InfluenceofO andN ontheconductivityofcarbonnanotubenetworks 2 2 D. J. Mowbray1,∗ C. Morgan2, and K. S. Thygesen1 1Department of Physics, Center for Atomic-scale Materials Design (CAMD), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark 2Department of Physics, Molecular and Materials Physics Group, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom (Received11February2009;Published22May2009) We have performed experiments on single-wall carbon nanotube (SWNT) networks and compared with density-functionaltheory(DFT)calculationstoidentifythemicroscopicoriginoftheobservedsensitivityof thenetworkconductivitytophysisorbedO andN .PreviousDFTcalculationsofthetransmissionfunctionfor 2 2 isolatedpristineSWNTshavefoundphysisorbedmoleculeshavelittleinfluenceontheirconductivity.However, bycalculatingthefour-terminaltransmissionfunctionofcrossedSWNTjunctions,weshowthatphysisorbed O andN doaffectthejunction’sconductance.Thismaybeunderstoodasanincreaseintunnelingprobability 2 2 due to hopping via molecular orbitals. We find the effect is substantially larger for O than for N , and for 2 2 semiconductingratherthanmetallicSWNTsjunctions,inagreementwithexperiment. 0 1 PACSnumbers:73.63.–b,68.43.–h,73.50.Lw 0 2 n I. INTRODUCTION (7,7)metallicarmchair,(12,0)semimetalliczigzag,and(13,0) a semiconducting zigzag SWNT junctions, shown schemati- J cally in Fig. 1. Comparing our theoretical results for SWNT Usingsingle-wallcarbonnanotubes(SWNTs)asnanosen- 4 junctions with experimental measurements for SWNT net- sors, both individually and in SWNT networks, has been 1 works suggests that the surprising sensitivity to O and N one of the most promising potential applications of SWNTs 2 2 ] since their discovery.1,2 Several experimental studies have may be partially due to an increased tunneling probability l demonstratedthattheconductanceofSWNTsystemsisrather throughO2andN2physisorbedatSWNTjunctions. l a sensitive to the presence of even single-molecule concentra- In Sec. II we describe experimental measurements of the h influence of both O and N on the conductivity of SWNT tions of physisorbed gas molecules such as O and N .3–9 2 2 - 2 2 networksandthecharacterizationofthesenetworksusingRa- s Further, by measuring conductivity of individually charac- e terized SWNTs,10 as well as thick (metal-like) and thin manspectroscopy.AdescriptionoftheDFTandNEGFmodel m used to describe the microscopic origin of this effect is then (semiconductor-like) SWNT networks,8,9,11 the response of t. SWNTstocontaminantshasbeenshowntocorrelatewiththe provided in Sec. III. In Sec. IV we compare our theoretical a intrinsic electronic properties of the material. For example, results for the SWNT junction transmission with the SWNT m networkexperiments,followedbyaconcludingsection. ithasbeenfoundthatthepresenceoflow-O concentrations, 2 - independentoftemperature,introducesanincreaseinconduc- d tance of approximately 20% on thin SWNT networks, while n II. EXPERIMENTALRESULTS o anincreaseinconductanceofonlyabout1%isfoundforthick c SWNTnetworks.8 [ Ontheotherhand,previoustheoreticalstudieshavefound Below we give a brief discussion of our experiments on 1 that SWNTs are rather inert, so that gases tend only to ph- SWNT network conductivity. A more detailed description v ysisorb to the SWNT surface.12–19 For this reason, it was may be found in Refs. 8 and 9. Figure 2 shows experimen- 8 suggested that O2 should not effect conductance through talmeasurementsoftheconductancesensitivitytoO2 andN2 9 SWNTs, but only influence conductance at either SWNT- 4 SWNT junctions, at the SWNT-metal contacts, or at SWNT 2 defect sites.12,20 Although the conductivity of SWNTs with (a) Physisorbed O2 (b) Physisorbed N2 . 1 molecules physisorbed at defect sites has been extensively 0 studied,21–23 theconductivityoffour-terminalSWNT-SWNT 0 junctions has been previously studied only for small pristine 1 metallic SWNTs.24,25 The possible influence of physisorbed : v molecules on SWNT-SWNT junctions has not been investi- i X gated. r In this paper we address the microscopic origin of the in- a crease in conductance of SWNT networks when exposed to O or N gas. To this end, we have performed density- 2 2 functional theory (DFT) calculations of the intratube trans- mission within a SWNT and the intertube transmission be- tween two SWNTs in the nonequilibrium Green’s function FIG.1: (Coloronline)Schematicsofa(13,0)SWNTjunctionwith (a)physisorbedO and(b)physisorbedN . (NEGF) formalism for O and N molecules physisorbed in 2 2 2 2 2 Diameter (nm) 0)) 4 3 2 1 (G 2.0 l = 532 nm ( exc G 1.8 l = 785 nm ∆ exc e 1.6 c n n Conducta e Intensity 111...024 (13,0) SWNT ((172,7,0) )S SWWNNTT ge i ativ 0.8 n el a R h 0.6 C0.001 0.4 Time (h) 0.2 Time (s) 0.0 50 100 150 200 250 300 350 400 FIG. 2: (Color online) Fractional change in conductance ∆G = Raman Shift (cm-1) G/G(0)−1 versus time t in seconds and hours (inset) following Diameter (nm) exposuretoO andN forthin((cid:3),(cid:2))andthick( ,⊗)SWNTnet- 2 2 1 2 3 4 worksrespectively,onlog-logandlinear(inset)s(cid:35)cales(Refs.8and 9). 1.0 l =632.5 nm exc 0.8 exposureforthickandthinSWNTnetworks. Thesesamples (12,0) SWNT y (13,0) SWNT wereinitiallyplacedundervacuum(∼1×10−6mbar)andir- sit (7,7) SWNT n 0.6 radiatedbyaUVlight-emittingdiode(LED)(λ∼400nm)at nte lowintensity(∼0.03mW/cm2)forapproximately12htodes- e I orbsurfaceandinterbundleadsorbates(surfacedopants)from ativ 0.4 el the SWNTs. Once the SWNT network’s conductance stabi- R lized,thesampleswereexposedtoeitherO (99.5%pure)or 0.2 2 N (99.998% pure) at 1 atm. The conductance of the sam- 2 pleswasthenmonitoredbyperiodicallysampling(∆t≈1s) 0.0 the current while applying a fixed bias of 1 mV to the thick (metal-like) SWNT network (R ≈ 1 kΩ) and 10 mV to the -500 -400 -300 -200 -100 thin(semiconductor-like)SWNTnetwork(R≈1000kΩ),as Raman Shift (cm-1) showninFig.2. After 5 min of exposure to O , the thin network shows an 2 FIG.3:(Coloronline)Ramanspectraandapproximatediameterdis- increase in conductance of about 13% while the thick net- tributionofHiPcoSWNTsampleforanexcitationwavelength(top) work’s conductance changes by about 7%. For the same ex- λ ≈532nm(lowerblackcurve),λ ≈785nm(upperredcurve), exc exc posure to N2, both networks show substantially smaller con- and(bottom)λexc ≈632.5nm(——). TheDFTcalculateddiame- ductancechangesof2%–3%. However,atexposuretimesof tersofd≈9.76A˚,9.79A˚,and10.66A˚ for(7,7),(12,0),and(13,0) morethan2h,thethinSWNTnetworkresponsetoN issim- SWNTs,respectively,areprovidedforcomparison(dashedlines). 2 ilartothatofthethickSWNTnetworktoO . Thismightbe 2 caused by a weaker physisorption of N to the SWNT net- 2 works than O2. The inset of Fig. 2 also shows that at very the high-pressure carbon monoxide (HiPco) method. Fig- long exposure times the fractional change in conductance, ure 3 shows the radial breating mode (RBM) Raman sig- ∆G=G/G(0)−1,becomessaturatedafter24h.Further,the nals of HiPco samples at excitation wavelengths λ ≈ 532 exc responsetoO2 depictedinFig.2showsthattheconductance nm, λexc ≈ 632.5 nm and λexc ≈ 785 nm. The van Hove changeforathinSWNTnetworkisabouttwotothreetimes singularity energy separation was calculated using the tight- that of the thick SWNT network at all times. This suggests bindingapproximationwiththecarbon-carboninteractionen- thattheconductancechangeunderO2exposureisanintrinsic ergyγ0 ≈2.9eVandcarbon-carbonbondlengthaC−C ≈1.44 propertyoftheSWNTnetworks,presentevenatverylowO2 A˚.TheSWNTdiameterddependenceoftheRBMfrequency concentrations. Hereinweshallfocusonthemicroscopicori- ν for isolated SWNTs on SiO has been shown26 to be- RBM 2 ginofthenetworksensitivitytoO2andN2,withthetemporal have as νRBM ≈ 248/dt. The DFT calculated diameters for behaviorofthenetworksdiscussedelsewhere.8,9 (7,7),(12,0),and(13,0)SWNTsofd≈9.76,9.79,and10.66 We have performed the Raman spectroscopy to character- A˚,respectively,arefoundtocorrelatewellwiththeHiPcoRa- ize our SWNT network samples, which were produced via manshift,asshowninFig.3. Thisshouldensureagoodde- 3 Leads Central Region TABLEI:Changeinintertubeconductance∆G atthevalence- inter band maximum ε relative to the pristine junction for O and Frozen VB 2 N physisorbed in SWNT junctions of (7,7), (12,0), and (13,0) Layers 2 SWNTs, with the respective SWNT-O and SWNT-N separations 2 2 dinAngstrom. beort up IntratTrans SWNTJunction O∆2Ginter(%N)2 SWNT-O2d[A˚]SWNT-N2 beort (7,7)Armchair 30 6 2.3 2.8 up IntertTrans ((1123,,00))ZZiiggzzaagg 1184000 11340 22..65 22..88 O 2 Frozen Layers of each of the four SWNT layers adjacent to the boundaries Leads HCprin,tobewithin0.1eVoftheHamiltonianfortherespective leads H , so that max|Hprin − H | < 0.1 eV. In this way α C α theelectronicstructureattheedgesofthecentralregionwas FIG.4: (Coloronline)Schematicof(13,0)SWNTjunctionconsist- ingoffourSWNTleads(lightgray)coupledtothecentralscattering ensuredtobeconvergedtothatintheleads. regionviafourSWNTprimitiveunitcellsorlayers(gray)“frozen” The Landauer-Bu¨tticker conductance for a multi-terminal attheirrelativepositionsintheisolatedSWNT.Theatomicpositions systemcanbecalculatedfromtheGreen’sfunctionofthecen- oftheremainingeightSWNTlayers(darkgray)andthephysisorbed tralregion,G ,accordingtotheformula32–34 C O moleculehavebeenrelaxed.ASWNTseparationconsistentwith 2 experiments of approximately 3.4 A˚ has been used. The intratube G= G Tr[G Γ G† Γ ](cid:12)(cid:12) , (1) transportthroughtheSWNTandtheintertubetransportbetweenthe 0 C in C out (cid:12)ε=εF SWNTshasbeenshownschematically. where the trace runs over all localized basis functions in the central region. To describe the conductance at small bias scription of the SWNT network’s work function, which may for semiconducting systems, the Fermi energy εF should be besignificantlydifferentforsmallertubes. taken as the energy of the valence-band maximum εVB or conduction-band minimum ε for p-type and n-type semi- CB conductors,respectively. ThecentralregionGreen’sfunction III. BASICTHEORY iscalculatedfrom (cid:34) (cid:35)−1 OurDFTcalculationshavebeenperformedwiththeSIESTA G (ε)= zS −H −(cid:88)Σ (ε) , (2) C C C α DFT code27,28 using a double-zeta polarized (DZP) basis set α for the physisorbed molecules (O and N), and a single-zeta polarized(SZP)basissetfortheSWNTs(C),andthePerdew- where z = ε+i0+, SC and HC are the overlap matrix and Burke-Ernzerhof exchange-correlation functional.29 We note Kohn-Sham Hamiltonian matrix of the central region in the here that the DZP and SZP SIESTA basis sets have recently localizedbasis,Σαistheself-energyofleadα, been shown to yield transmission functions in quantitative agreement with plane-wave codes and maximally localized Σα(ε)=[zSCα−HCα][zSα−Hα]−1[zSC†α−HC†α], (3) Wannierfunctions.30 WhenmodelingO wehaveperformed 2 spin-polarizedcalculations12 buthaveperformedspin-unpo- andthecouplingelementsbetweenthecentralregionandlead α for the overlap and Kohn-Sham Hamiltonian are S and larizedcalculationsotherwise. Cα H respectively. We have modeled the junction system using 6(11) primi- Cα The coupling strengths of the input and output leads are tiveunitcellsorlayersforeachzigzag(armchair)SWNTper supercell, with a separation of approximately 3.4 A˚, as de- then given by Γin/out = i(Σin/out − Σ†in/out). For a four- pictedfora(13,0)SWNTjunctioninFigs.1and4.31Thefour terminal SWNT junction, the intratube and intertube trans- SWNT layers at the boundaries of the central region, shown missionfunctionsarecalculatedbychoosingtheappropriate ingrayinFig.4,werekeptfixedattheirrelaxedpositionsin outputlead,asdepictedinFig.4. the isolated SWNT. At the same time the central 4(9) primi- tive unit cells from each tube, shown in dark gray in Fig. 4, andthephysisorbedmoleculeswererelaxeduntilamaximum IV. THEORETICALRESULTS&DISCUSSION force of less than 0.1 eV/A˚ was obtained. Since the super- cellhasdimensionsof(cid:38) 25A˚ foreachSWNTjunction,aΓ ForeachofthethreetypesofSWNTjunctionsconsidered, point calculation was sufficient to describe the periodicity of wefindthatbothO andN arephysisorbedwithbindingen- 2 2 thestructure. ergiesof∼0.2eV,asdepictedinFig.1. Further,theSWNT– Such a large supercell was necessary for the Hamiltonian O andSWNT–N equilibriumseparationdistancedisinthe 2 2 4 N 2 HOMO O2 HOMOs (↑) O2 LUMOs(↓) 16 (a) (7,7) SWNT Junction Metallic 12 8 4 n ssio 0 (b) (12,0) SWNT Junction Semimetallic mi 12 s n Tra 8 be 4 u ntrat 0 (c) (13,0) SWNT Junction Semiconducting I 12 8 4 0 100 (d) (7,7) SWNT Junction Metallic 10-2 n10-4 o missi100 (e) (12,0) SWNT Junction Semimetallic s n Tra10-2 e ub10-4 ert Int100 (f) (13,0) SWNT Junction Semiconducting 10-2 10-4 -4 -3 -2 -1 0 1 2 Energy (eV) FIG. 5: (Color online) (a)–(c) Intratube transmission and (d)–(f) intertube transmission vs energy in eV relative to the Fermi energy for a pristine(blacksolidcurves)SWNTjunction,andwithN (bluedashedcurves),andO (reddash-dottedcurves)physisorbedconsistingof[(a) 2 2 and(d)]metallic(7,7)SWNTs,[(b)and(e)]semimetallic(12,0)SWNTs,and[(c)and(f)]semiconducting(13,0)SWNTs. Schematicsand isosurfacesof±0.02e/A˚3formolecularorbitalsonthephysisorbedmoleculesareshownabovethecorrespondingeigenenergies(dottedlines). range2.3—2.8A˚,asgiveninTableI.Theseresultsagreequal- curs. This is only slightly smaller than the expected band itativelywithprevioustheoreticalstudiesforO bindingdis- gap of ∼ 0.7 eV, based on a d−1 fit to experimental data.36 2 tancesandenergiesonisolatedSWNTs.12–19 TheseresultsfortheintratubetransmissionofpristineSWNTs alsoagreequalitativelywithpreviousDFTstudiesofisolated Figures5(a)-5(c)showtheintratubetransmissionforthree (5,5), (10,10), (10,5), (11,0), and (12,0) SWNTs.25,37,38 We prototypicalSWNTscommonlyfoundinexperimentalHiPco samples,35 as shown in Fig. 3. In Fig. 5(a) we see that for a alsofindinFigs.5(a)–5(c)thatneitherO2norN2physisorbed at a SWNT junction noticeably influence the intratube trans- metallic armchair (7,7) SWNT, transmission occurs through mission. two channels at the Fermi level. We see in Fig. 5(b) that the conductance for the semimetallic zigzag (12,0) SWNT In Fig. 5 we also show isosurfaces and eigenenergies for resembles that found in Fig. 5(a) for a metallic SWNT, ex- the highest occupied and lowest occupied molecular orbitals cept for a tiny band gap of (cid:46) 0.05 eV at the Fermi level. In (HOMO and LUMO) on physisorbed O and N . For these 2 2 Fig. 5(c) we find for a semiconducting zigzag (13,0) SWNT weaklycoupledmolecules,therenormalizedmolecularlevels a band gap of approximately 0.6 eV between the valence mayeasilybeidentifiedwiththemolecularorbitalsofthefree and conduction bands, through which no transmission oc- O and N molecules.39 Since the position of the molecular 2 2 5 levels is rather insensitive to the type of junction, it should onlyslightly,alsoinqualitativeagreementwithexperiment,5 also be insensitive to the exact binding geometry. This sug- asshowninFig.2. geststhatadditionalphysisorbedmoleculeswillinfluencethe Althoughitiswell-knownDFTcalculationsunderestimate intertubetransmissionsimilarly. bandgaps,37,42,43 sinceweareprimarilyinterestedinhowthe We find the intertube transmission is proportional to the presenceofO orN qualitativelychangestheDOSandcon- 2 2 density of states (DOS) for the system with peaks in the ductance,suchcalculationsarestilluseful. transmissionatthevanHovesingularities. Thisisconsistent withtransportbetweentheSWNTsoccurringinthetunneling regime,asexpectedforaSWNTseparationofapproximately V. CONCLUSIONS 3.4A˚. The presence of physisorbed molecules in the SWNT- Inconclusion,wehaveproposedapossiblemicroscopicex- SWNT gap should then increase the tunneling probability at planation for the experimentally observed sensitivity of the energiesneartheeigenenergiesofthemolecularorbitals.This electrical conductance of carbon nanotube networks to oxy- is evidenced by the distinct peaks in the intertube transmis- gen and nitrogen gases. Our DFT calculations suggests that sionforeachSWNTjunctionatenergiescorrespondingtothe O andN physisorbedincrossedSWNTjunctionscanhave HOMO of N and the spin polarized HOMOs and LUMOs 2 2 2 a large influence on the intertube conductance. In particular, of O , as seen in Figs. 5(d)–5(f). Under such conditions, a 2 forO thecloseproximityofthehighestoccupiedmolecular SWNT junction behaves as a simple tunneling electron mi- 2 orbitals with the Fermi level of the SWNT significantly in- croscopy (TEM) tip. By applying appropriate bias voltages, creaseselectrontunnelingacrossthegap. Theeffectisfound one may potentially probe the molecular orbitals of a ph- tobelargerforO thanforN andforsemiconductingrather ysisorbedmoleculetodetermineitschemicalcomposition. 2 2 thanmetallicSWNTs,inagreementwiththeexperimentalob- For this reason, the sensitivity of SWNT network conduc- servations. Our results suggests that the electrical properties tivitytoO isatleastpartlyduetothecloseproximityofthe 2 ofSWNTnetworksaretoalargeextentdeterminedbycrossed O HOMOs to the Fermi energies of typical SWNTs (≈ 0.6 2 SWNTjunctions. eV), as shown in Fig. 5. Further, it has been shown experi- mentallythatdefectsinherentinphysicallyrealizableSWNTs yieldp-typesemiconductors.1,40,41Theconductivitymeasured experimentally at small bias is thus at the energy of the va- Acknowledgments lencebandε . VB As seen in Fig. 5(f), the O HOMO eigenenergy is only We thank E. I. Kauppinen, and K. W. Jacobson for useful 2 about 0.3 eV below ε for a semiconducting (13,0) SWNT discussions.D.J.M.andK.S.T.acknowledgefinancialsupport VB junction. As shown in Table I, this yields a substantial in- from NABIIT and the Danish Center for Scientific Comput- creaseintheintertubeconductanceatzerobiasforsemicon- ingunderGrantNo. HDW-1103-06. TheCenterforAtomic- ducting junctions in the presence of O , while much smaller scale Materials Design (CAMD) is sponsored by the Lund- 2 increases are found for the metallic and semimetallic junc- beckFoundation. C.M.acknowledgesfinancialsupportfrom tions, inagreementwithexperiment.8 Ontheotherhand, we theNationalPhysicalLaboratory(NPL)andtheEngineering alsofindphysisorbedN increasestheintertubeconductance andPhysicalSciencesResearchCouncil(EPSRC-GB). 2 ∗ Electronicaddress:[email protected] 6 A.Felten,J.Ghijsen,J.-J.Pireaux,R.L.Johnson,C.M.Whelan, 1 M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Car- D.Liang,G.V.Tendeloo,andC.Bittencourt, “Effectofoxygen bonNanotubes: Sythesis,Structure,Properties,andApplications rf-plasmaonelectronicpropertiesofCNTs”, J.Phys.D40(23), (Springer,Berlin,2001). 7379(Dec.2007), doi:10.1088/0022-3727/40/23/019. 2 D. R. Kauffman and A. Star, “Carbon nanotube gas and 7 M.Kaempgen,M.Lebert,M.Haluska,N.Nicoloso,andS.Roth, vapor sensors”, Angew. Chem. 47(35), 6550 (Jul. 2008), “Sonochemical optimization of the conductivity of single-wall doi:10.1002/anie.200704488. carbonnanotubenetworks”, Adv.Mater.20(3),616(Jan.2008), 3 K.Bradley,S.-H.Jhi,P.G.Collins,J.Hone,M.L.Cohen,S.G. doi:10.1002/adma.200702873. Louie,andA.Zettl, “Istheintrinsicthermoelectricpowerofcar- 8 C. Morgan, Z. Alemipour, and M. Baxendale, “Variable bon nanotubes positive?”, Phys. Rev. Lett. 85(20), 4361 (Nov. range hopping in oxygen-exposed single-wall carbon nan- 2000), doi:10.1103/PhysRevLett.85.4361. otube networks”, Phys. Stat. Solidi A 205(6), 1394 (2008), 4 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, doi:10.1002/pssa.200778113. “Extreme oxygen sensitivity of electronic properties of car- 9 C.MorganandM.Baxendale, “DiffusionofO andN through 2 2 bon nanotubes”, Science 287(5459), 1801 (Mar. 2000), thinandthickSWNTnetworks”(May2009),arXiv:0905.1821v1. doi:10.1126/science.287.5459.1801. 10 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, 5 G.U.Sumanasekera, C.K.W.Adu, S.Fang, andP.C.Eklund, K. Cho, and H. Dai, “Nanotube molecular wires as “Effectsofgasadsorptionandcollisionsonelectricaltransportin chemical sensors”, Science 287(5453), 622 (Jan. 2000), single-walled carbon nanotubes”, Phys. Rev. Lett. 85(5), 1096 doi:10.1126/science.287.5453.622. (Jul.2000), doi:10.1103/PhysRevLett.85.1096. 6 11 V.Ska´kalova´,A.B.Kaiser,Y.-S.Woo,andS.Roth, “Electronic 27 S. R. Bahn and K. W. Jacobsen, “An object-oriented scripting transportincarbonnanotubes: Fromindividualnanotubestothin interfacetoalegacyelectronicstructurecode”,Comput.Sci.Eng. and thick networks”, Phys. Rev. B 74(8), 085403 (Aug. 2006), 4(3),56(May2002), doi:10.1109/5992.998641. doi:10.1103/PhysRevB.74.085403. 28 J.M.Soler,E.Artacho,J.D.Gale,A.Garcia,J.Junquera,P.Or- 12 P. Giannozzi, R. Car, and G. Scoles, “Oxygen adsorption on dejo´n,andD.Sa´nchez-Portal, “TheSIESTAmethodforabinitio graphiteandnanotubes”,J.Chem.Phys.118(3),1003(Jan.2003), order-nmaterialssimulation”, J.Phys.: Condens.Matter14(11), doi:10.1063/1.1536636. 2745(Mar.2002), doi:10.1088/0953-8984/14/11/302. 13 A.Tchernatinsky,S.Desai,G.U.Sumanasekera,C.S.Jayanthi, 29 J.P.Perdew,K.Burke,andM.Ernzerhof, “Generalizedgradient S.Y.Wu,B.Nagabhirava,andB.Alphenaar,“Adsorptionofoxy- approximationmadesimple”, Phys.Rev.Lett.77(18),3865(Oct. gen molecules on individual single-wall carbon nanotubes”, J. 1996), doi:10.1103/PhysRevLett.77.3865. Appl.Phys.99,034306(Feb.2006), doi:10.1063/1.2163008. 30 M.Strange,I.S.Kristensen,K.S.Thygesen,andK.W.Jacobsen, 14 V. A. Margulis and E. E. Muryumin, “Atomic oxygen “Benchmarkdensityfunctionaltheorycalculationsfornanoscale chemisorption on the sidewall of zigzag single-walled car- conductance”, J. Chem. Phys. 128(11), 114714 (Mar. 2008), bon nanotubes”, Phys. Rev. B 75(3), 035429 (Jan. 2007), doi:10.1063/1.2839275. doi:10.1103/PhysRevB.75.035429. 31 J. Kleis, P. Hyldgaard, and E. Schro¨der, “Van der Waals inter- 15 S. Peng and K. Cho, “Chemical control of nanotube electron- actionofparallelpolymersandnanotubes”, Comput.Mater.Sci. ics”, Nanotechnology11(2),57(Jun.2000), doi:10.1088/0957- 33(1–3),192(Jan.2005), doi:10.1016/j.commatsci.2004.12.036. 4484/11/2/303. 32 Y.MeirandN.S.Wingreen, “Landauerformulaforthecurrent 16 D.C.Sorescu,K.D.Jordan,andP.Avouris, “Theoreticalstudy throughaninteractingelectronregion”, Phys.Rev.Lett68(16), ofoxygenadsorptionongraphiteandthe(8,0)single-walledcar- 2512(Apr.1992), doi:10.1103/PhysRevLett.68.2512. bon nanotube”, J. Phys. Chem. B 105(45), 11227 (Oct. 2001), 33 K. S. Thygesen, “Electron transport through an interacting re- doi:10.1021/jp0122979. gion:Thecaseofanonorthogonalbasisset”, Phys.Rev.B73(3), 17 D.J.MannandW.L.Hase, “Directdynamicssimulationsofthe 035309(Jan.2006), doi:10.1103/PhysRevB.73.035309. oxidationofasinglewallcarbonnanotube”, Phys.Chem.Chem. 34 M. Buttiker, “Four-terminal phase-coherent conduc- Phys.3(19),4376(Aug.2001), doi:10.1039/b103762p. tance”, Phys. Rev. Lett. 57(14), 1761 (Oct. 1986), 18 S.-H.Jhi,S.G.Louie,andM.L.Cohen,“Electronicpropertiesof doi:10.1103/PhysRevLett.57.1761. oxidizedcarbonnanotubes”, Phys.Rev.Lett.85(8),1710(2000), 35 Z.Luo,L.D.Pfefferle,G.I.Haller,andF.Papadimitrakopoulos, doi:10.1103/PhysRevLett.85.1710. “(n,m) abundance evaluation of single-walled carbon nanotubes 19 S.-P.Chan, G.Chen, X.G.Gong, andZ.-F.Liu, “Oxidationof byfluorescenceandabsorptionspectroscopy”,J.Am.Chem.Soc. carbonnanotubesbysingletO ”, Phys.Rev.Lett.90(8),086403 128(48),15511(Nov.2006), doi:10.1021/ja0657096. 2 (Feb.2003), doi:10.1103/PhysRevLett.90.086403. 36 T.W.Odom,J.-L.Huang,P.Kim,andC.M.Lieber, “Structure 20 A.R.Rocha,M.Rossi,A.Fazzio,andA.J.R.daSilva,“Design- andelectronicpropertiesofcarbonnanotubes”, J.Phys.Chem.B ingrealnanotube-basedgassensors”, Phys.Rev.Lett.100(17), 104(13),2794(Feb.2000), doi:10.1021/jp993592k. 176803(May2008), doi:10.1103/PhysRevLett.100.176803. 37 S.Reich,C.Thomsen,andP.Ordejo´n,“Electronicbandstructure 21 S. Peng and K. Cho, “Ab initio study of doped car- ofisolatedandbundledcarbonnanotubes”, Phys.Rev.B65(15), bon nanotubes sensors”, Nano Lett. 3(4), 513 (Mar. 2003), 155411(Apr.2002), doi:10.1103/PhysRevB.65.155411. doi:10.1021/nl034064u. 38 J.-C.Charlier,X.Blase,andS.Roche, “Electronicandtransport 22 P.C.P.Watts,N.Mureau,Z.Tang,Y.Miyajima,J.D.Carey,and propertiesofnanotubes”,Rev.Mod.Phys.79(2),677(May2007), S.R.P.Silva, “Theimportanceofoxygen-containingdefectson doi:10.1103/RevModPhys.79.677. carbonnanotubesforthedetectionofpolarandnon-polarvapours 39 K. S. Thygesen and K. W. Jacobsen, “Molecular transport cal- through hydrogen bond formation”, Nanotechnology 18(17), culations with Wannier functions”, Chem. Phys. 319(1–3), 111 175701(May2007), doi:10.1088/0957-4484/18/17/175701. (Dec.2005), doi:10.1016/j.chemphys.2005.05.032. 23 P.C.P.Watts, W.-K.Hsu, H.W.Kronto, andD.R.M.Walton, 40 S. J. Tans, A. R. M. Vershueren, and C. Dekker, “Room- “Are bulk defective carbon nanotubes less electrically conduct- temperaturetransistorbasedonasinglecarbonnanotube”,Nature ing?”, NanoLett.3(4),549(Mar.2003), doi:10.1021/nl034028v. 393,49(May1998), doi:10.1038/29954. 24 M.S.Fuhrer,J.Nyga˚rd,L.Shih,M.Forero,Y.-G.Yoon,M.S.C. 41 V.Derycke, R.Martel,J.Appenzeller,andP.Avouris, “Carbon Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. nanotubeinter-andintramolecularlogicgates”, NanoLett.1(9), McEuen, “Crossednanotubejunctions”, Science288(5465),494 453(Sep.2001), doi:10.1021/nl015606f. (Apr.2000), doi:10.1126/science.288.5465.494. 42 J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, 25 Y.-G.Yoon,M.S.C.Mazzoni,H.J.Choi,J.Ihm,andS.G.Louie, and J. G. A´ngya´n, “Screened hybrid density functionals ap- “Structuraldeformationandintertubeconductanceofcrossedcar- plied to solids”, J. Chem. Phys. 124(15), 154709 (Apr. 2006), bonnanotubejunctions”, Phys.Rev.Lett.86(4),688(Jan.2001), doi:10.1063/1.2187006. doi:10.1103/PhysRevLett.86.688. 43 J. Heyd, J. E. Peralta, G. E. Scuseria, and R. L. Martin, “En- 26 A.Jorio,R.Saito,J.H.Hafner,C.M.Lieber,M.Hunter,T.Mc- ergy band gaps and lattice parameters evaluated with the Heyd- Clure,G.Dresselhaus,andM.S.Dresselhaus, “Structural(n,m) Scuseria-Ernzerhofscreenedhybridfunctional”, J.Chem.Phys. determination of isolated single-wall carbon nanotubes by reso- 123(17),174101(Oct.2005), doi:10.1063/1.2085170. nantramanscattering”, Phys.Rev.Lett.86(6),1118(Feb.2001), doi:10.1103/PhysRevLett.86.1118.