Influence ofrelativisticeffects onsatellite-based clocksynchronization Jieci Wang1,2 , Zehua Tian1, Jiliang Jing1 and Heng Fan2 ∗ † 1 Department of Physics, Collaborative Innovation Center for Quantum Effects, and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China 6 Clocksynchronizationbetweenthegroundandsatellitesisafundamentalissueinfuturequantumtelecom- 1 munication,navigation,andglobalpositioningsystems.Here,weproposeaschemeofnear-Earthorbitsatellite- 0 basedquantumclocksynchronizationwithatmosphericdispersioncancellationbytakingintoaccountthespace- 2 timebackground oftheEarth. Twofrequencyentangledpulsesareemployed tosynchronizetwoclocks, one r atagroundstationandtheotheratasatellite. Thetimediscrepancy ofthetwoclocksisintroduced intothe a pulsesbymovingmirrorsandisextractedbymeasuringthecoincidencerateofthepulsesintheinterferometer. M WefindthatthepulsesaredistortedduetoeffectsofgravitywhentheypropagatebetweentheEarthandthe satellite,resultinginremarkablyaffectedcoincidencerates.Wealsofindthattheprecisionoftheclocksynchro- 3 nizationissensitivetothesourceparametersandthealtitudeofthesatellite. Theschemeprovidesasolution forsatellite-basedquantumclocksynchronizationwithhighprecision,whichcanberealized,inprinciple,with ] h currenttechnology. p - PACSnumbers:03.67.Hk,04.20.-q,06.30.Ft,42.50.-p t n a u I. INTRODUCTION by quantum mechanics, and there is also a security advan- q tage[34]. On the otherhand, time dilation[32] is a concern [ because of relativistic effects of the Earth on the QCS. The High precision synchronization of clocks plays an impor- influenceofrelativisticeffectsonquantumsystems[35–43]is 4 tantroleinmodernsocietyandscientific research[1, 2]; ex- v amplesincludenavigation,globalpositioning,testsofgeneral afocusofstudyinrecentyearsbecausesuchstudiesprovide 8 insights into some key questions in quantum mechanics and relativitytheory,longbaselineinterferometryinradioastron- 7 relativity, such as nonlocality, causality, and the information omy,aswellasgravitationalwaveobservation.Twostandard 4 paradox of black holes. Relativistic effects are particularly 1 classical protocols for clock synchronization are Einstein’s significantforthequantumversionsoftheEddingtonscheme 0 synchronizationscheme[3]andEddington’sslowclocktrans- [6–8]becauseonemustassumethatthetransferisperformed . fer [4]. The former requires operational exchange of light 1 “adiabaticallyslowly”[44]andthespacetimeisflatsuchthat pulses between the distant clocks and the latter is based on 0 relativistic effects are negligible. However, time dilation in- 5 sending a locally synchronizedclock from one part to other duced by Earth’s spacetime curvature is experimentally ob- 1 parts. Recently, quantum strategies have been exploited to servedfor a changein heightof 0.33m[32] and thus cannot : improvetheaccuracyofclocksynchronization. Afewquan- v beneglected. tumclocksynchronization(QCS)proposals[5–16]andexper- i X iments[17] are reported. Itisshownthatthe schemesbased In this paper we propose a practical scheme for satellite- r onquantummechanicscan gainsignificantimprovementsin based QCS. We let two observers, Alice and Bob, exchange a precisionovertheirclassicalcounterparts. twofrequencyentangledpulsesbetweenagroundstationand Ononehandseveralsatellite-basedquantumopticsexperi- asatellite. Theinfluenceofgravitationalred-shiftonthefre- quency of a pulse can be eliminated by an opposite gravi- ences[18]arefeasiblewithcurrenttechnology,suchassatel- lite quantum communication [19–27], and quantum tagging tational blue-shift. By assuming the clocks have the same precision [5, 7, 8], clock synchronizationcan be realized by [28], as well as gravity probes using beam interferometers [29, 30] and atomic clocks [31, 32] to test the principle of identifying the time discrepancies. In our scheme, the time equivalence. Among these experiments, the synchronization discrepancies are introduced through adding or subtracting of clocks between a satellite and a ground station [33] is an optical path differences into the pulses and the coincidence essentialstep. Besides, asatellite-basedquantumnetworkof rate of the pulses in the interferometer as a function of the clocks is promising to act as a single world clock with un- time discrepancy between the clocks is measured. In actual precedented stability and accuracy approaching the limit set satellite-basedquantuminformationprocessingtasks[19,21– 23, 26, 27, 45], and similarly in protocolsof QCS, the main errors are induced by photon-loss and the dispersion effects oftheatmospherethroughwhichthepulsestravel.Therefore, ∗[email protected] weemployfrequencyentangledlight,insteadoftheentangled †[email protected] N00Nstate whichisvulnerableforphoton-loss[46], aswell 2 asthedispersioncancellationtechnology[8,47,48]toelimi- on the surfaceof the Earth, we can agree thatthe collapsing natetheinfluenceoftheatmosphericscattering. Wefindthat timeisidenticalt = ta = tb,evenifAliceandBob’reading thecoincidencerateofinterferometryisremarkablyaffected times are different τa = τb at this moment. From Eq. (1) 6 bythespacetimecurvatureoftheEarth. Wealsofindthatthe we can see thatthe delaysare proportionalto the time inter- precisionoftheclocksynchronizationissensitivetothelight valbetweenthestartingtimeτi forthemovingofthemirrors 0 sourceparameters. andthe time t when the photonsare detected. If the propor- Theoutlineofthepaperisasfollows. InSec. IIwebriefly tionality constant v in Eq. (1) and the starting time reading introducethesketchoftheexperimentalsetup. InSec. IIIwe τi on Alice’s and Bob’s clocks are identical, the quantity of 0 discuss howthe Earth’sspacetime effectsthe propagationof OPD at Alice’s point will be zero after an exchange period. photons. InSec. IVwestudythefeasibilityofsatellite-based Therefore,thefinalOPDistotallyproducedfromthestarting QCSandhowtheeffectoftheEarth’sgravitywilldisturbit. time discrepancy∆τ = τb τa between Alice’s clock and 0 − 0 In the last section we discuss the experimentalfeasibility of Bob’sclock. Thenthesignalandidlerpulsesareinterferedat ourschemeandgiveabriefsummary. thebeamsplitter (BS)andclickthedetectors. We willshow in section IV that the final differenceof opticalpath lengths isaffectedbyafactordependingonthestartingtimediscrep- II. THESCHEME ancy∆τ. BymeasuringthephotoncoincidencerateP atthe c outputports1and2ofthebeamsplitter,onemayacquirevery The sketch of our proposal for satellite-based QCS is de- precise informationon the OPD in the two arms. Thus, it is scribed in Fig. (1). The quantum optical technology of our sufficient to measure the photon coincidence rate to recover proposal is based on the Hong, Ou, and Mandel (HOM) in- the exact time discrepancybetween Alice’s clock and Bob’s terferometer [52]. We assume that Alice works on the sur- clock. Then Alice tells Bob by classical communication to face of the Earth (r = r ) with her own clock, while Bob adjusthisclockaccordingto thetime discrepancy. By using A works on a satellite at constant radius r = r > r . The this scheme, Alice and Bob may check how much the accu- B A clocks have the same accuracy thus the clock synchroniza- racy is disturbedby the gravity inducedspacetime curvature tionproblemisreducedtotheproblemofidentifyingthetime oftheEarth,andinverselytheycanpreciselymeasurethecur- discrepancy between the clocks. Alice sends two frequency vaturevia an atomic clock, whichis the mostaccuratesetup entangled beams produced by a parametric down converter currentlyavailableintheworld. crystal (PDC) source to Bob and Bob bouncesthem back to Alice again. Those two pulses are named signal (S) beam and idler (I) beam, respectively. By exchanging entangled III. EARTH’SSPACETIMEONTHEPROPAGATIONOF PHOTONS beamsbetweenAliceandBob,a“conveyorbelt”[8]fortime informationisestablished. After propagatingthroughdiffer- entopticalpaths, the signalandidlerbeamsare interferedat Now we describe the propagation of photons from the the50/50beamsplitterandbemeasuredbythedetectors. To Earth to a satellite by taking gravity of the Earth into con- introducetimeinformationintothebeams,AliceandBobuse sideration. The Earth’s spacetime curvature will influence movingmirrorswith constantspeed v to add or subtractop- the lightpulsesduringtheir propagationbetweenthe ground ticalpathdifferences(OPD)tothebeams[8]. AliceandBob station and the satellite. We know that the Earth rotates cometoanagreementonthestartingtimeτ0 oftheirmirrors slowly with an angular velocity at the equator of ωE = in advance. Since they do not have a synchronizedclock to 7.2921151247 10−5rad/s or at a linear speed of vE = × startwith,theycanonlystartthemirrorsattimeτ0i(i = a,b) 465 ms−1, which is much slower than the speed of light. relativetothetimereadingsoftheirownclock,whicharedif- Therefore,theSchwarzschildmetric[49–51]isasufficientap- ferentduetodifferentlocations. AsdescribedinFig. (1),Al- proximationfortheEarth’sspacetime,ashasbeendiscussed iceatthegroundstationstartamovingmirrortoaddanOPD in[27,45,49]. TheSchwarzschildmetricisgivenby[50,51] δlI(t)totheidlerbeam[8]andto subtract thesameamount r r ofaOPDδlaS(t)fromthesignalbeamwhichwasbouncedback ds2 = −(1− rs)dt2+(1− rs)−1dr2 fromBob. AtthesatelliteBobsubtractsanOPDδlbI(t)from +r2(dθ2+sin2θdϕ2), (2) theidlerbeamandaddsanidenticalOPDδlS(t)tothesignal b beam.ThelineartimedependentOPDsaregivenby whererS := 2Gc2M istheEarth’sSchwarzschildradius,M is themassoftheEarth,cisthespeedoflightinvacuo,andG δlaI(t)=v(t−τ0a), δlbI(t)=−v(t−τ0b), isthegravitationalconstant. (1) A photon can be properly modeled by a wave packet of δlaS(t)=−v(t−τ0a), δlbS(t)=v(t−τ0b), electromagneticfields[53]withadistributionFω(KK,)0 ofmodes peaked around the frequencies ω [54, 56], where K = whereτa andτb arethestartingtimes(propertime)asmea- K,0 0 0 A,B labels either Alice or Bob. The annihilation operator suredbyAlice’sandBob’sclocks,respectively.InEq.(1)tis foraphotonfromthepointofviewofAliceorBobtakesthe thetime point(coordinatetime)ofthecoincidencedetection form of the signal and idler photons, i.e., the time when the pho- tsotantseqisuainnsttuamntasntaetoeuisslymceoalslaupresedd. bByythaessmumeaisnugretmheenqtusamntaudme aωK,0(tK)= +∞dωΩKe−iωKtKFω(KK,)0(ωK)aωK, (3) Z0 3 FIG.1:Sketchoftheexperimentalsetupforsatellite-basedQCS.Alicesendstwofrequencyentangledbeamsproducedbyaparametricdown convertercrystal(PDC)sourcetoBobwhobouncesthembacktoAliceagain. AliceaddsanOPDδlI(t)totheidlerbeam[8]andsubtracts a thesameamountofOPDδlS(t)fromthesignalbeamwhichwasbouncedbackfromBob.AtthesatelliteBobsubtractsanOPDδlI(t)from a b theidlerbeamandaddsanidenticalOPDδlS(t)tothesignalbeam.Finally,weletthepulsesinterfereatthe50/50beamsplitter(BS)andbe b detectedatthemeasurementsetups.ThecoincidenceratePcismeasuredasafunctionofthetimediscrepancyτ0b−τ0abetweentheclocks. where ω is the physical frequencies as measured in their IV. SPACETIMECURVATUREONSATELLITE-BASED K labs. At time τ Alice prepares a wave packet F(A) and QCS A ωA,0 sendsit to Bob whowill receiveit at a differentpropertime τ = ∆τ + f(r )/f(r )τ , where f(r ) = 1 rs, TheemittedsignalandidlerbeamsfromthePDCinitially ∆Bτ is propagation tBime ofAtheAwave packet,Aand the−facrtAor shareanentangledstate[8] p f(r )/f(r )τ indicatestherelativistictimedilation.The B A A wave packet received is modified due to the spacetime cur- ψ = dω dω F(ω ,ω )a (ω )a (ω )0 , (6) pvatureofthe Earthandtakesthe formFω(BB,)0. By employing | i Z 1 2 1 2 † 1 † 2 | i the definitionof propertime, it is easy to show thatthe time where a (ω ) and a (ω ) are creation operators of the first † 1 † 2 evolution for the modes has the form i∂ φ = ω φ , τK ωK K ωK and the second photons, respectively. For a monochromatic whereφ(ωuK) are the quantumstatesof the modescorrespond- pumpthisstatecanberewrittenas ingtotheoperatorsa [27]. Thisequationindicatesthatthe ωK physicalfrequencyω measuredby anobserverat theposi- K ψ = dω F (ω) ω +ω ω ω , (7) tion r is ω = f(r ) 1/2ω. Then we find that Bob will | i ω0 | 0 iI| 0− iS K K K − Z receive a mode with frequencyω = f(rA)ω if a sharp frequencymodewithωA wassentBbyAqlicfe(.rTBh)isAisthewell- pwuhleseres,|aωnidSFaωn0d(ω|ω)iiIstahreestpheectsrtaaltedsisftroirbuthtieonsifgunnacltiaonndoifdtlheer known gravitationalred-shifteffect, which was predictedby down-converted photons [47, 48]. Now let us briefly dis- Einsteinin1911andexperimentallyverifiedin1960[55]. In cuss how quantum entanglement is useful to quantum clock our scheme such a classical gravitational effect is designed synchronizationandtheadvantageofthequantumclocksyn- to be eliminated by an opposite gravitational blueshift fac- chronizationscheme.Themainadvantageofaquantumstrat- tor f(rB) because the signal will be sent downward from egy is that we can employ quantum uncertainty and coher- f(rA) encetimeofthefrequencyentangledphotons. FromEq. (7) asaqtellitetotheEarth. we can see that although the sum frequency 2ω is certain, However, such a nonlinear gravitationaleffect is found to 0 the down-shifted frequencies ω ω and ω + ω are influence the fidelity of the quantum channel between Alice | 0 − iS | 0 iI highlyuncertain. The frequenciesare largelydeterminedby andBob[27,45]andwillinevitablyaffecttheaccuracyofthe the pass bands of the interference filters that inserted in the satellite-based QCS as well. The mode a¯ received by Bob ′ down-shiftedbeams[52]. Thesepassbandshavebeenfound canbedecomposedintermsofthemodeapreparedbyAlice ontheorderof5 1012Hz,whichcorrespondstoacoherence andanorthogonalmodea [27,45,57] × ⊥ time foreach photononthe orderof 100fs[52]. Therefore, a¯ =Θa+ 1 Θ2a , (4) it is able to measure a time interval of or better than the co- ′ − ⊥ herencetimeofthephotons(50fs), withanaccuracyof1fs whereΘisthewavepacketopverlapbetweenthedistributions (10 15s).Also,themostimportanttaskforthequantumclock Fω(BB,)0(ωB)andFω(AA,)0(ωB), syn−chronizationistodeterminethetimeintervalbymeasuring therate atwhichphotonsare detectedin coincidence,which + Θ= ∞dω F(A)⋆(ω )F(B) (ω ), (5) relatestothecoherencelengthofthephotonwavepacketand A ωA,0 B ωB,0 B Z0 entanglementofthephotons. whichdescribesthefidelityofthechannelbetweenAliceand As stated before, Alice adds an OPD δlI(t) to the idler a Bob. ForaperfectchannelonehasΘ=1. beam[8]andsubtracts thesameamountofOPDδlS(t)from a 4 the signal beam which was bouncedback from Bob. At the BobandtheBS,andΘ isthemodeoverlapbetweenthedis- 2 satelliteBobsubtractsanOPDδlI(t)fromtheidlerbeamand tributionswhenthepulseisreceivedfromthesatellite. InEq. b addsanidenticalOPDδlS(t)tothesignalbeam.Thenwelet (11) the terms κS and κS describe the effect of the disper- b t f the pulses interfere at the 50/50 BS and be measured in the siveatmosphereonthesignalbeamontheirwaytoandfrom HOMinterferometer. ThedetectedcoincidencerateP atthe thesatellite,respectively. NoticethattheDopplershiftintro- c detectorsisgivenbytheMandelformula[58] duced by the first mirror is ω/χ and the frequency itself is revaluatedatω againbecausethesecondmirrormovesinthe Pc ∝Ztdt1dt2 hψ|E1(−)E2(−)E2(+)E1(+)|ψi, (8) opplipedostiotethdeiriedclteiornbe[a8m]. pTrhoepaagnaatlioognopursocperossc,eydiuerledsincganthbeefianpa-l operatortransformations wheret isthe interactiontimeof thedetectors, andtheelec- tromagneticfieldsattimet attheoutputofthebeamsplitter canbedefinedby j a′I′(ω)=Θ1Θ2aI(ω)e−iωΥ3+iκIt(ω/χ)+iκIf(ω)+Λa⊥I (ω), Ej(+) = i dω s4~πωζc aj(ω)e−iω(tj−xj/c) dwihstearnecΥe3be=tw1e2+eββn(tτh0ea−BSτ0ba−ndxct0h)e−PD(LC/χso+urLce′)i/scm. Bucehcasumsealtlheer Z than the distance between the satellite and the Earth, we as- = (−) †,forj =1,2, (9) sumethatL = L′. Attheoutputofthe50/50BS,themodes (cid:16)Ej (cid:17) are found to be a1(ω1) = √12[ia′I′(ω1) e−iω1δl/c +a′S′(ω1)] where ζ is the beam cross section, and xj is the position of anda2(ω2) = √12[ia′S′(ω2)+a′I′(ω2) e−iω2δl/c], whereδl is the moving mirrors detector. The relationship between the thedelayintroducedtorelatethecoincidencerateP withthe c outputandinputfieldsofthebeamofthemovingmirrorscan path length. Then the coincidence rate P defined in (8) is c beobtainedbyperformingLorentztransformationsonthein- obtainedas put fields [8]. For example, the factor aj(ω)e−iω(τ0j−xj0/c) a√ftχearjt(hχeωb)eea−miωs1o2−βuβt(flτo0jw−xfj0r/ocm), twhehemreovβin=g mvcirriosrstheevoLlovreesnttoz Pc ∝Z dω1dω2hψ|a†1(ω1)a†2(ω2)a1(ω1)a2(ω2)|ψi transformationfactor,χ = 1+β denotestheDopplershiftin- = dω dω 0a (ω )a (ω )ψ 2 . (12) 1 β 1 2|h | 1 1 2 2 | i| troducedbythemovingmirr−ors,andxj isthedistanceofthe Z 0 beam’sdelay. ForthetimedelaysdefinedinEq. (1),wehave Thematrixelement 0a (ω )a (ω )ψ in(12)isgivenby 1 1 2 2 h | | i xj = x for all j. Then the beams are sent from the Earth 0 0 1 tothesatelliteandareinfluencedbythedissipationoftheat- 0a (ω )a (ω )ψ = (Θ Θ )2δ(ω +ω 2ω ) 1 1 2 2 1 2 1 2 0 mosphereandthespacetimecurvature. Theformerproduces h | | i 2 − a phase discrepancy iκjt(ω) and the latter can be described eiϕφ(ω1−ω0) 1−e2i(ω1−ω0)Υ4−i∆κ(ω1) , (13) by Eq. (5). Taking the signal beam as an example, the full h i procedure can be expressed by the transformations between whereΥ = 4β (τb τa) δl/c,andϕisanoverallphase theannihilationoperatorswhenthephotonsaresentfromthe 4 1+β 0 − 0 − term that will disappear by taking the modulus [8], and the Earthtothesatellite contributionofthedispersiontermsis a′S(ω) = Θ1√χaS(cid:18)χsff((rrBA))ω(cid:19)e−irff((rrAB))ωΥ1+iκSt(ω) +∆κκIt(ω(ω)′=)−κκStSf(ω()ωχ−1)κ+If(κωSf)(+ωχ)κ−If(ωκIt′)(−ωχ)κ,St(ω′) (14) f(r ) + 1 Θ2a χ A ω , (10) q − 1 ⊥S(cid:18) sf(rB) (cid:19) iwnghethreroωu′g=hd2iωff0er−enωt.oIpfttihcaelppraotphesrtaireessoufcthhethbaetaκmSs=proκpIagaantd- whereΥ = 2β (τb x /c) L/candΘ isthewavepacket t f overlapb1etwe1e−nβthe0d−istr0ibuti−onswhenthe1 pulseissentfrom κSf = κIt, the dispersion effect of the atmosphere is erased. Suchconditionscanbesatisfiedbyallowingthe“from”idler theEarthtothesatellite.Wecanseethattheannihilationoper- beamtopropagateatadistancelessthanthespatialinhomo- atora (ω)atAlice’slaboratoryevolvesintoa (ω)whenob- S ′S geneities of the atmosphere from the “to” signal beam and, servingatBob’slaboratory,whereListhedistancebetween equivalently,byallowingthe“to”idlerbeamtopropagateless theEarthandthesatellite. Again,theannihilationoperatorfor thanthe“from”signalbeam[8]. Here, the“from”beamde- thesignalbeamevolvesintoa (ω)beforeenteringthe50/50 ′S′ notes the beam from Alice to Bob and vice versa. Then the BS dispersionsufferedbyoneofthephotonscancancelthatsuf- a′S′(ω) = Θ1Θ2aI(ω)eiωΥ2+iκSt(ω)+iκSf(ω/χ) ftoertaeldlybcyoitnhceidoethnetrafptherotporno.paTghateisnegttwhrooupghhotdoinffserceanntroepmtiacianl +Λa (ω), (11) ⊥S paths. SubstitutingEq.(13)intoEq. (12),wecanobtain where Υ2 = 12+ββ(τ0a − τ0b + xc0) + (L/χ + L′)/c, Λ = P =(Θ Θ )2 dω 2(1 cos[2ω(4v∆τ δl)]), (15) Θ2 1−Θ21 + 1−Θ22, L′ denotes the distance between c 1 2 Z |F| − c 1+β − p p 5 0 W 0 8.´10-6 5´1014 6.´10-6 1´1015 p 0.0015 D 4.´10-6 Dp Coincidencerate 0.0010 2.´10-6 disturbance 0.0005 0.0000 0 0 1´107 2´107 3´107 4´107 5´107 5´1012 r Σ B 1´1013 FIG.2: (Coloronline) Therelativedisturbanceof coincidencerate FIG.3: (Coloronline)Therelativedisturbanceofcoincidence rate ∆pasafunctionofthealtitudeofthesatelliterB.Theparametersof ∆p as a function of the source parameters ω0 and σ for the fixed thePDClightsourcearefixedasω0 =700THzandσ=100MHz. distancerB =6.771×106m(LEO). where F = Fω0(ω). From Eq. (15) we can see thatthe co- In Fig. (2), we plotthe relative disturbanceof the Earth’s incidence rate Pc is directly related to the time discrepancy spacetimecurvatureonthecoincidencerate∆p asafunction ∆τ = τ0b −τ0a of Alice’s and Bob’s clocks. That is to say, of the distance rB between the satellite and the Earth’s core Alice’s and Bob’s clocks can be synchronized by using the forthefixedlightsourceparameters. Itisshownthat∆ in- p measuredcoincidencerateofinterferometry. creases as the distance increases, i.e., the accuracy of clock To be explicit we next only consider the case in synchronizationdependsonthealtitudeofthesatellite,which which Fω0(ω) is a Gaussian wave packet Fω0(ω) = also verifies that the spacetime curvature remarkably influ- √421πσ2e−(ω−4σω20)2, whereσ is the Gaussian width. The wave evnercyesditfhfeerreunntnfrinogmotfhattheofaRtoemf.ic[8c],loinckwsh[i3c2h].theThcoisinrceisduelntcies packetoverlapsΘ andΘ arefoundtobe 1 2 rateisindependentofthedistanceLbetweenAlice andBob whenthespacetimecurvatureoftheEarthisnotconsidered. 2∆ ϑ2ω02 Θ1(2) =s1+∆1(212()2)e−4σ2[1+∆21(2)], (16) peaInkfFriegq.ue(n3c),ywωe0panlodtbthaendrweliadttihveσdoisftuthrbeaPnDceC.∆Iptiosvsehrotwhne that the disturbance of accuracy depends sensitively on the where ∆ = 1 ϑ and the signs occur for r < r bandwidthσ ofthesource,whichissimilartotheflatspace- 1(2) A B ± ± timecase[8]. However,herewe findthatthedisturbanceon or r > r . In Eq. (16), we define ϑ = f(rA) 1 A B f(rB) − accuracy also depends on the peak frequency of the pulses, and ωA,0 = ωB,0 = ω0 is assumed. The mqodes will be whichisdifferentfromthatof[8]wheretheaccuracyisinde- perfectly overlapped (Θ = 1) when Alice and Bob are in pendentof the peak frequency. In this paper we are particu- a flat spacetime f(r ) = f(r ) = 1. For the typical A B larlyinterestedintwotypicalcases,inwhichtheQCSareper- resources used in quantum optics experiments, the relation formedbetweenthegroundstationandeitheralowearthorbit ϑ ≪ (ϑσω0)2 ≪ 1 should be satisfied [27, 45, 59], which satellite(LEO),orageostationaryearthorbit(GEO)satellite, yieldsΘ1 = Θ2 ∼ 1− ϑ82σω202. Thenwe find thatthe coinci- respectively. dencerateP hastheform The LEO case: The typical distance from the Earth to a c LEO satellite is about 400km, which yields r = 6.371 A Pc =(1− ϑ82σω202)4[1−e−2σ2(δl−41v+∆βτ)2/c2]. (17) 1S0ch6mwaraznsdchrilBd ra=dius6.o7f7t1he×E1ar0t6hmis. rSC=ons9idmemrin,git itshaftoutnh×de that δ 1(rs rs) = 4.17 10 11. We employ a We can see that the coincidence rate Pc has the factor (1 typical∼PD−C2soruBrce−wriAth a wavelen×gth o−f 369.5 nm (corre- − ϑ82σω202)4 compared to that of the flat spacetime case, where sponding to ω0 = 812THz) and σ = 100MHz (the relation Pcf = 1−e−2σ2(δl−41v+∆βτ)2/c2 [8]. We define the effect of δpea≪k fr(eδqωσu0e)n2cy≪an1d bisansdatwisifidethd)i.s aAvaliilgahbtles,ofuorrceexwamithplesu,cihn spacetimecurvatureontheaccuracyofclocksynchronization trappedionexperiments[59]. Therelativedisturbanceofthe astherelativedisturbanceofcoincidencerate spacetime curvature on the coincidence rate is obtained as ∆ = Pcf −Pc =1 (1 ϑ2ω02)4. (18) ∆Lp =5.73993×10−8. Theachievementofanopticallattice p Pf − − 8σ2 clock with accuracy at the 10−18 level has been reported in c Refs. [60,61]. Ifwewouldliketosynchronizetwoclocksup Itisnowclearthattherelativedisturbanceofcoincidencerate toatimediscrepancyofτ = 1ns(asin[8], oramuchlower ∆ dependsonthespacetimeparameterϑandthecharacter- level τ = 100ns as presented in [7]), the correction of the p isticsofthePDCsource. Earth’sspacetimecurvatureeffectwillreach10 17sduringa − 6 singlesynchronizationprocess.Suchacorrectioniscompara- bustfrequencyentangledpulsesoflightbytakingtheeffects bletotheaccuracyoftheatomclocksandthusshouldbecon- of the spacetime curvature of the Earth into consideration. sidered for the QCS between clocks in future satellite-based The spacetime background of the Earth is described by the applications. Therefore, we can safely arrive at the conclu- Schwarzschildmetric,andthequantumopticspartofourpro- sion that the spacetime curvature is not negligible when the posal is based on the HOM interferometer. By eliminating synchronizationisperformedbyLEOsatellites. thegravitationalredshiftandblueshiftofthelaserpulsesand The GEO case: The typical distance L between a GEO theatmosphericdispersioncancellation,theaccuracyofclock satellite andthe groundis about3.6 107m. Therefore,the synchronizationin ourquantumschemecanbe veryhighby × distancebetweentheEarthandthesatelliter isaboutr = showing that ∆ is close to unity. Our proposal can be im- B B p 42.371 106m,whichyieldsδ 1(rs rs)=6 10 10. plemented, in principle, with current available technologies. × ∼−2 rB−rA × − Inthiscasetherelativedisturbanceofthespacetimecurvature To be specific, optical sources with the required peak fre- on the coincidence rate is ∆G = 1.18729 10 5. We find quencyandbandwidthhavebeenachievedbythetrappedion p × − thatthedisturbanceofthespacetimecurvatureonthecoinci- experiments [59]. The feasibility of photon exchanges be- denceratefortheGEOsatellitesbecomesevenmoreremark- tween a satellite and a ground station has been experimen- able than that of the LEO case. We remark that the current tallydemonstrated[21] bytheMateraLaser RangingObser- GPS satellites have r 2.7 107m. In the QCS scheme, vatory(MLRO)inItaly.Mostrecently,theyhavereportedthe B ≈ × thespacetimecurvatureisalsoremarkable. operationof experimentalsatellite quantumcommunications Error analysis: It is to mentioning that the velocity vari- [22] by sending selected satellites laser pulses. Our scheme ationsof the movingmirrorsmay inducesome errorson the can also be generalized to the quantum clock network cases coincidence rate. However, the order of magnitudes of the [6,34].Theresultsshouldbesignificantbothfordetermining movementspeedof the mirrorsis muchsmaller thanthe ve- theaccuracyofclocksynchronizationandforourgeneralun- locityoflight, letalonethevelocityvariationof themirrors. derstandingoftimediscrepancyinfuturesatellite-basedquan- To be specific, the typical velocity of the moving mirrors is tumsystems. 10 1m/s. Letussupposethatthisvelocityhasonepercentof − variation,say10 3m/s,whichismuchsmallerthantheveloc- − ityoflight.Notethattherelativedisturbanceofthespacetime curvatureonthecoincidencerate isontheorderof10 8 for − theLEOsatellitesandoftheorderof10 5fortheGEOsatel- − Acknowledgments lites,whichareatleast3ordersofmagnitudeslargerthanthat of the velocity variationsof the mirrors. Therefore, the sys- tematicerrorsinducedbythevelocityvariationofthemirrors This work is supported by the National Natural Science canbesafelyignoredinthescheme. Foundation of China under Grants No. 11305058, No. 11175248, No. 11475061, the Doctoral Scientific Fund Project of the Ministry of Education of China under Grants V. DISCUSSIONS No. 20134306120003, Postdoctoral Science Foundation of China under Grants No. 2014M560129, No. 2015T80146 We have proposeda practicalsatellite-based QCS scheme and the Strategic Priority Research Program of the Chinese with the advantages of dispersion cancellation and the ro- AcademyofSciences(underGrantNo. XDB01010000). [1] B.Simons, J.L.Welch, and N.Lynch, IBMResearchReport [11] S.Walter,A.Nunnenkamp,andC.Bruder,Phys.Rev.Lett.112, No.6505(1988). 094102(2014). [2] W. Lewandowski, J. Azoubib, and W. J. Klepczynski, Proc. [12] M.H.Xu,D.A.Tieri,E.C.Fine,J.K.Thompson, andM.J. IEEE87,163(1999). Holland,Phys.Rev.Lett.113,154101(2014). [3] A.Einstein,Ann.Phys.(Berlin)322,891(1905). [13] Y.-L.Zhang,Y.-R.Zhang,L.-Z.Mu,andH.Fan,Phys.Rev.A [4] A. S. Eddington, The Mathematical Theory of Relativity, 2nd 88,052314(2013). edition(CambridgeUniversityPress,Cambridge,1924). [14] J.-D. Yue, Y.-R. Zhang, H. Fan, Phys. Rev. A 92, 032321 [5] R.Jozsa,D.S.Abrams,J.P.Dowling,andC.P.Williams,Phys. (2015). Rev.Lett.85,2010(2000). [15] M. R.Hush, W.-B.Li, S. Genway, I.L. Sanovsky, and A.D. [6] V. Giovannetti, S. Lloyd, and L. Maccone, Nature 412, 417 Armour,arXiv:1412.1863. (2001). [16] V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheiran- [7] IsaacL.Chuang,Phys.Rev.Lett.85,2006(2000). dish, V. Giovannetti, and R. Fazio, Phys. Rev. A 91, 012301 [8] V.Giovannetti,S.Lloyd,L.Maccone,andF.N.C.Wong,Phys. (2015). Rev.Lett.87,117902(2001). [17] A.Valenciaetal.,Appl.Phys.Lett.85,2655(2004). [9] A. Mari, A. Farace, N. Didier, V. Giovannetti, and R. Fazio, [18] D.Rideoutetal.,Class.QuantumGrav.29,224011(2012). Phys.Rev.Lett.111,103605(2013). [19] C.Bonatoetal.,Opt.Expr.14,10050(2006). [10] T. E. Lee, and H. R. Sadeghpour, Phys. Rev. Lett. 111, [20] C.Bonato,A.Tomaello,V.DaDeppo, G.Naletto,andP.Vil- 234101(2013). loresi,NewJ.Phys.11,045017(2009). 7 [21] P.Villoresietal.,NewJ.Phys. 10,033038(2008). (2014). [22] G.Valloneetal.,Phys.Rev.Lett.115,040502(2015). [43] M.Ringbauer, M.A.Broome, C.R.Myers,A.G.White,and [23] C.Ervenetal.,NewJ.Phys.14,123018(2012). T.C.Ralph,NatureCommunications5,4145(2014). [24] J.G.Rarity,P.R.Tapster,P.M.Gorman,andP.Knight,NewJ. [44] V.Giovannetti,S.Lloyd,L.Maccone,andM.S.Shahriar,Phys. Phys.,4,82(2002). Rev.A65,062319(2002). [25] C. Kurtsiefer, P.Zarda, M. Halder, H. Weinfurter, P.M. Gor- [45] D.E.Bruschi,A.Datta,R.Ursin,T.C.Ralph,andI.Fuentes, man,P.R.Tapster,andJ.G.Rarity,Nature419,450(2002). Phys.Rev.D90,124001(2014). [26] J.Y.Wangetal.,NaturePhotonics7,387(2013). [46] V.Giovannetti1, S.Lloyd, andL.Maccone, NaturePhotonics [27] D. E. Bruschi, T. C. Ralph, I. Fuentes, T. Jennewein, and M. 5,222(2011). Razavi,Phys.Rev.D90,045041(2014). [47] A.M.Steinberg,P.G.Kwiat,andR.Y.Chiao,Phys.Rev.Lett. [28] A.Kent,WilliamJ.Munro,andTimothyP.Spiller,Phys.Rev. 68,2421(1992). A84,012326(2011). [48] A.M.Steinberg,P.G.Kwiat,andR.Y.Chiao,Phys.Rev.A45, [29] A.Brodutch,A.Gilchrist,T.Guff,AlexanderR.H.Smith,and 6659(1992). DanielR.Terno,Phys.Rev.D91,064041(2015). [49] W.-T.LiaoandS.Ahrens,NaturePhotonics9,169(2015). [30] R. Colella, A. W. Overhauser, and S. A. Werner, Phys. Rev. [50] C.W.Misner,K.S.Thorne,andJ.A.Wheeler,Gravitation(W. Lett.,34,1472(1975). H.FreemanandCompany,SanFrancisco,1973). [31] D.Kleppner, RobertF.C.Vessot,N.F.Ramsey, Astrophysics [51] R. M. Wald, General Relativity (The University of Chicago andSpaceScience6,13(1970). Press,Chicago,1984). [32] C.W.Chou, D.B.Hume, T.Rosenband, andD.J.Wineland, [52] C.K.Hong,Z.Y.Ou,andL.Mandel,Phys.Rev.Lett. 59,2044 Science329,1630(2010). (1987). [33] V.Giovannetti,S.Lloyd,andL.Maccone,Nature412,417-419 [53] D.E.Bruschi,A.R.Lee,andI.Fuentes,J.Phys.A46,165303 (2001). (2013). [34] P.Ko´maˆretal.,NaturePhysics10,582(2014). [54] T. G. Downes, T. C. Ralph, and N. Walk, Phys. Rev. A 87, [35] A.PeresandD.R.Terno,Rev.Mod.Phys.76,93(2004). 012327(2013). [36] I. Fuentes-Schuller, and R. B. Mann, Phys. Rev. Lett. 95, [55] R.V.Pound,andJr.G.A.Rebka,Phys.Rev.Lett.4,337(1960). 120404(2005). [56] U. Leonhardt, Measuring the Quantum State of Light, Cam- [37] J.C.Wang,J.F.Deng,andJ.L.Jing,Phys.Rev.A 81,052120 bridgeStudiesinModernOptics(CambridgeUniversityPress, (2010). Cambridge,2005). [38] J.C.Wang,andJ.L.Jing,Phys.Rev.A 82,032324(2010);J. [57] P.P.Rohde,W.Mauerer,andC.Silberhorn,NewJ.Phys.9,91 C.Wang,Z.H.Tian,J.L.Jing,andH.Fan,Nucl.Phys.B892, (2007). 390(2015). [58] L.Mandel,andE.Wolf,Opticalcoherenceandquantumoptics [39] T.G.Downes,I.Fuentes,andT.C.Ralph,Phys.Rev.Lett. 106, (CambridgeUniv.press,Cambridge,1995). 210502(2011). [59] D.N.Matsukevich,P.Maunz,D.L.Moehring,S.Olmschenk, [40] E. Mart´ın-Mart´ınez, I. Fuentes, and R. B. Mann, Phys. Rev. andC.Monroe,Phys.Rev.Lett. 100,150404(2008). Lett. 107,131301(2011). [60] N.Hinkleyetal.,Science341,1215(2013). [41] N.Friisetal.,Phys.Rev.Lett. 110,113602(2013). [61] B.J.Bloometal.,Nature506,71(2014). [42] J. C. Wang, J. L. Jing, and H. Fan, Phys. Rev. D 90, 025032