ebook img

Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum ... PDF

16 Pages·2017·18.8 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum ...

metals Article Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum Alloy 6082 HannesFröck1,BenjaminMilkereit1,2,* ID,PhilippWiechmann1,ArminSpringer3, ManuelaSander4,OlafKessler1,2andMichaelReich1 1 ChairofMaterialsScience,FacultyofMechanicalEngineeringandMarineTechnology,Universityof Rostock,AlbertEinstein-Str.2,18059Rostock,Germany;[email protected](H.F.); [email protected](P.W.);[email protected](O.K.); [email protected](M.R.) 2 CompetenceCentre◦CALOR,DepartmentLife,Light&Matter,FacultyofInterdisciplinaryResearch, UniversityofRostock,Albert-Einstein-Str.25,18059Rostock,Germany 3 MedicalBiologyandElectronMicroscopyCentre,UniversityMedicalCenterRostock,Strempelstraße14, 18057Rostock,Germany;[email protected] 4 ChairofStructuralMechanics,FacultyofMechanicalEngineeringandMarineTechnology,Universityof Rostock,AlbertEinstein-Str.2,18059Rostock,Germany;[email protected] * Correspondence:[email protected];Tel.:+49-381-498-6887 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:26February2018;Accepted:3April2018;Published:13April2018 Abstract: Weuseasystematicapproachtoinvestigatetheinfluenceofthespecificsolutioncondition onquench-inducedprecipitationofcoarsesecondaryphaseparticlesduringsubsequentcoolingfora widerangeofcoolingrates. CommerciallyproducedplatematerialofaluminumalloyENAW-6082 was investigated and the applied solution treatment conditions were chosen based on heating differential scanning calorimetry experiments of the initial T651 condition. The kinetics of the quench-inducedprecipitationwereinvestigatedbyinsitucoolingdifferentialscanningcalorimetry forawiderangeofcoolingrates. Thenatureofthosequench-inducedprecipitateswasanalyzed by electron microscopy. The experimental data was evaluated with respect to the detrimental effectofincompletedissolutionontheage-hardeningpotential. Weshowthatifthechosensolution temperatureandsoakingdurationaretooloworshort,thesolutiontreatmentresultsinanincomplete dissolution of secondary phase particles. This involves precipitation during subsequent cooling to start concurrently with the onset of cooling, which increases the quench sensitivity. However, ifthesolutionconditionsallowtheformationofacompletesolidsolution,precipitationwillstart after a certain degree of undercooling, thus keeping the upper critical cooling rate at the usual alloy-specificlevel. Keywords: EN AW-6082; AlMgSi alloy; solution treatment; solution temperature; differential scanningcalorimetry(DSC);scanningelectronmicroscopy(SEM);continuouscoolingprecipitation; quenchsensitivity;completesolution;incompletedissolution 1. Introduction Themostimportantheattreatmentwhichallowstoincreasethestrengthofseveralaluminum alloysistheage-hardeningheattreatment[1]. Withinthisheattreatment,solutionannealing,whichis thegenerationofasolidsolution,establishesthebasisforthepotentialdecompositionofsolidsolutions by quench-induced precipitation and/or supersaturation of the solid solution during subsequent cooling. Afullysupersaturatedsolidsolutionisthepreconditiontoobtainmaximumstrengthafter Metals2018,8,265;doi:10.3390/met8040265 www.mdpi.com/journal/metals Metals2018,8,265 2of16 the final process “aging” step [1–3]. If a full solution is obtained during the solution treatment, a complete supersaturation can be achieved by overcritical cooling. If cooling is done “to slow”, “quench-induced”precipitationwilloccur. Quench-inducedprecipitationreducestheage-hardening potential by lowering the amount of solutes after cooling (prior to aging). This phenomenon is commonlycalledquenchsensitivity. Theuppercriticalcoolingrates(uCCR)requiredtocompletely suppressquench-inducedprecipitation,dependonseveralaspects,forinstance,alloycomposition. Thereby,higherconcentrationsofalloyingelementscausehigheruCCRs[4,5]. Inpracticalapplications, thecoolingratescanbeadaptedbychoosingasuitablecoolingmedia[6]. For the solution treatment, lower temperatures and shorter soaking durations are preferable for economicreasons,suchasthecontinuousannealinginsheetandplateproductionorquenchingfrom extrusionheat.Anotherexampleofaveryshort“solutiontreatment”occursintheheat-affectedzoneof weldingprocesses[7]orintheproductionoftailoredheat-treatedpre-products[8–11].Theseshort-solution treatments,particularlyiftheyareperformedatrelativelylowtemperatures,mightendwithanincomplete solution.However,incompletedissolutionofthesecondaryphaseparticlesmightleadtoreducedtime spentfornucleationofthequench-inducedprecipitation.Therebyincompletedissolutionhasthepotential toinfluencequenchsensitivity.Thesolutiontreatmentwaskeptconstantinmostquenchsensitivitystudies. Thus,tothebestknowledgeoftheauthors,norecentstudyexiststhatsystematicallyvariesthesolution temperatureandsoakingdurationforinvestigationsofAl-alloyquenchsensitivity. The quench sensitivity, and thus the precipitation behavior during cooling from solution treatmentanditskinetics, havebeeninvestigatedtoagreatextentinrecentyears(e.g., inAlMgSi alloys[4,5,12–14]). Differentialscanningcalorimetry(DSC)hasproventobeaveryhelpfulmethodin theseinvestigations,particularlyifcombinedwithmicro-andnanostructureanalyses[4,5,15]. Themainobjectiveofthisworkistoinvestigatethedetrimentaleffectofincompletedissolution duringthesolutiontreatmentwithintheage-hardeningheattreatmentofAlalloyswithrespecttothe kineticsofquench-inducedprecipitation. Therefore,thesolution-annealingtemperature,aswellasthe soakingduration,wassystematicallyvaried.ThesolutionconditionswerechosenbasedonDSCheating experimentsoftheinitialT651condition.TheprecipitationbehaviorduringthecoolingoftheENAW-6082 alloywasanalyzedbyDSCforawiderangeofcoolingrates.TheDSCfindingsarediscussedincomparison withhardnessafterartificialaging,previousstudies,andtheobservedmicrostructures,whichareanalyzed byscanningelectronmicroscopy(SEM)andtransmissionelectronmicroscopy(TEM). 2. MaterialsandMethods 2.1. InvestigatedAluminumAlloys Thesampleswerepreparedfroma10-mm-thickplateofcommerciallysuppliedaluminumalloy, EN AW–6082, in the initial T651 delivery condition. Aluminum wrought alloy EN AW-6082 has been chosen as it is a very widely used age-hardening aluminum alloy. This condition comprises solutiontreatment,quenching,stressreductionbystretchingacontrolledamount(1.5–3%oftheplate), andfinalartificialaging. Thechemicalcompositionwasanalyzedbyopticalemissionspectroscopy (OES).ThemassfractionsofalloyingelementsareshowninTable1. Table1.MassfractionsofthealloyingelementsintheinvestigatedENAW–6082alloy,in%. MassFraction,in% ENAW-6082 Si Fe Cu Mn Mg Cr Zn Ti OES 0.83 0.38 0.06 0.48 0.92 0.03 0.01 0.02 DINEN573-3 0.7–1.3 ≤0.5 ≤0.1 0.4–1.0 0.6–1.2 ≤0.25 ≤0.2 ≤0.1 Metals2018,8,265 3of16 2.2. DifferentialScanningCalorimetry(DSC) Here,heatingandcoolingratesinthe0.01–5K/srangewereinvestigatedusingtwodifferent typesofDSCdevices. Theslowerscanningrates(upto0.1K/s)wereperformedinaCALVET-type heat-fluxDSC(SetaramDSC121,Caluire-et-Cuire,France),whereasthefasterrates(0.1–5K/s)were examinedinpower-compensatedDSCs(PerkinElmerPyrisDiamondDSC,PerkinElmerDSC8500, Waltham,MA,USA).ThetwoDSCdevicetypesrequireddifferentsamplegeometries. Cylindrical samples with a diameter of 6 mm, a length of 21.65 mm, and a mass of about 1600 mg were used forthemeasurementsintheheat-fluxDSC.Thesamplesforthepower-compensatedDSCsalsohave a cylindrical shape, but with a diameter of 6.4 mm, a height of 1 mm, and a mass of about 80 mg. The samples were packed in pure aluminum crucibles and then placed in the micro-ovens of the calorimeter. Theheatingratetoreachthesolution-annealingtemperatureis0.1K/sintheheat-flux DSCand2K/sinthepower-compensatedDSCs. 2.3. DataProcessingofRawMeasuredHeatFlowCurves Itisnecessarytoeliminatethedevice-specificcurvaturetoobtainhigh-qualityDSCrawdata.This curvaturecanbedeterminedbyrecordingabaselinemeasurement.Purealuminumreferencesareplaced inbothmicro-ovens(thetwoDSCsensors)forthebaselinemeasurement,andtheidenticaltemperature programtotheoneperformedduringasamplemeasurementisperformed.Purealuminum(99.9995% purity)wasusedasthereferencematerialforDSC.Thedevice-specificcurvatureofthemeasuredcurves canchangeslightly,especiallyforthepower-compensatedcalorimeters,withinafewhours.Thefollowing schemeoffirstacquiringasamplemeasurement,followedbyabaselinemeasurement,andthenanother samplemeasurement,wasperformed.Theaimistohaveafreshbaselineforeachsamplemeasurement. However,tokeepexperimentaleffortsmall,weuseonebaselinerunfortwosamplemeasurements—one beforeandonedirectlyafterthebaselinerun.Bysubtractingthebaselinefromthesamplemeasurement, thedevice-specificcurvaturecanberemovedfromtherawdata. Theheatingexperimentsconsistedoffoursamplemeasurementsandtwobaselinesintheheat-flux DSC,andeightsingle-samplemeasurementswererecordedwithfourrelatedbaselinemeasurements in the power-compensated DSCs for each heating rate. The cooling experiments for each cooling rate in the heat-flux DSC consisted of two-four sample measurements with one or two associated baselinemeasurementsintheheat-fluxDSC,andsixsamplemeasurementswiththreerelatedbaseline measurementsinthepower-compensatedDSCs. Comparisonofthemeasurementswithdifferentheatingorcoolingrates(β)anddifferentsample masses(m )requiresthenormalizationofthemeasuredheatflowtothevalueofexcessspecificheat S . . capacity(C )accordingtoEquation(1)[16],whereQ andQ arethesampleandbaselineheat pexcess S Bl flows,respectively,andβisthescan(heatingorcooling)rate. . . Q −Q C = S Bl (inJg–1K–1), (1) pexcess m ·β S Figure1showstheevaluationoftheDSCcurvesforaheatingcurveproducedfromaheating rateof0.5K/sthatwasrecordedwithapower-compensatedDSC.Figure1Ashowstherecorded rawdata. Thedevice-specificcurvatureiseliminatedbysubtractingthebaselinemeasurementfrom thesamplemeasurement,asshowninFigure1B.Figure1Cshowsthedatanormalizedbyscanning rate and sample mass, which still contains overshoot artefacts [15] that have to be excluded from furtherevaluations. Figure1DshowstworesultingheatingcurvesoftheENAW-6082alloyfromthe initialstateT651,withaheatingrateof0.5K/sdependingontemperature. AsshowninFigure1D, thedissolutionofprecipitatesisnotcompleteevenathightemperaturesupto580◦C.Thiscanbeseen bythefact,thattheDSCsignalisnotdroppingbacktozeroathightemperatures. Thus,azero-level correctionbysubtractionofapolynomial,assuggestedinOstenetal.[11]andMilkereitetal.[15,17], wasnotapplicable. Experimentspecificcurvefluctuations(e.g.,causedbyslightpositiondifferencesof Metals2018,8,265 4of16 thesensor-lidorsample[17])aredefinitelyminimizedbyaveragingthecurvesmeasuredforasingle setofparameters. Thisdatatreatmentwasrecentlyintroducedbyourgroup,anddiscussedindetailin Kemsiesetal.[18]. AsthereproducibilityoftheDSCmeasurementswasfoundtobehigh,withsmall fluctuations,asshowninFigure1D,wedonotplotthecurvefluctuationrangesheretomaximizethe readabilityoftheplots,whichalsoallowsfortheeasycomparisonofmultipleDSCcurves. Figure 1. Evaluation procedure of the heating experiments. (A) Raw data measurements; (B) subtractionofbaselinemeasurementsfromthesamplemeasurements;(C)normalizationofthedata; (D)processeddata. A dottedstraight line isadditionally plotted on allthe DSC heatingand cooling curves, thus indicatingtherelatedzerolevel. Adeviationofthemeasurementcurvefromthiszerolevelsignifies eitheranendothermicdissolutionreactionoranexothermicprecipitationreaction. Boththeheating and cooling curves are shown here. In terms of the specific heat capacity, the endothermic area is shownupwardsintheheatingexperiments[15,19],whereastheexothermicareaisshownupwardsin thecoolingexperiments[5]. Anyfigurespresentedintheresultsanddiscussionsectionbelowthat consistofDSCcurvesfromdifferentscanningratesarearrangedandshiftedinorderofthescanning rateused,startingwiththelowestrateontop. 2.4. Microscopy Thesamplesforthemicrostructureinvestigationswereheat-treatedinaDSC,aswellasinaquenching dilatometer(Bähr805A/D),basedontheDSCresultspresentedbelow. Afterthermalpreparation,the samplesforSEManalysiswerecold-embeddedinepoxyresinandthenmechanicallygroundandpolished withwater-freelubricants.Thefinalpolishingwasdonewith0.05µmoxidepolishingsuspension.The polishedsampleswererinsedafterpolishingandwereanalyzedinthepolishedcondition. TheSEMsampleswereanalyzedbyafieldemissionSEM(MERLIN®VPCompact,Co. Zeiss, Oberkochen,Germany),equippedwithanenergy-dispersiveX-ray(EDX)detector(XFlash6/30)and analysissoftware(Quantax400,Co. Bruker,Berlin,Germany). Representativeareasofthesamples wereanalyzedandmappedtodeterminetheelementaldistributiononbasisoftheEDX-spectradata bytheQUANTAXESPRITMicroanalysissoftware(version2.0). TheembeddedandpolishedsamplesweremountedontheSEMcarrierwithadhesiveconductive carbon and aluminum tape (Co. PLANO, Wetzlar, Germany). SEM-secondary electron (SEM-SE) Metals2018,8,265 5of16 imageswereobtainedusinghighefficiencyEverhart-Thornley-typeHE-SEdetectorat5kVacceleration voltage. TheaccelerationvoltagefortheEDXanalysiswasvariedbetween5and15kV. Samples for transmission electron microscopy (TEM) were prepared by mechanical grinding, polishing up to a thickness of 100–150 µm, and further treatment by twin jet electro-polishing in methanolandnitricacid(2:1ratio). Theelectrolyticthinningoccursatatemperatureofabout−20◦C, withavoltageof12V.TEManalysiswasdonebyaZeissLIBRA120(Oberkochen,Germany),equipped withaLaB cathodeandanin-columnomegaspectrometer. Representativeareasofthesampleswere 6 analyzedwith120kVacceleratingvoltageanddigitalimageswereacquiredusingabottom-mount 2×2kslowscandigitalcamerasystem(Proscan,Co. TRS,Moorenweis,Germany). Imageprocessing wasdonewiththeiTEMsoftware(OlympusSoftImagingSolutionsGmbH,Münster,Germany). 2.5. HardnessTests The hardness was examined for different solution-annealing conditions and cooling rates to correlatetheresultsofthethermalanalysiswithacharacteristicmechanicalvalue,afterasubsequent artificialagingat180◦Cfor4h. Hardnesstestswerechosenasthehardnesscanbetesteddirectlyon theDSCsamples.Theheattreatments,withcoolingupto5K/s,werecarriedoutintheDSC.However, fastercoolingratesof10to300K/swerealsorealizedinthequenchingdilatometerBähr805A/D. Thehardness(HV1)wasdeterminedwithamicro-hardnesstester,HMV-2,fromShimadzu,Japan. Six hardnessindentationswererecordedperparameterset. Theresultsplottheaverage,hardnessvalues. Additionally,theminimumandmaximumvaluesaregivenaserrorbars. 3. ResultsandDiscussion 3.1. ContinuousHeatingoftheT651InitialCondition Thesolution-annealingtemperaturewaschosenas540◦Cinseveralpreviousinvestigationsofthe quenchsensitivityofAlMgSialloys[4,5,12]. However,theDSCheatingexperimentsontheparticular alloy batch and the initial T651 condition used here (shown in Figure 2), even for slow heating at 0.01K/s,indicatethatdissolutionofthesecondaryprecipitatesofinterestisjustcompletedatabout 560◦C.Furthermore,Figure2showsthatthetemperatureatwhichthedissolutionofthesecondary phasesiscompletedstronglydependsontheheatingrate. Anincreaseintheheatingrateshiftsthis dissolutioncompletiontohighertemperatures. AsderivedfromfindingsinSchumacheretal.[20],it canbeexpectedthatthespecificsolvustemperaturewillbereducedbyuptoafewtensofKelvinat evenlowerheatingratesorunderisothermalsolution-annealingconditions. Onesolution-annealing temperature was thus chosen as 560 ◦C, which, according to the heating experiments, should be above the equilibrium solvus temperature in any case. As mentioned above, 540 ◦C is a typical solution-annealingtemperaturethathasbeenusedinpreviousworks,and550◦Cwaschosenasthe temperatureinbetweenthesevalues. Twodifferentsolution-annealingsoakingdurationsof1and 20minwerealsoexamined. SincetheslowerCALVET-typeDSCrequiredatleast5mintoachieve thermalequilibration[13],asoakingdurationof1minisonlyinvestigatedinthefasterDSCs(0.3–5 K/s). Therefore,asystematicinvestigationofthequenchsensitivityorquench-inducedprecipitation behaviorafterdifferentsolution-annealingconditionswasconducted,andtheDSCexperimentswere performedwiththreesignificantparametersvaried,asfollows: • Solution-annealingtemperatures: 540,550,and560◦C; • Solution-annealingsoakingdurations: 1and20min; • coolingrates: 0.01–5K/s. Thiscorrespondsto33setsofparametersandmorethan200singleDSCexperiments. Metals2018,8,265 6of16 Figure2. Differentialscanningcalorimetry(DSC)heatingcurvesofENAW–6082initiallyT651asa functionoftemperature.Thesolutiontemperatureschosenforlaterexperimentsareindicated. 3.2. ContinuousCoolingExperiments,StartingfromDifferentSolutionTreatmentConditions Figure3highlightsoneparametersetofthecoolingexperiments,plottedaccordingtothe540, 550,and560◦Csolution-annealingtemperatures. TheDSCcoolingcurvesofthetwodifferentsoaking durationsareplottedintwocolors. TheareabetweenaDSCcurvepeakanditscorrespondingzero levelisproportionaltotheprecipitationenthalpy,andthusthevolumefraction,oftheprecipitates grownduringacertainreaction/peak[4]. Figure 3A shows that the DSC curves/reactions are insensitive to the soaking time at 540 ◦C. Furthermore,abroadhigh-temperaturereactions(HTRs)peakdominates,evenathighcoolingrates. Asimilarpatternisobservedifcoolingstartedfrom560◦Cregardingtheinsensitivitytosoakingtime (Figure3C).However,theshapeofthecoolingcurvesvariessignificantlywhencomparingsoakingat thesetwotemperatures. Twomainexothermicprecipitationreactionpeaksareobservedforthesoaking at560◦C.Thelowtemperaturereactions(LTRs)peakbeginstodominatetheprecipitationbehavior duringfastercoolingfrom560◦C.Themediumsolution-annealingtemperatureat550◦Chighlights thatthesoakingdurationsignificantlyimpactsthecurvatureoftheobservedDSCcurves,asshownin Figure3B.Here,theshortersoakingtimes(1min)yieldDSCcurvesthataresimilartothoseat540◦C, whereasthelongersoakingtimes(20min)yieldDSCcurvesthataresimilartothoseat560◦C. The same DSC data are rearranged in Figure 4 to highlight the role of the solution-annealing temperature.Twomajorargumentscanbederivedfromthesedata:(1)onlyminordifferencesintheDSC curvecurvaturesareobservedattheslowercoolingrates(upto0.1K/s,resultingincoolingdurationsof 1.4to14h)and20minofsoaking.However,(2)forfastercoolingratesof0.3to5K/sthosedifferencesare moresignificantwhilethosecoolingratesadditionallyareconsideredtobemuchmoretechnologically relevant,coveringcoolingdurationsrangingfrom30stoafewminutes.ConsiderablydifferentDSCcurves areproducedatthesefastcoolingrates,thetwodifferentsoakingtimes,andtherangeofsolution-annealing temperatures,whichexhibitthelargestdifferencesforthemediumcoolingratesof0.3and1K/s. ThefindingsfromFigures3and4thussuggestthattherearetwomajortypesofDSCcurvaturesfor agivencoolingrate.TheresultantDSCcurvatureobviouslydependsonthespecificsolutioncondition appliedpriortocooling.Therefore,theDSCdataarearrangedintothesetwotypesofDSCcurves,as showninFigure5. TheDSCcurvesinFigure5AaredominatedbyHTRs, whiletheDSCcurvesin Figure5BaredominatedbyLTRs.ThisleadsonetoaskwhatthecauseofthesedifferentDSCcurves andtheirquench-inducedprecipitationbehavioris. Wethuspostulatethatthetwodifferenttypesof precipitationbehaviordependonwhetherthecoolingstartedfromanincompletesolution(asseenin Figure5A)orifa(largely,ifnotfully)completesolutionprecedesthecooling(asseeninFigure5B). Metals2018,8,265 7of16 Figure3.DSCcoolingcurvesofENAW-6082(initiallyT651)withcoolingratesfrom0.01upto5K/s aftersolution-annealingat(A)540◦C,(B)550◦Cand(C)560◦Cfor1min(red)and20min(black). Figure4.DSCcoolingcurvesofENAW-6082(initiallyT651),withcoolingratesrangingfrom0.01to 5K/sandaftersolution-annealingatvariousconditions.(A)Soakingdurationof1minand(B)20min. Thethreedifferentappliedtemperaturesarecolor-codedtohighlightthedegreeofvariabilitywith soakingtimeandcoolingrate. Metals2018,8,265 8of16 Figure 5. DSC cooling curves of EN AW-6082, with cooling rates from 0.3 to 5 K/s after solution-annealing,resultingin:(A)anincompletesolutionand(B)acompletesolution. Thispostulationisderivedfromthreearguments: i. AccordingtoFigure2(andtherelateddiscussion),thesolvustemperatureoftheinitialT651 conditionofthisparticularbatchofENAW-6082forslowheatingisbelow560◦C. ii. Ifcoolingisstartingfromamore-or-lesscompletesolution(e.g.,560◦Csolution-annealing temperatureand20minsoakingtime),themainprecipitationbeginsafteracertaindegree ofundercooling. iii. The quasi-binary phase diagram Al-Mg Si (Figure 6) indicates that the Mg Si equilibrium 2 2 solvustemperatureforthisalloyisnearorslightlyabove540◦C. Ourreasoningforthesethreeargumentsisasfollows: → i.: Theheatingrate-specificsolvustemperaturecandropbelow560◦Cduringveryslowheating, asdemonstratedinFigure2. ThecoolingexperimentsinFigure5wereconductedafterrelatively fastheating(2K/s). Therefore,accordingtoFigure2,thedissolutionremainedincompleteatthe endoftheheatingprocess.Acompletesolutioncanstillbeobtainedwiththeswitchtoisothermal soaking,asseeninFigure5B.Here20minofsoakingat550and560◦Cresultsinprecipitation beginningafteracertaindegreeofundercooling,whileashortsoakingof1minat560◦Cstill causesthedirectonsetofprecipitation. → ii.: Taking the cooling rate of 0.3 K/s as an example, cooling from 560 ◦C and 20 min of soakingcausestheprecipitationtostartatabout500◦C,afteracertaindegreeofundercooling. However, starting from a condition that we claim to be an incomplete solution (e.g., 540 ◦C solution-annealingtemperature),thesamecoolingrateof0.3K/scausestheimmediateonsetof precipitationwhenthetemperaturedropsbelow540◦C,withprecipitationthusstarting40K higherthanthatinthecompletesolution. Twodifferenttypesofprecipitationonset(1:immediate precipitationonsetwiththeonsetofcooling;and2: onsetofprecipitationafteracertaindegreeof undercooling)wereattributedtotheobservationsfromthequasi-binaryAl-Mg Siphasediagram, 2 whichdependedonwhetherthecoolingstartsfromtheα-Alsolid-solutionsingle-phaseregion orfromtheα-Al+β-Mg Sitwo-phaseregion[21]. 2 Metals2018,8,265 9of16 → iii.: Thethreeappliedsolutiontemperaturesareindicatedinthequasi-binaryphasediagram Al-Mg SiandshowninFigure6,aswellastheestimatedmaximumamountofMg Siforthe 2 2 particular batch of EN AW-6082 that was used in the experiments. While the comparison of ENAW-6082withthisphasediagramisasimplification,theprecipitationoftheβ-Mg Siphase 2 fromtheα-AlsolidsolutionisdominatingtheHTRsduringcoolingfromthesolutiontreatment ofAlMgSialloys[5],includingtwobatchesofENAW-6082. Itisthusinferredthatthemostlikely phasetobeconsideredintermsofcompletesolutionisβ-Mg Si. Theequilibriumsolvusofthe 2 estimatedβ-Mg Simassfractioniscloseto540◦C,whichisadditionallysupportedbytheDSC 2 experimentsshowninFigure7. Thelatterusedsoakingdurationsrangingfrom1to120minat 540◦Cthatprecededacoolingrateof1K/s. Acompletesolutionwasstillnotattainedaftertwo hoursofsoakingat540◦C,withtheMg Siprecipitationstartingconcurrentlywiththeonsetof 2 cooling. Therefore,itisreasonabletoassumethatthealloybatch-specificequilibriumβ-Mg Si 2 solvustemperatureiscloseto540◦C(verylikelyafewKelvinabove540◦C). It can thus be concluded that a relatively short soaking at a high enough temperature (some 10 K above the alloy specific solvus) can result in the intended complete solution. The formation of a complete solution requires both an appropriate solution temperature and soaking duration to be chosen. As seen from the above results, a complete solution as the initial condition for subsequent cooling results in the initiation of precipitation temperatures that are some 10 Kelvin lowerthattheinitialconditionofanincompletesolution. Thisaspectcanbequiteimportantinan industrial/productioncontext. Forinstance,thetransportationofthesolution-treatedpartfromthe furnacetothequenchingmediaisunavoidablygoingtoexperiencesomecoolingbeforequenching. Ensuringacompletesolutionduringthetechnologicalapplicationofthesolutiontreatmentcanthus helptoavoidquench-inducedprecipitation. Thisaspectmightbeofevenmorerelevance,becausethe generalquenchsensitivityisalsoincreasedifthedissolutionremainsincompleteduringthesolution treatment(seethediscussiononhardnessbelow). Figure6. Sectionfromthequasi-binaryphasediagramAl-Mg Si(adoptedfromPolmear[1]). The 2 theoreticalmaximumamountofβ-Mg SiinthisbatchofENAW-6082(verticalredline),aswellasthe 2 appliedsolutiontemperatures(horizontallines),ishighlighted. Metals2018,8,265 10of16 Figure7.DSCcoolingexperimentsonENAW-6082aftersolutiontreatmentat540◦C,soakingtimesof 1,20,and120min,andacoolingrateof1K/s. 3.3. AnalysisoftheQuench-InducedMicrostructure Theschematictemperature-timeprofileappliedfortheheattreatmentofsamplesusedforthe microstructureanalysisisshowninFigure8. TheparameterswerechosenbasedonthecoolingDSC results. Forclarity,thecorrespondingDSCcurvesareplottednexttothemicrostructureimagesin Figures9Aand10A.Figures9and10showtheDSCcurvesandrepresentativeSEM-SEimagesfrom 540◦Cand560◦C,respectively,with20minofsoakingandacoolingrateof0.3K/s. Thecoolingwas continuedatthislowratedownroomtemperatureinFigure9B,DandFigure10B,D.Alternatively, thelowcoolingrateof0.3K/swasapplieduntil425◦C,andsubsequentlyovercriticallygas-quenched (~400K/s)toroomtemperature(seeFigure8)inFigure9C,EandFigure10C,E. Figure8.Schematictime–temperatureprofileoftheheattreatmentsforthemicrostructureanalysis.

Description:
Chair of Structural Mechanics, Faculty of Mechanical Engineering and Marine Technology, University of. Rostock alloy was analyzed by DSC for a wide range of cooling rates. Fundamentals Instrumentation and Applications;.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.