metals Article Influence of Solution-Annealing Parameters on the Continuous Cooling Precipitation of Aluminum Alloy 6082 HannesFröck1,BenjaminMilkereit1,2,* ID,PhilippWiechmann1,ArminSpringer3, ManuelaSander4,OlafKessler1,2andMichaelReich1 1 ChairofMaterialsScience,FacultyofMechanicalEngineeringandMarineTechnology,Universityof Rostock,AlbertEinstein-Str.2,18059Rostock,Germany;[email protected](H.F.); [email protected](P.W.);[email protected](O.K.); [email protected](M.R.) 2 CompetenceCentre◦CALOR,DepartmentLife,Light&Matter,FacultyofInterdisciplinaryResearch, UniversityofRostock,Albert-Einstein-Str.25,18059Rostock,Germany 3 MedicalBiologyandElectronMicroscopyCentre,UniversityMedicalCenterRostock,Strempelstraße14, 18057Rostock,Germany;[email protected] 4 ChairofStructuralMechanics,FacultyofMechanicalEngineeringandMarineTechnology,Universityof Rostock,AlbertEinstein-Str.2,18059Rostock,Germany;[email protected] * Correspondence:[email protected];Tel.:+49-381-498-6887 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:26February2018;Accepted:3April2018;Published:13April2018 Abstract: Weuseasystematicapproachtoinvestigatetheinfluenceofthespecificsolutioncondition onquench-inducedprecipitationofcoarsesecondaryphaseparticlesduringsubsequentcoolingfora widerangeofcoolingrates. CommerciallyproducedplatematerialofaluminumalloyENAW-6082 was investigated and the applied solution treatment conditions were chosen based on heating differential scanning calorimetry experiments of the initial T651 condition. The kinetics of the quench-inducedprecipitationwereinvestigatedbyinsitucoolingdifferentialscanningcalorimetry forawiderangeofcoolingrates. Thenatureofthosequench-inducedprecipitateswasanalyzed by electron microscopy. The experimental data was evaluated with respect to the detrimental effectofincompletedissolutionontheage-hardeningpotential. Weshowthatifthechosensolution temperatureandsoakingdurationaretooloworshort,thesolutiontreatmentresultsinanincomplete dissolution of secondary phase particles. This involves precipitation during subsequent cooling to start concurrently with the onset of cooling, which increases the quench sensitivity. However, ifthesolutionconditionsallowtheformationofacompletesolidsolution,precipitationwillstart after a certain degree of undercooling, thus keeping the upper critical cooling rate at the usual alloy-specificlevel. Keywords: EN AW-6082; AlMgSi alloy; solution treatment; solution temperature; differential scanningcalorimetry(DSC);scanningelectronmicroscopy(SEM);continuouscoolingprecipitation; quenchsensitivity;completesolution;incompletedissolution 1. Introduction Themostimportantheattreatmentwhichallowstoincreasethestrengthofseveralaluminum alloysistheage-hardeningheattreatment[1]. Withinthisheattreatment,solutionannealing,whichis thegenerationofasolidsolution,establishesthebasisforthepotentialdecompositionofsolidsolutions by quench-induced precipitation and/or supersaturation of the solid solution during subsequent cooling. Afullysupersaturatedsolidsolutionisthepreconditiontoobtainmaximumstrengthafter Metals2018,8,265;doi:10.3390/met8040265 www.mdpi.com/journal/metals Metals2018,8,265 2of16 the final process “aging” step [1–3]. If a full solution is obtained during the solution treatment, a complete supersaturation can be achieved by overcritical cooling. If cooling is done “to slow”, “quench-induced”precipitationwilloccur. Quench-inducedprecipitationreducestheage-hardening potential by lowering the amount of solutes after cooling (prior to aging). This phenomenon is commonlycalledquenchsensitivity. Theuppercriticalcoolingrates(uCCR)requiredtocompletely suppressquench-inducedprecipitation,dependonseveralaspects,forinstance,alloycomposition. Thereby,higherconcentrationsofalloyingelementscausehigheruCCRs[4,5]. Inpracticalapplications, thecoolingratescanbeadaptedbychoosingasuitablecoolingmedia[6]. For the solution treatment, lower temperatures and shorter soaking durations are preferable for economicreasons,suchasthecontinuousannealinginsheetandplateproductionorquenchingfrom extrusionheat.Anotherexampleofaveryshort“solutiontreatment”occursintheheat-affectedzoneof weldingprocesses[7]orintheproductionoftailoredheat-treatedpre-products[8–11].Theseshort-solution treatments,particularlyiftheyareperformedatrelativelylowtemperatures,mightendwithanincomplete solution.However,incompletedissolutionofthesecondaryphaseparticlesmightleadtoreducedtime spentfornucleationofthequench-inducedprecipitation.Therebyincompletedissolutionhasthepotential toinfluencequenchsensitivity.Thesolutiontreatmentwaskeptconstantinmostquenchsensitivitystudies. Thus,tothebestknowledgeoftheauthors,norecentstudyexiststhatsystematicallyvariesthesolution temperatureandsoakingdurationforinvestigationsofAl-alloyquenchsensitivity. The quench sensitivity, and thus the precipitation behavior during cooling from solution treatmentanditskinetics, havebeeninvestigatedtoagreatextentinrecentyears(e.g., inAlMgSi alloys[4,5,12–14]). Differentialscanningcalorimetry(DSC)hasproventobeaveryhelpfulmethodin theseinvestigations,particularlyifcombinedwithmicro-andnanostructureanalyses[4,5,15]. Themainobjectiveofthisworkistoinvestigatethedetrimentaleffectofincompletedissolution duringthesolutiontreatmentwithintheage-hardeningheattreatmentofAlalloyswithrespecttothe kineticsofquench-inducedprecipitation. Therefore,thesolution-annealingtemperature,aswellasthe soakingduration,wassystematicallyvaried.ThesolutionconditionswerechosenbasedonDSCheating experimentsoftheinitialT651condition.TheprecipitationbehaviorduringthecoolingoftheENAW-6082 alloywasanalyzedbyDSCforawiderangeofcoolingrates.TheDSCfindingsarediscussedincomparison withhardnessafterartificialaging,previousstudies,andtheobservedmicrostructures,whichareanalyzed byscanningelectronmicroscopy(SEM)andtransmissionelectronmicroscopy(TEM). 2. MaterialsandMethods 2.1. InvestigatedAluminumAlloys Thesampleswerepreparedfroma10-mm-thickplateofcommerciallysuppliedaluminumalloy, EN AW–6082, in the initial T651 delivery condition. Aluminum wrought alloy EN AW-6082 has been chosen as it is a very widely used age-hardening aluminum alloy. This condition comprises solutiontreatment,quenching,stressreductionbystretchingacontrolledamount(1.5–3%oftheplate), andfinalartificialaging. Thechemicalcompositionwasanalyzedbyopticalemissionspectroscopy (OES).ThemassfractionsofalloyingelementsareshowninTable1. Table1.MassfractionsofthealloyingelementsintheinvestigatedENAW–6082alloy,in%. MassFraction,in% ENAW-6082 Si Fe Cu Mn Mg Cr Zn Ti OES 0.83 0.38 0.06 0.48 0.92 0.03 0.01 0.02 DINEN573-3 0.7–1.3 ≤0.5 ≤0.1 0.4–1.0 0.6–1.2 ≤0.25 ≤0.2 ≤0.1 Metals2018,8,265 3of16 2.2. DifferentialScanningCalorimetry(DSC) Here,heatingandcoolingratesinthe0.01–5K/srangewereinvestigatedusingtwodifferent typesofDSCdevices. Theslowerscanningrates(upto0.1K/s)wereperformedinaCALVET-type heat-fluxDSC(SetaramDSC121,Caluire-et-Cuire,France),whereasthefasterrates(0.1–5K/s)were examinedinpower-compensatedDSCs(PerkinElmerPyrisDiamondDSC,PerkinElmerDSC8500, Waltham,MA,USA).ThetwoDSCdevicetypesrequireddifferentsamplegeometries. Cylindrical samples with a diameter of 6 mm, a length of 21.65 mm, and a mass of about 1600 mg were used forthemeasurementsintheheat-fluxDSC.Thesamplesforthepower-compensatedDSCsalsohave a cylindrical shape, but with a diameter of 6.4 mm, a height of 1 mm, and a mass of about 80 mg. The samples were packed in pure aluminum crucibles and then placed in the micro-ovens of the calorimeter. Theheatingratetoreachthesolution-annealingtemperatureis0.1K/sintheheat-flux DSCand2K/sinthepower-compensatedDSCs. 2.3. DataProcessingofRawMeasuredHeatFlowCurves Itisnecessarytoeliminatethedevice-specificcurvaturetoobtainhigh-qualityDSCrawdata.This curvaturecanbedeterminedbyrecordingabaselinemeasurement.Purealuminumreferencesareplaced inbothmicro-ovens(thetwoDSCsensors)forthebaselinemeasurement,andtheidenticaltemperature programtotheoneperformedduringasamplemeasurementisperformed.Purealuminum(99.9995% purity)wasusedasthereferencematerialforDSC.Thedevice-specificcurvatureofthemeasuredcurves canchangeslightly,especiallyforthepower-compensatedcalorimeters,withinafewhours.Thefollowing schemeoffirstacquiringasamplemeasurement,followedbyabaselinemeasurement,andthenanother samplemeasurement,wasperformed.Theaimistohaveafreshbaselineforeachsamplemeasurement. However,tokeepexperimentaleffortsmall,weuseonebaselinerunfortwosamplemeasurements—one beforeandonedirectlyafterthebaselinerun.Bysubtractingthebaselinefromthesamplemeasurement, thedevice-specificcurvaturecanberemovedfromtherawdata. Theheatingexperimentsconsistedoffoursamplemeasurementsandtwobaselinesintheheat-flux DSC,andeightsingle-samplemeasurementswererecordedwithfourrelatedbaselinemeasurements in the power-compensated DSCs for each heating rate. The cooling experiments for each cooling rate in the heat-flux DSC consisted of two-four sample measurements with one or two associated baselinemeasurementsintheheat-fluxDSC,andsixsamplemeasurementswiththreerelatedbaseline measurementsinthepower-compensatedDSCs. Comparisonofthemeasurementswithdifferentheatingorcoolingrates(β)anddifferentsample masses(m )requiresthenormalizationofthemeasuredheatflowtothevalueofexcessspecificheat S . . capacity(C )accordingtoEquation(1)[16],whereQ andQ arethesampleandbaselineheat pexcess S Bl flows,respectively,andβisthescan(heatingorcooling)rate. . . Q −Q C = S Bl (inJg–1K–1), (1) pexcess m ·β S Figure1showstheevaluationoftheDSCcurvesforaheatingcurveproducedfromaheating rateof0.5K/sthatwasrecordedwithapower-compensatedDSC.Figure1Ashowstherecorded rawdata. Thedevice-specificcurvatureiseliminatedbysubtractingthebaselinemeasurementfrom thesamplemeasurement,asshowninFigure1B.Figure1Cshowsthedatanormalizedbyscanning rate and sample mass, which still contains overshoot artefacts [15] that have to be excluded from furtherevaluations. Figure1DshowstworesultingheatingcurvesoftheENAW-6082alloyfromthe initialstateT651,withaheatingrateof0.5K/sdependingontemperature. AsshowninFigure1D, thedissolutionofprecipitatesisnotcompleteevenathightemperaturesupto580◦C.Thiscanbeseen bythefact,thattheDSCsignalisnotdroppingbacktozeroathightemperatures. Thus,azero-level correctionbysubtractionofapolynomial,assuggestedinOstenetal.[11]andMilkereitetal.[15,17], wasnotapplicable. Experimentspecificcurvefluctuations(e.g.,causedbyslightpositiondifferencesof Metals2018,8,265 4of16 thesensor-lidorsample[17])aredefinitelyminimizedbyaveragingthecurvesmeasuredforasingle setofparameters. Thisdatatreatmentwasrecentlyintroducedbyourgroup,anddiscussedindetailin Kemsiesetal.[18]. AsthereproducibilityoftheDSCmeasurementswasfoundtobehigh,withsmall fluctuations,asshowninFigure1D,wedonotplotthecurvefluctuationrangesheretomaximizethe readabilityoftheplots,whichalsoallowsfortheeasycomparisonofmultipleDSCcurves. Figure 1. Evaluation procedure of the heating experiments. (A) Raw data measurements; (B) subtractionofbaselinemeasurementsfromthesamplemeasurements;(C)normalizationofthedata; (D)processeddata. A dottedstraight line isadditionally plotted on allthe DSC heatingand cooling curves, thus indicatingtherelatedzerolevel. Adeviationofthemeasurementcurvefromthiszerolevelsignifies eitheranendothermicdissolutionreactionoranexothermicprecipitationreaction. Boththeheating and cooling curves are shown here. In terms of the specific heat capacity, the endothermic area is shownupwardsintheheatingexperiments[15,19],whereastheexothermicareaisshownupwardsin thecoolingexperiments[5]. Anyfigurespresentedintheresultsanddiscussionsectionbelowthat consistofDSCcurvesfromdifferentscanningratesarearrangedandshiftedinorderofthescanning rateused,startingwiththelowestrateontop. 2.4. Microscopy Thesamplesforthemicrostructureinvestigationswereheat-treatedinaDSC,aswellasinaquenching dilatometer(Bähr805A/D),basedontheDSCresultspresentedbelow. Afterthermalpreparation,the samplesforSEManalysiswerecold-embeddedinepoxyresinandthenmechanicallygroundandpolished withwater-freelubricants.Thefinalpolishingwasdonewith0.05µmoxidepolishingsuspension.The polishedsampleswererinsedafterpolishingandwereanalyzedinthepolishedcondition. TheSEMsampleswereanalyzedbyafieldemissionSEM(MERLIN®VPCompact,Co. Zeiss, Oberkochen,Germany),equippedwithanenergy-dispersiveX-ray(EDX)detector(XFlash6/30)and analysissoftware(Quantax400,Co. Bruker,Berlin,Germany). Representativeareasofthesamples wereanalyzedandmappedtodeterminetheelementaldistributiononbasisoftheEDX-spectradata bytheQUANTAXESPRITMicroanalysissoftware(version2.0). TheembeddedandpolishedsamplesweremountedontheSEMcarrierwithadhesiveconductive carbon and aluminum tape (Co. PLANO, Wetzlar, Germany). SEM-secondary electron (SEM-SE) Metals2018,8,265 5of16 imageswereobtainedusinghighefficiencyEverhart-Thornley-typeHE-SEdetectorat5kVacceleration voltage. TheaccelerationvoltagefortheEDXanalysiswasvariedbetween5and15kV. Samples for transmission electron microscopy (TEM) were prepared by mechanical grinding, polishing up to a thickness of 100–150 µm, and further treatment by twin jet electro-polishing in methanolandnitricacid(2:1ratio). Theelectrolyticthinningoccursatatemperatureofabout−20◦C, withavoltageof12V.TEManalysiswasdonebyaZeissLIBRA120(Oberkochen,Germany),equipped withaLaB cathodeandanin-columnomegaspectrometer. Representativeareasofthesampleswere 6 analyzedwith120kVacceleratingvoltageanddigitalimageswereacquiredusingabottom-mount 2×2kslowscandigitalcamerasystem(Proscan,Co. TRS,Moorenweis,Germany). Imageprocessing wasdonewiththeiTEMsoftware(OlympusSoftImagingSolutionsGmbH,Münster,Germany). 2.5. HardnessTests The hardness was examined for different solution-annealing conditions and cooling rates to correlatetheresultsofthethermalanalysiswithacharacteristicmechanicalvalue,afterasubsequent artificialagingat180◦Cfor4h. Hardnesstestswerechosenasthehardnesscanbetesteddirectlyon theDSCsamples.Theheattreatments,withcoolingupto5K/s,werecarriedoutintheDSC.However, fastercoolingratesof10to300K/swerealsorealizedinthequenchingdilatometerBähr805A/D. Thehardness(HV1)wasdeterminedwithamicro-hardnesstester,HMV-2,fromShimadzu,Japan. Six hardnessindentationswererecordedperparameterset. Theresultsplottheaverage,hardnessvalues. Additionally,theminimumandmaximumvaluesaregivenaserrorbars. 3. ResultsandDiscussion 3.1. ContinuousHeatingoftheT651InitialCondition Thesolution-annealingtemperaturewaschosenas540◦Cinseveralpreviousinvestigationsofthe quenchsensitivityofAlMgSialloys[4,5,12]. However,theDSCheatingexperimentsontheparticular alloy batch and the initial T651 condition used here (shown in Figure 2), even for slow heating at 0.01K/s,indicatethatdissolutionofthesecondaryprecipitatesofinterestisjustcompletedatabout 560◦C.Furthermore,Figure2showsthatthetemperatureatwhichthedissolutionofthesecondary phasesiscompletedstronglydependsontheheatingrate. Anincreaseintheheatingrateshiftsthis dissolutioncompletiontohighertemperatures. AsderivedfromfindingsinSchumacheretal.[20],it canbeexpectedthatthespecificsolvustemperaturewillbereducedbyuptoafewtensofKelvinat evenlowerheatingratesorunderisothermalsolution-annealingconditions. Onesolution-annealing temperature was thus chosen as 560 ◦C, which, according to the heating experiments, should be above the equilibrium solvus temperature in any case. As mentioned above, 540 ◦C is a typical solution-annealingtemperaturethathasbeenusedinpreviousworks,and550◦Cwaschosenasthe temperatureinbetweenthesevalues. Twodifferentsolution-annealingsoakingdurationsof1and 20minwerealsoexamined. SincetheslowerCALVET-typeDSCrequiredatleast5mintoachieve thermalequilibration[13],asoakingdurationof1minisonlyinvestigatedinthefasterDSCs(0.3–5 K/s). Therefore,asystematicinvestigationofthequenchsensitivityorquench-inducedprecipitation behaviorafterdifferentsolution-annealingconditionswasconducted,andtheDSCexperimentswere performedwiththreesignificantparametersvaried,asfollows: • Solution-annealingtemperatures: 540,550,and560◦C; • Solution-annealingsoakingdurations: 1and20min; • coolingrates: 0.01–5K/s. Thiscorrespondsto33setsofparametersandmorethan200singleDSCexperiments. Metals2018,8,265 6of16 Figure2. Differentialscanningcalorimetry(DSC)heatingcurvesofENAW–6082initiallyT651asa functionoftemperature.Thesolutiontemperatureschosenforlaterexperimentsareindicated. 3.2. ContinuousCoolingExperiments,StartingfromDifferentSolutionTreatmentConditions Figure3highlightsoneparametersetofthecoolingexperiments,plottedaccordingtothe540, 550,and560◦Csolution-annealingtemperatures. TheDSCcoolingcurvesofthetwodifferentsoaking durationsareplottedintwocolors. TheareabetweenaDSCcurvepeakanditscorrespondingzero levelisproportionaltotheprecipitationenthalpy,andthusthevolumefraction,oftheprecipitates grownduringacertainreaction/peak[4]. Figure 3A shows that the DSC curves/reactions are insensitive to the soaking time at 540 ◦C. Furthermore,abroadhigh-temperaturereactions(HTRs)peakdominates,evenathighcoolingrates. Asimilarpatternisobservedifcoolingstartedfrom560◦Cregardingtheinsensitivitytosoakingtime (Figure3C).However,theshapeofthecoolingcurvesvariessignificantlywhencomparingsoakingat thesetwotemperatures. Twomainexothermicprecipitationreactionpeaksareobservedforthesoaking at560◦C.Thelowtemperaturereactions(LTRs)peakbeginstodominatetheprecipitationbehavior duringfastercoolingfrom560◦C.Themediumsolution-annealingtemperatureat550◦Chighlights thatthesoakingdurationsignificantlyimpactsthecurvatureoftheobservedDSCcurves,asshownin Figure3B.Here,theshortersoakingtimes(1min)yieldDSCcurvesthataresimilartothoseat540◦C, whereasthelongersoakingtimes(20min)yieldDSCcurvesthataresimilartothoseat560◦C. The same DSC data are rearranged in Figure 4 to highlight the role of the solution-annealing temperature.Twomajorargumentscanbederivedfromthesedata:(1)onlyminordifferencesintheDSC curvecurvaturesareobservedattheslowercoolingrates(upto0.1K/s,resultingincoolingdurationsof 1.4to14h)and20minofsoaking.However,(2)forfastercoolingratesof0.3to5K/sthosedifferencesare moresignificantwhilethosecoolingratesadditionallyareconsideredtobemuchmoretechnologically relevant,coveringcoolingdurationsrangingfrom30stoafewminutes.ConsiderablydifferentDSCcurves areproducedatthesefastcoolingrates,thetwodifferentsoakingtimes,andtherangeofsolution-annealing temperatures,whichexhibitthelargestdifferencesforthemediumcoolingratesof0.3and1K/s. ThefindingsfromFigures3and4thussuggestthattherearetwomajortypesofDSCcurvaturesfor agivencoolingrate.TheresultantDSCcurvatureobviouslydependsonthespecificsolutioncondition appliedpriortocooling.Therefore,theDSCdataarearrangedintothesetwotypesofDSCcurves,as showninFigure5. TheDSCcurvesinFigure5AaredominatedbyHTRs, whiletheDSCcurvesin Figure5BaredominatedbyLTRs.ThisleadsonetoaskwhatthecauseofthesedifferentDSCcurves andtheirquench-inducedprecipitationbehavioris. Wethuspostulatethatthetwodifferenttypesof precipitationbehaviordependonwhetherthecoolingstartedfromanincompletesolution(asseenin Figure5A)orifa(largely,ifnotfully)completesolutionprecedesthecooling(asseeninFigure5B). Metals2018,8,265 7of16 Figure3.DSCcoolingcurvesofENAW-6082(initiallyT651)withcoolingratesfrom0.01upto5K/s aftersolution-annealingat(A)540◦C,(B)550◦Cand(C)560◦Cfor1min(red)and20min(black). Figure4.DSCcoolingcurvesofENAW-6082(initiallyT651),withcoolingratesrangingfrom0.01to 5K/sandaftersolution-annealingatvariousconditions.(A)Soakingdurationof1minand(B)20min. Thethreedifferentappliedtemperaturesarecolor-codedtohighlightthedegreeofvariabilitywith soakingtimeandcoolingrate. Metals2018,8,265 8of16 Figure 5. DSC cooling curves of EN AW-6082, with cooling rates from 0.3 to 5 K/s after solution-annealing,resultingin:(A)anincompletesolutionand(B)acompletesolution. Thispostulationisderivedfromthreearguments: i. AccordingtoFigure2(andtherelateddiscussion),thesolvustemperatureoftheinitialT651 conditionofthisparticularbatchofENAW-6082forslowheatingisbelow560◦C. ii. Ifcoolingisstartingfromamore-or-lesscompletesolution(e.g.,560◦Csolution-annealing temperatureand20minsoakingtime),themainprecipitationbeginsafteracertaindegree ofundercooling. iii. The quasi-binary phase diagram Al-Mg Si (Figure 6) indicates that the Mg Si equilibrium 2 2 solvustemperatureforthisalloyisnearorslightlyabove540◦C. Ourreasoningforthesethreeargumentsisasfollows: → i.: Theheatingrate-specificsolvustemperaturecandropbelow560◦Cduringveryslowheating, asdemonstratedinFigure2. ThecoolingexperimentsinFigure5wereconductedafterrelatively fastheating(2K/s). Therefore,accordingtoFigure2,thedissolutionremainedincompleteatthe endoftheheatingprocess.Acompletesolutioncanstillbeobtainedwiththeswitchtoisothermal soaking,asseeninFigure5B.Here20minofsoakingat550and560◦Cresultsinprecipitation beginningafteracertaindegreeofundercooling,whileashortsoakingof1minat560◦Cstill causesthedirectonsetofprecipitation. → ii.: Taking the cooling rate of 0.3 K/s as an example, cooling from 560 ◦C and 20 min of soakingcausestheprecipitationtostartatabout500◦C,afteracertaindegreeofundercooling. However, starting from a condition that we claim to be an incomplete solution (e.g., 540 ◦C solution-annealingtemperature),thesamecoolingrateof0.3K/scausestheimmediateonsetof precipitationwhenthetemperaturedropsbelow540◦C,withprecipitationthusstarting40K higherthanthatinthecompletesolution. Twodifferenttypesofprecipitationonset(1:immediate precipitationonsetwiththeonsetofcooling;and2: onsetofprecipitationafteracertaindegreeof undercooling)wereattributedtotheobservationsfromthequasi-binaryAl-Mg Siphasediagram, 2 whichdependedonwhetherthecoolingstartsfromtheα-Alsolid-solutionsingle-phaseregion orfromtheα-Al+β-Mg Sitwo-phaseregion[21]. 2 Metals2018,8,265 9of16 → iii.: Thethreeappliedsolutiontemperaturesareindicatedinthequasi-binaryphasediagram Al-Mg SiandshowninFigure6,aswellastheestimatedmaximumamountofMg Siforthe 2 2 particular batch of EN AW-6082 that was used in the experiments. While the comparison of ENAW-6082withthisphasediagramisasimplification,theprecipitationoftheβ-Mg Siphase 2 fromtheα-AlsolidsolutionisdominatingtheHTRsduringcoolingfromthesolutiontreatment ofAlMgSialloys[5],includingtwobatchesofENAW-6082. Itisthusinferredthatthemostlikely phasetobeconsideredintermsofcompletesolutionisβ-Mg Si. Theequilibriumsolvusofthe 2 estimatedβ-Mg Simassfractioniscloseto540◦C,whichisadditionallysupportedbytheDSC 2 experimentsshowninFigure7. Thelatterusedsoakingdurationsrangingfrom1to120minat 540◦Cthatprecededacoolingrateof1K/s. Acompletesolutionwasstillnotattainedaftertwo hoursofsoakingat540◦C,withtheMg Siprecipitationstartingconcurrentlywiththeonsetof 2 cooling. Therefore,itisreasonabletoassumethatthealloybatch-specificequilibriumβ-Mg Si 2 solvustemperatureiscloseto540◦C(verylikelyafewKelvinabove540◦C). It can thus be concluded that a relatively short soaking at a high enough temperature (some 10 K above the alloy specific solvus) can result in the intended complete solution. The formation of a complete solution requires both an appropriate solution temperature and soaking duration to be chosen. As seen from the above results, a complete solution as the initial condition for subsequent cooling results in the initiation of precipitation temperatures that are some 10 Kelvin lowerthattheinitialconditionofanincompletesolution. Thisaspectcanbequiteimportantinan industrial/productioncontext. Forinstance,thetransportationofthesolution-treatedpartfromthe furnacetothequenchingmediaisunavoidablygoingtoexperiencesomecoolingbeforequenching. Ensuringacompletesolutionduringthetechnologicalapplicationofthesolutiontreatmentcanthus helptoavoidquench-inducedprecipitation. Thisaspectmightbeofevenmorerelevance,becausethe generalquenchsensitivityisalsoincreasedifthedissolutionremainsincompleteduringthesolution treatment(seethediscussiononhardnessbelow). Figure6. Sectionfromthequasi-binaryphasediagramAl-Mg Si(adoptedfromPolmear[1]). The 2 theoreticalmaximumamountofβ-Mg SiinthisbatchofENAW-6082(verticalredline),aswellasthe 2 appliedsolutiontemperatures(horizontallines),ishighlighted. Metals2018,8,265 10of16 Figure7.DSCcoolingexperimentsonENAW-6082aftersolutiontreatmentat540◦C,soakingtimesof 1,20,and120min,andacoolingrateof1K/s. 3.3. AnalysisoftheQuench-InducedMicrostructure Theschematictemperature-timeprofileappliedfortheheattreatmentofsamplesusedforthe microstructureanalysisisshowninFigure8. TheparameterswerechosenbasedonthecoolingDSC results. Forclarity,thecorrespondingDSCcurvesareplottednexttothemicrostructureimagesin Figures9Aand10A.Figures9and10showtheDSCcurvesandrepresentativeSEM-SEimagesfrom 540◦Cand560◦C,respectively,with20minofsoakingandacoolingrateof0.3K/s. Thecoolingwas continuedatthislowratedownroomtemperatureinFigure9B,DandFigure10B,D.Alternatively, thelowcoolingrateof0.3K/swasapplieduntil425◦C,andsubsequentlyovercriticallygas-quenched (~400K/s)toroomtemperature(seeFigure8)inFigure9C,EandFigure10C,E. Figure8.Schematictime–temperatureprofileoftheheattreatmentsforthemicrostructureanalysis.
Description: