elliott&Quintino,2007). and their dynamics hasbeenan ecological prior- The international section of the Minho River ity,asbenthicfaunalactivitiesaffectandregulate (including its saltmarsh area) was classified as the physicochemical and biological processes of a Natura 2000 location. The saltmarsh area is estuarine systems (Day et al., 1989). The mac- particularly important to avifauna, about which robenthiccommunitystructureisalsoconsidered some scientific knowledge is available (Far- to be a useful instrument in the elaboration of inha & Trindade, 1994; Alves, 1996 and 2000; ecological quality studies and environmental di- Gamboa, 1999). However, the composition and agnostics,asitcanreflectwithhighprecisionthe distribution of the subtidal macrozoobenthic previousenvironmentalconditionsoftheecosys- community present in the saltmarsh area of tem (Warwick, 1986; Lana, 1994). This useful- the Minho Estuary remain unknown. Previous ness canbe relatedto the presenceof macroben- work has shown the importance of sediments in thic species near the bottom of ecosystems or in saltmarshareasassinksforcontaminantssuchas sediments,aswellastheirlowmobility(Canfield heavy metals, and coupled with the potential of etal.,1994;Weisbergetal.,1997;Clarke&Gor- the macrozoobenthic community to transfer this ley, 2001). The characterizationofmacrobenthic pollution to higher trophic levels, the conditions communitystructuresshouldincludethestudyof suggest that a biogeochemical study approach is species abundances, diversity and evenness in- appropriate (Reis et al., 2009 and Mil-Homens dices (Farinha & Trindade, 1994; Alves, 1996 et al., 2013a, b). Such biogeochemical studies and 2000; Gamboa, 1999; Mucha et al., 2003). areveryscarceinPortugueseestuaries,andnone Then, multivariate analyses canindicate the spa- have been reported in the particular case of the tial and seasonal variations of the community singlesaltmarshexistingintheMinhoestuary. and the influence of sediment abiotic character- Thus, the major aims of this work were istics (e.g., texture, organic contents and pollu- to study the Minho estuary saltmarsh over a tants such as metals) in its distribution throughout one-year period, determining the patterns of the theecosystemduringdifferentseasons(Farinha& macrozoobenthic community composition in Trindade, 1994; Alves, 1996 and 2000; Gamboa, relationto (i)the influence of the abiotic charac- 1999;Muchaetal.,2003;Reisetal.,2009). teristics of sediments (texture, organic contents Estuarine saltmarsh areas are excellent nurs- and metal concentrations) and (ii) species abun- ery and protection regions, but they can also dance,biomassanddiversity. Thesedatamaybe accumulate high contaminant concentrations in usedtoevaluatetheimportanceofthisparticular their sediments and plants (Teal, 1986; Vale et areaoftheestuaryforconservationpurposes. al., 1990; Reis et al., 2009). Consequently, es- tuarine community structures can be influenced by geological and anthropogenic gradients of MATERIALSANDMETHODS contamination, particularly of metals (Pearson & Rosenberg, 1978; Rakocinski et al., 1997). StudyArea However, the geological contribution of met- als complicates the identification of potential The Minho estuary is located in the northwest sources of contamination and makes the inter- (NW) region of Portugal and includes a variety pretation of their disturbing effects significantly of habitats with great environmental value, such more difficult (Weisberg et al., 1997; Gaston asitssaltmarshareas(atthejunctionoftherivers & Nasci, 1998; Mucha et al., 2003; Reis et al., Minho and Coura, near Caminha village) (Far- 2009). Furthermore, the challenge of detecting inha & Trindade, 1994; Alves, 1996 and 2000; anthropogenic impacts in naturally stressed Gamboa, 1999). Indeed, the Minho estuary salt- systems such as estuaries and saltmarshes using marshwasconsideredasametalpristineareaby 15293 Limnetica 33(1), pàgina 74, 15/05/2014 Changes onthe macrobioticcommunitystructureof theMinho estuarysaltmarsh 75 Reis et al. (2009), although the increase of local length and reaches the Minho estuary saltmarsh industrial and tourism (fishing and cruising) ac- 2 km before the estuary mouth, with an annual tivities has introduced anthropogenic sources of averageflowrateof10m3/s(Sousaetal.,2013). metals into this ecosystem. The river Minho is We selected 10 sampling sites according to the 300kmlong,andthe70kmfurthestdownstream salinitygradientduringhightideandtheirspatial are considered to be a natural boundary between locations (interior and exterior area) in the salt- PortugalandSpain;theareaisusuallyreferredto marsh (Fig.1), from which sediments were col- as the international section (Sousa et al., 2008). lectedforassessingthemacrobenthiccommunity TheriverflowswestwardfromthenorthofSpain structures (abundances, diversity and evenness). (Cantabrian Mountains) and discharges into the The mean distances between the sampling sites Atlantic Ocean with an average annual flow rate were800malongtheriverCoura(sites1-4)and of 300 m3/s (Sousa et al., 2013). The total area 230 m in the interior areas (sites 5-10), covering of the Minho watershed is approx. 17100 km2, atotalsaltmarshareaof1.04km2.Sampleswere but only 23 km2 are estuarine area (Sousa et al., also collected at these sites to assess the abiotic 2008). The Minho estuary is part of a Natura characteristicsoftheirwaters(nearbottom:tem- 2000site,whichincludestheentireinternational perature,dissolvedoxygenandsalinity)andsed- section of the river (Sousa et al., 2008). Addi- iments (texture, organic contents and metal con- tionally, the Coura River extends over 10 km in centrations). Figure1. Locationsofthe10samplingsitesintheMinhoestuarysaltmarsh(Portugal),nearCaminhavillage(adaptedfromReiset al.,2009).LocalizacióndelosdiezpuntosdemuestreoenelestuariodelríoMiño(Portugal),cercadelavilladeCamiña(adaptado deReisetal.,2009). 15293 Limnetica 33(1), pàgina 75, 15/05/2014 76 Picançoet al. Reagentsandmaterials tions were determined by Atomic Absorption Spectrometry (SpectrAA 220 FS, Varian), cou- The reagents and materials used in this study pled with a deuterium lamp as a background have been previously described by Reis et al. corrector,usingflameatomization(Marck7,Var- (2009): (i) the concentrated nitric acid (Fluka, ian) and electrothermal atomization (GTA 110, proanalysis,withoutfurtherpurification)andthe Varian), depending on the metal concentrations remaining reagents were of pro analysis level; in the samples (Reis et al., 2009). An adequate (ii)ultrapurewater(Milli-Qlevel,MilliporeSys- approach to study the potential anthropogenic tems)wasusedtoprepareallsolutions;(iii)Stan- contamination of sediments by metals is the dard Reference Material certified for “Inorgan- normalization of these elements using a refer- icsinMarineSediment”(SRM2702,NIST)was ence element not associated with contamination, usedtoverifythesuitabilityofthedigestionpro- such as Al, Li or Fe (Schiff & Weisberg, 1999; cedure and of the optimized analytical method Muchaetal.,2003;Reisetal.,2009).Thestudy for the metal analyses in the sediments; and (iv) of Reis et al. (2009) used Fe as a conservative thematerialusedinthesamplingcollectionsand indicator for the following reasons: (i) Fe is the treatments had been previously decontaminated fourth-most-abundant metal on earth (with a ina20%(v/v)nitricacidsolution. mean concentration in superficial terrestrial sed- iments of 3.5%); (ii) normally, anthropogenic sources of Fe are scarce compared with natural Samplingstrategyandanalyticalmethods Fe concentrations; and (iii) the ratios between Independent sediment replicates (n = 4) were other metals and Fe are nearly constant in ter- collectedusingaVanVeengrab(areaof500cm2 restrial sediments (Velinsky et al., 1994). Reis and a maximum capacity of 5000 cm3) at each et al. (2009) showed that some interior areas of site in September 2005 (summer), December this saltmarsh had evidence of anthropogenic 2005 (autumn) and March 2006 (winter) for contaminationbymetals(Cr,Cu,NiandPb). abioticandbioticcharacterization. Forbioticcharacterization,thesedimentsam- Theanalyticalmethodsusedtostudytheabiotic pleswerefixedwithabufferedseawater-formalin characteristics (texture, organic matter contents solution (10%, v/v) and sieved through a 1 mm and metal concentrations) of the sediments have meshfortheseparationofmacrobenthicorganisms. been previously described by Reis et al (2009). Then, the samples were preserved in an ethanol Fortexturecharacterization, thesedimentsamples solution (70%, v/v) with Rose Bengal (as stain- were dried in an oven at 60◦C for 48 hours, ing agent), and the organisms were counted and and dimensional analyses were conducted using a identified to the lowest possible taxon, normally Ro-Tap sieves system. The weight of each class thespecieslevel(Gaston&Nasci,1998). (gravel:>2mm;verycoarsesand:1-2mm;coarse sand:0.500-1mm;mediumsand:0.250-0.500mm; Dataanalyses fine sand: 0.125-0.250 mm; very fine sand: <0.125 mm; and clay and silts: <0.063 mm) Individual species abundance and biomass were was expressed as a percentage (%) of total expressed per square metre. Measures included weight. The organic matter content was deter- abundance, biomass, number of species (S), mined after combustion of the sediment samples Shannon-Wiener diversity index (H′) and Pie- inafurnaceat550◦Cfor24hours,andthevalues lou’s evenness (J′) index. Principal Component were expressed as percentages (%) relative to Analysis(PCA)wasusedtodetecthabitatdiffer- theinitialsampleweight.Themetal(Cd,Cr,Cu, ences based on the abiotic data and to establish Fe,Ni,PbandZn)analyseshavebeendescribed correlations between biological parameters and by Reis et al. (2009): digestion in Teflon vessels abiotic characteristics; the indices of abiotic and (model 4782, Parr) in a microwave system bioticsimilaritywerecomparedusingBIO-ENV (model 440, Panasonic). The metal concentra- (usingtheSpearmancoefficient)(Clarke&War- 15293 Limnetica 33(1), pàgina 76, 15/05/2014 Changes onthe macrobioticcommunitystructureof theMinho estuarysaltmarsh 77 wick,1994). For statistical analyses of the biotic ganic matter contents and metal concentrations values,clustermultivariableanalysesallowedfor in the sediments), the following sequence of thestudyofthespatialandseasonalvariationsof stepswasconducted:(i)thenormalityofthedata species distributions (using SPSS software). For was checked by the Shapiro-Wilk test, consider- the statistical analyses of the abiotic values (or- ing one level of significance (p < 0.05), using Table1. Thephysicochemicalparametersofthewaters,aswellasthetextureandorganicmattercontentsofthesediments,of theMinhoestuarysaltmarshobtainedforthethreesamplingdates.Temperature(T,◦C),dissolvedoxygen(DO,mg·L–1),salinity (S,psu),gravel(G,%),varycoarsesand(VCS,%),coarsesand(CS,%),mediumsand(MS,%),finesand(FS,%),veryfinesand (VFS,%),silt+clay(S+C,%)andorganicmatter(OM,%).Parámetrosfísico-químicosdelagua,materiaorgánicaytexturade lossedimentosenelestuariodelríoMiño,obtenidosalolargodelostresmuestreos.Temperatura(T,◦C),oxígenodisuelto(DO, mg·L–1),salinidad(S,psu),grava(G,%),arenamuygruesa(VCS,%),arenagruesa(CS,%),arenamedia(MS,%),arenafina(FS, %),arenamuyfina(VFS,%),limo+arcilla(S+C,%)ymateriaorgánica(OM,%). Summer SamplingSite 1 2 3 4 5 6 7 8 9 10 T 14.2 16.0 19.2 14.3 14.9 15.4 15.9 17.2 15.7 17.6 DO 9.0 10.0 9.5 8.3 8.2 8.4 8.0 8.2 8.2 7.5 S 34.4 29.4 16.9 33.5 33.4 32.0 31.0 29.0 31.0 24.7 G 2.4 38.6 60.9 21.9 4.1 51.9 8.7 4.1 0.1 5.0 VCS 7.8 35.5 22.2 29.4 9.9 16.7 10.3 8.2 0.5 8.0 CS 34.4 20.7 13.7 23.9 24.3 15.9 27.1 26.3 9.7 8.5 MS 20.6 4.1 2.5 21.5 19.6 12.9 39.7 35.8 27.1 29.9 FS 19.3 0.7 0.4 2.2 11.5 0.9 6.3 13.9 23.6 10.3 VFS 13.6 0.2 0.1 0.6 15.5 0.2 4.2 5.2 18.3 1.5 S+C 2.0 0.2 0.2 0.5 15.1 1.3 3.6 6.5 20.6 36.9 OM 3.0 1.2 1.2 1.2 10.0 4.4 2.1 4.0 8.0 2.8 Autumn T 13.4 9.9 10.7 12.1 9.0 8.7 13.0 11.6 9.1 8.7 DO 7.0 11.0 9.9 11.1 10.8 9.8 9.5 7.0 7.6 7.4 S 33.5 0.5 0.0 26.0 5.0 7.5 31.8 25.0 4.4 1.9 G 8.1 77.0 3.6 38.7 11.6 5.9 16.6 4.6 0.8 0.9 VCS 24.9 9.0 11.8 25.0 14.0 15.0 26.0 15.4 1.0 4.5 CS 49.3 3.0 60.6 16.6 20.4 25.2 25.8 18.8 3.0 20.2 MS 10.5 0.0 19.9 10.5 36.2 30.9 18.2 23.0 8.8 44.0 FS 4.1 1.0 2.7 4.2 10.7 12.8 7.9 17.8 35.2 18.5 VFS 2.3 5.0 1.0 2.2 3.5 6.2 3.8 7.5 35.0 6.8 S+C 0.8 5.0 0.4 2.8 3.7 4.1 1.6 13.0 16.2 4.9 OM 1.7 1.4 1.3 2.7 3.3 6.9 1.9 5.2 11.2 8.2 Winter T 13.2 12.3 12.0 11.7 12.8 12.9 13.1 12.5 11.7 12.4 DO 9.1 10.8 10.8 11.0 10.9 11.0 9.0 9.6 11.5 11.1 S 32.8 0.1 0.0 3.6 0.3 0.8 32.6 25.0 1.1 0.6 G 70.3 81.8 9.9 38.3 1.6 9.7 15.1 7.0 0.2 4.9 VCS 15.6 9.8 46.4 33.6 4.6 7.9 21.0 10.7 1.5 6.2 CS 10.8 6.0 39.4 18.1 7.9 17.7 22.3 21.8 19.6 10.7 MS 1.9 1.3 3.8 8.1 15.5 23.6 19.8 38.3 44.8 49.8 FS 0.5 0.4 0.2 1.3 22.9 16.9 15.5 12.4 16.9 20.0 VFS 0.5 0.3 0.2 0.3 29.6 13.0 4.6 4.7 9.4 4.8 S+C 0.4 0.4 0.2 0.3 18.0 11.3 1.6 5.1 7.5 3.6 OM 1.3 1.5 1.1 1.2 11.3 11.0 1.5 3.8 5.1 2.2 15293 Limnetica 33(1), pàgina 77, 15/05/2014 78 Picançoet al. SPSS software; (ii) because some values failed (ii) very fine sand (<0.125 mm) and clay and the normality tests, all data were logarithmically silts (<0.063 mm) fractions dominated at (base 10) transformed to reduce deviations from site5(interiorsaltmarsh); the normal distribution; (iii) the homogeneity (iii) fine sand fraction (0.125-0.250 mm) domi- of variances was checked by the Cochran test, nated at sites 6, 8, 9 and 10 (medium salt- consideringonelevelofsignificance(p < 0.05), marsh); using WinGMAv 5 software (EICC, University (iv) site 7 (interior saltmarsh) showed high sea- of Sydney); (iv) two-way analyses of variance sonalvariation,withtheveryfinesand,clay (ANOVA) were used to identify significant spa- and silt fractions dominant during summer tial and seasonal differences (p < 0.05) using and the gravel and coarse sand fractions WinGMAv5software(EICC,UniversityofSyd- dominant during the autumn and winter. ney); and (v) unplanned comparisons (post hoc This result may be due to the higher rivers tests) were conducted to establish groups of flows during autumn and winter, which sampling sites and seasons which differed signi- could transport the finer sediments from ficantly (p < 0.05) using the Student-Newman- this site to adjacent protected areas (sites Keuls (SNK) test for ANOVAs from WinGMAv 5-6and8-10). 5software(EICC,UniversityofSydney). Thesesedimenttexturesweresimilartothose ofotherEuropeanestuaries:coarsersedimentsin RESULTSANDDISCUSSION the river areas (mainly in the Coura River: lo- Environmentalanalyses cations 1-4) and finer sediments in the protected interior areas (Diez, 1980; Mora, 1980; Asensio Physicochemical parameters of waters and the & Gómez, 1984). Normally, these interior areas textureandorganicmattercontentsofsediments (locations 5-10) can retain finer sediments and havehigherfloralbiomasses,whichcontributeto The physicochemical parameters of the waters the formation of natural barriers that slow down weredirectlyinfluencedbythetypicalcharacter- water flows and accumulate high concentrations istics of each season and tide period: (i) higher of metals (Diez, 1980; Mora, 1980; Asensio & temperatures and salinities during summer and Gómez,1984). at sampling sites more exposed to marine intru- The saltmarsh areas with the finer sediments sion during high tide and (ii) lower temperatures corresponded to the areas with the highest or- andsalinitiesduringwinterandatsitesmoreex- ganic matter contents (Table 1). Normally, these posed to fresh waters from the Coura River (Ta- areasalsohaveahigherability toretaincontam- ble1).Thedissolvedoxygenconcentrationswere alwayshigherthan7.0mg·L−1 forthethreesam- inants in chemical forms that are more available toorganisms,suchasmetals(Chapman&Wang, plingdates,whichindicatedoptimumconcentra- tions(DO≥6.0mg·L−1at15◦C)andwell-mixed 2001).Asexpected,organicmattercontentswere highest in the sediments of site 5, lowest at sites body waters (Reis et al., 2009). A number of 1-4 and intermediate at sites 6 and 8-10 during sampling sites (i.e., sites 2-6 during winter) had allseasons.Onlythesedimentsofsite7suffered saturateddissolvedoxygenconcentrations(DO≥ 10.0 mg·L−1 at 15◦C), suggesting excellent eco- a high reduction of organic matter contents from summer to autumn and winter, which coincided logicalqualities(Reisetal.,2009). withthechangeoftexture. The textures of the sediments were constant acrossthesaltmarshduringallseasons(exceptat site7): Heavymetalconcentrationsinsediments (i) gravel (>2 mm) and very coarse sand (1-2 The metal (Cd, Cr, Cu, Fe, Ni, Pb and Zn) con- mm) fractions dominated at sites 1, 2, 3 and centrations in the sediments of the Minho estu- 4(CouraRivermainstream); arysaltmarshshowedsignificantspatialandsea- 15293 Limnetica 33(1), pàgina 78, 15/05/2014 Changes onthe macrobioticcommunitystructureof theMinho estuarysaltmarsh 79 sonal variations (Fig. 2 and Table 2). Detailed ples,digestionwithonlyconcentratednitricacid measurements of metal concentrations obtained is indicative of metal levels that are more envi- in September 2005 (summer) can be found in ronmentallybioavailableandhavehigherecotox- Reisetal.(2009). icologicalpotential(EPA,1994). The limits of detection were calculated ac- The ANOVAs of the metal concentrations re- cording to the APHA recommendations (Sedi- sulted in three significantly (p < 0.05) different ments(mg·kg−1,drywt):Cd:0.0041;Cr:5.0;Cu: clusters ofsampling sites: (i)GroupAwithhigh 0.046; Fe (%): 0.25; Mn: 4.1; Pb: 0.099 and Zn: metal concentrations, which included sites 5, 7 9.1) (APHA, 1998; Reis et al., 2009). The anal- and 9; Group B with intermediate metal concen- yses of the SRM 2702 showed acceptable mean trations, which included sites 1, 6, 8 and 10; and recoveriesforallofthemetals:Cd(117.6%),Cr Group C with low metal concentrations, which (75.4%),Cu(89.3%),Fe(83.1%),Pb(94.2%) included sites 2, 3 and 4 (Fig.2). These spatial and Zn (92.5%), except for Ni (70.5%). Al- distributions weredirectly influencedby the nat- though the digestion procedure did not allow for uralcharacteristicsofthesedimentsofeachsam- the complete dissolution of the sediment sam- pling site at eachseason, as the sites with higher Table2. Two-wayanalysesofvariance(ANOVAs)ofmetal(Cd,Cr,Cu,Fe,Ni,PbandZn)concentrationsinthesedimentsof Minhoestuarysaltmarshobtainedforthethreesamplingdates,whichallowedfortheidentificationofsignificantspatialandseasonal differences(p < 0.05)usingWinGMAv5software(EICC,UniversityofSydney).Ineachseason,differentlettersshowssignificant spatial differences (p < 0.05): increasing order of concentrations is A<B<C, etc. In each location, different numbers shows significant temporal differences(p < 0.05): increasing order ofconcentrations is 1<2<3,etc. Análisis de varianza de dos vías (ANOVA)delasconcentracionesdemetales(Cd,Cr,Cu,Fe,Ni,PbyZn)delossedimentosdelestuariodelríoMiño,obtenidosalo largodelostresmuestreosrealizados,elcualhapermitidoidentificardiferenciasespacialesyestacionalessignificativas(p < 0.05): elordendeconcentracionescrecientesesA<B<C,etc.Encadapuntodemuestreo,losdiferentesnúmerosmuestrandiferencias temporalessignificativas(p < 0.05):elordendeconcentracionescrecienteses1<2<3,etc. ANOVASofmetalconcentrationsinsedimentsofMinhoestuarysaltmarsh Metal SamplingSeason 1 2 3 4 5 6 7 8 9 10 Summer D,E,2 A,1 B,1 B,C,2 F,1 E,1 F,2 D,E,2 F,2 C,D,1 Cd Autumn B,2 B,3 B,1 B,2 D,1 C,1 A,1 B,1 E,3 B,C,1 Winter A,B,1 A,B,2 B,1 A,1 D,1 C,1 B,1 C,1,2 C,D,1 C,1 Summer A,B,1 A,B,1 A,1 A,1 D,1 B,C,1 D,3 D,3 C,D,1 B,1 Cr Autumn A,B,1 A,B,1 A,1 A,B,1 C,1 A,B,1 A,B,1 A,B,1 C,1 B,C,1 Winter B,2 B,2 A,1 A,1 D,2 C,2 C,2 B,C,2 B,C,1 B,C,2 Summer B,2 B,1 B,1 A,1 D,1 C,1 D,2 C,1 D,2 B,1 Cu Autumn A,1 D,2 B,C,D,1 A,B,C,2 E,1 D,1 A,B,1 C,D,1 F,3 D,2 Winter B,C,D,2 B,C,1 B,1 A,1 F,2 C,D,E,1 D,1 E,1 E,1 D,E,2 Summer A,1 A,1 A,1 A,1 D,1 B,2 C,2 B,2 C,2 B,2 Pb Autumn A,1 A,1,2 A,3 B,2 D,1 C,2 A,1 A,1 E,3 A,1 Winter D,2 B,C,D,2 B,C,D,2 A,B,1 E,2 A,1 B,C,D,1 C,D,1,2 A,B,C,1 A,B,C,1 Summer B,2 A,1 A,1 A,2 E,1 D,1 F,3 D,1 E,2 B,C,1 Ni Autumn A,1 A,B,1 A,1 A,B,2 D,1 C,D,1 B,1 C,D,1 E,2 D,2 Winter B,2 B,2 A,1 A,1 E,2 C,D,1 C,2 C,D,1 D,1 C,D,2 Summer A,B,C,1 A,B,C,1 A,B,1 A,1 E,1 C,D,1 D,E,2 C,D,1 E,2 B,1 Zn Autumn A,1 A,B,1 A,B,1 A,1 C,D,1 A,B,1 A,B,1 A,B,1 D,2 B,C,2 Winter B,1 B,1 B,1 A,1 C,1 B,1 B,1 B,1 B,1 B,1 Summer A,B,1,2 B,C,1 A,1 A,1 E,1 D,1 E,2 B,C,D,1 F,2 C,D,1 Fe Autumn A,1 B,1 B,2 A,1 D,1 B,C,1 B,1 B,1 E,3 C,1 Winter B,C,2 B,C,1 B,1 A,1 E,2 D,1 B,C,1 B,C,1 E,1 C,1 15293 Limnetica 33(1), pàgina 79, 15/05/2014 80 Picançoet al. metal concentrations had finer sediments and performed these normalizations in the sediments higher organic matter contents. This observation oftheMinhoestuarysaltmarshandrevealedthat was corroborated by the seasonal variations of sites 5 and 7 (interior saltmarsh areas) showed metal concentrations (Fig. 2 and Table 2: differ- evidence of anthropogenic contamination by ent numbers represent significant seasonal vari- Cr, Cu, Ni and Pb during summer (minimum ations in each location), which also coincided flows and metal dilution factors), but only site with the variations of texture and organic matter 5 continued to show that contamination during contentsbetweenseasons.Forexample,thesedi- winter (maximum flows and metal dilution ments of site 7 showed a great reduction of metal factors). These results suggest that the metal concentrations from summer to winter, whichco- concentrations obtained in the sediments of the incidedwiththereductionoftheirveryfinesand, Minho estuary saltmarsh were not exclusively clayandsiltfractionsandorganicmatter contents. derived from natural sources, and these anthro- The geological characteristics of the sedi- pogeniccontributionsmighthavealsoinfluenced mentscomplicatethedistinctionbetweennatural the macrobenthic community structure of this and anthropogenic sources of organic and in- saltmarsh. However, comparisons with other organic contaminants. An adequate approach nationalwetlands have shown that the sediments to distinguish organic from inorganic contami- of Minho estuary saltmarsh have much lower nation and natural from anthropogenic sources metal concentrations, being similar only to Ria is the normalization of vestigial metals using a Formosa(asummarytableofmetalconcentrations macroelementsuchasAl,LiorFe(Muchaetal., inthesuperficialsedimentsofdifferentPortuguese 2003;Reisetal.,2009).Reisetal.(2009)already wetlandscanbefoundinReis etal.(2009). Cd Ni 400 30,0 Conc (µg/kg) 123000000 Conc (mg/kg) 12527,,,055 0 0,0 1 2 3 4 5Cr 6 7 8 9 10 1 2 3 4 5Pb 6 7 8 9 10 40,0 30,0 Conc (mg/kg) 123000,,,000 Conc (mg/kg) 12527,,,055 0,0 0,0 40,0 1 2 3 4 5Cu 6 7 8 9 10 120,0 1 2 3 4 5Zn 6 7 8 9 10 Conc (mg/kg) 123000,,,000 Conc (mg/kg) 369000,,,000 0,0 0,0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 6,0 Fe SamplingSite Summer Autumn Winter %) 4,5 Conc ( 3,0 1,5 0,0 1 2 3 4 5 6 7 8 9 10 SamplingSite Summer Autumn Winter Figure2. Metalconcentrations(Cd,Cr,Cu,Fe,Ni,PbandZn)ofthesedimentscollectedfromeachsamplingsiteduringeach sampling trip. Concentración de metales (Cd, Cr, Cu, Fe, Ni, Pb y Zn) en los sedimentos recogidos en cada punto de muestreo, durantecadamuestreo. 15293 Limnetica 33(1), pàgina 80, 15/05/2014 Changes onthe macrobioticcommunitystructureof theMinho estuarysaltmarsh 81 Biologicalanalyses (95.0ind/m2 of3differentspecies)wasobtained at site 10 (intermediate saltmarsh) during win- ter(severehydrodynamicconditions,withatotal MacrozoobenthosAbundance,Diversity meanabundanceof744.0ind/m2);thisresultcan andEvenness be directly related to the typical life cycle of the In the Minho estuary saltmarsh, a total of 10 benthicspeciesintheMinhoestuary,whichhave 185 individuals were identified during the three their optimum recruitment periods during sum- sampling dates, distributed across 5 phyla and mer (Sousa et al., 2008). The sediments of site 37 taxa: Annelida (10 taxa), Mollusca (4 taxa), 10 were dominated by the fine sand fraction and Arthropoda(21taxa),Chordata(1taxon)andSi- had medium organic matter content, with no ev- puncula (1 taxon) (Appendix 1, available: www. idence of anthropogenic contamination by met- limnetica.net/internet). als. Indeed, two sampling sites (4 and 10) con- The mean annual abundance (per area unit) sidered to be uncontaminated by metals showed of the three sampling dates was 1530 ind/m2. completelydifferenttotalabundances.Thisresult The highest total abundance (6330 ind/m2 of suggested that macrobenthic community struc- nine different species) was observed at site 4 ture was more dependent on the texture and or- (Coura River mainstream) during summer (the ganicmattercontentstypicalofeachseasonthan peak of the macrobenthic recruitment season, onmetalconcentrations. with a total mean abundance of 1977.5 ind/m2). Thespeciesdiversityofthissaltmarshshowed Site 4 presented sediments dominated by gravel no consistent pattern among the different sam- and very coarse sand, low organic matter con- plingsitesandseasons(Appendix1,www.limne- tents and minimum metal concentrations, which tica.net/internetandTable3).However,thegreat- might represent an ideal uncontaminated area est number of different species of macrobenthos to macrobenthos. The lowest total abundance was observed in the Coura River mainstream Table 3. Values of species number (S), Shannon-Wienerdiversity index (log H′) and evennessindex (J′) of the Minho estuary saltmarshobtainedforthethreesamplingdates.Valoresdelnúmerodeespecies(S),índicedediversidaddeShannon-Weaver(logH′) eíndicedehomogeneidad(J′)delestuariodelríoMiñoalolargodelostresmuestreos. NumberofSpecies(S) SamplingSite 1 2 3 4 5 6 7 8 9 10 Summer 13 10 14 9 13 11 9 8 6 10 Autumn 10 13 17 11 11 7 9 8 6 5 Winter 13 14 14 8 9 6 7 11 6 3 Shannon-WeaverDiversityIndex(logH′) SamplingSite 1 2 3 4 5 6 7 8 9 10 Summer 1.40 1.50 1.71 1.61 1.37 1.27 1.50 1.71 1.01 1.51 Autumn 1.79 1.82 1.70 1.23 1.18 1.55 1.33 1.47 0.84 1.10 Winter 1.25 1.25 1.94 1.11 1.52 1.48 1.34 1.87 0.79 0.91 EvennessIndex(J′) SamplingSite 1 2 3 4 5 6 7 8 9 10 Summer 0.55 0.65 0.65 0.73 0.53 0.53 0.68 0.82 0.56 0.66 Autumn 0.78 0.71 0.60 0.51 0.49 0.79 0.61 0.71 0.47 0.69 Winter 0.49 0.47 0.74 0.53 0.69 0.83 0.69 0.78 0.44 0.83 15293 Limnetica 33(1), pàgina 81, 21/05/2014 82 Picançoet al. (sites 1-3) during all seasons, particularly at site the Shannon-Wiener diversity indices, the rel- 3,whichhad17differentspeciesduringautumn. ative species abundance should be assessed by The remaining sites 5-10 showed only a few evenness indices (Table 3). These evenness in- different species and had low Shannon-Wiener dices (0 ≤ J′ ≤ 1) were at their maximum and diversity indices, especially site 10, which had minimum,respectively,insite10(J′ = 0.83)and only 3 different species during winter. Once site9(J′ = 0.44)duringwinter.Highervaluesof more, this result suggested that the texture and evenness indicate a more homogeneous commu- organic matter contents of the sediments were nitystructureandlessdiversity. Thus,thehigher themainstructuringfactorsofthismacrobenthic evenness values of the interior saltmarsh areas community. (sites6,8and10)indicatedthattheseareaswere Althoughthespeciesrichnessofthesaltmarsh lessadaptedtosevereecologicalchanges.There- can be estimated by the number of species and maining sites (1-5 and 7) showed intermediate Table4. ClusterMultivariableAnalysis:meansimilaritybetweengroups,totalabundanceanddominantspeciesperfaunalgroup. The group G was established without a mean similarity or species dominance. Numbers represent the sampling sites (1-10), 1 andletters representthesampling seasons(S-Summer;A-Autumn;W-Winter). BIO-ENV analysisofthe abiotic factors(texture, organicmattercontentsandmetalconcentrations)ofthesedimentsoftheMinhoestuarysaltmarshobtainedforthethreesampling dates.Análisisdeagrupamientomultivariante:similaridadmediaentregrupos,abundanciatotalyespeciesdominantesporgrupo faunístico.ElgrupoG fueestablecidoensimilitudmediaoespeciedominante.Losnúmerosrepresentanpuntosdemuestreo(1-10) 1 ylasletrasrepresentanépocasdemuestreo(S-verano;A-otoño;W-invierno).AnálisisBIOENVdelosfactoresabióticos(textura, materiaorgánicayconcentracionesdemetales)delossedimentosdelestuariodelríoMiñoalolargodelostresmuestreos. Faunistic CLUSTERANALYSIS Group Site-Season MeanSimilarity TotalAbundance SpeciesDominance Contribution TotalContribution (%) (%) (%) (%) GroupG 10-W — 2.39 — — — 1 2-S/A/W Cyathuracarinata 44.68 3-S/A/W GroupG 34.47 41.29 59.14 2 4-A Corophiumsp. 14.46 10-S 5-S/A Scolelepissquamata 32,37 6-S/A/W GroupG 36.78 31.32 63.69 3 8-S/A/W Alkmariaromijni 31.32 10-A 1-S/A/W Hedistediversicolor 59.57 4-S/W GroupG 39.86 25.00 82.60 4 5-W Scolelepissquamata 23.03 7-S/A/W 9-S/A/W Numberof BIOENVANALYSIS-BESTVARIABLESCOMBINATION Variables 0.311 0.261 0.249 1 FineSand OrganicMatter MedianSand (0.125-0.250mm) (MO) (0.250-0.500mm) 0.350 0.346 0.331 2 FineSand+CoarseSand FineSand+OrganicMatter MedianSand+OrganicMatter (0.125-0.250/0.500-1mm) (0.125-0.250mm+MO) (0.250-0.500mm+MO) 0.382 0.379 0.363 FineSand+CoarseSand+ MedianSand+CoarseSand+ 3 FineSand+MedianSand+CoarseSand OrganicMatter OrganicMatter (0.125-1mm) (0.125-0.250/0.500-1mm+MO) (0.250-1mm+MO) 15293 Limnetica 33(1), pàgina 82, 15/05/2014
Description: