ebook img

Influence of Cation Choice on magnetic behavior of III-N Dilute Magnetic semiconductors PDF

2005·3.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Influence of Cation Choice on magnetic behavior of III-N Dilute Magnetic semiconductors

INFLUENCEOFCATIONCHOICEONMAGNETICBEHAVIOROFIILNDILUTE MAGNETICSEMICONDUCTORS By RACHELMARIANFRAZIER ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2005 ACKNOWLEDGMENTS Manypeoplehelpedsupporttheresearchpresentedinthisdissertation,toomanyto listindividually.Iappreciateallthateachpersoncontributed.Inparticular,Ithankeach memberofmyresearchgroup,especiallythosewhotaughtmethebasics,requirements forsuccessinmyresearch.Ialsothankeachmemberofmycommitteefortheinspiring thoughtsandinsightfulconversations.Ihavemetmanyandlearnedmuchduringmy graduatecareeratUF. 11 TABLEOFCONTENTS page ACKNOWLEDGMENTS ii LISTOFTABLES v LISTOFFIGURES vi CHAPTER 1 INTRODUCTIONTODILUTEMAGNETICSEMICONDUCTORS 1 2 THEORETICALANDEXPERIMENTALBACKGROUNDAND INVESTIGATIONS 4 ExperimentalProgressinDMS 4 FocusonHI-As 5 ExtensiontoIII-Ns 5 TheoreticalBackground 7 FreeCarrierMediatedModelofFerromagnetisminDMS 7 PercolationPictureofFerromagnetisminDMS 8 3 SURVEYOFPOTENTIALDILUTEMAGNETICSEMICONDUCTORSWITH IONIMPLANTATION 10 IonImplantationMethodDescription 10 SurveyofIonImplantedA1N 11 ExperimentalCharacterizationandResultsofIonImplantation 12 4 THINFILMALLUMINUMNITRIDEDILUTEMAGNETIC SEMICONDUCTORGROWTHANDOPTIMIZATIONOFMAGNETIC PROPERTIES 22 GrowthbyMolecularBeamEpitaxy 22 GrowthofThinFilmAlMnN 24 CrystallinityandPhaseStructure 25 MagneticProperties 26 MagneticMechanism 27 GrowthofThinFilmAlCrN 28 CrystallinityandPhaseStructure 29 in RoleofV/IIIonGrowthandMagneticProperties 30 EffectofDopantonFerromagnetism 30 5 THERMALSTABILITYINVESTIGATION 42 6 ALNANDGANBASEDDILUTEMAGNETICSEMICONDUCTOR APPLICATIONS 50 SpinFilterApplicationsofA1NDMS 50 DeviceStructureandDesign 50 DeviceTestingandResults 52 7 INVESTIGATIONOFGADOLINIUMASAMAGNETICDOPANT 64 IntroductionofaNewMagneticDopant 64 GrowthofGaN:Gd 64 MagneticPropertiesofGaN:Gd 65 ThermalStabilityInvestigationofGaN:Gd 67 8 CONCLUSION 82 AIN-basedDMSSurvey 82 ImpurityComparison 83 ThermalInstability 84 DeviceApplications 84 SummaryandFutureWork 85 APPENDIX SUPERCONDUCTINGQUANTUMINTERFERENCEDEVICE MAGNETOMETRY 86 SampleMeasurementMethod 87 BackgroundSubtraction 88 LISTOFREFERENCES 89 BIOGRAPHICALSKETCH 92 IV TABLE Table page 4.1. TablefeaturingthelatticeconstantandelectricalpropertiesofAlMnNand AlCrNfilms 32 LISTOFFIGURES Figure page 3.1 Powderx-raydiffractionscanofA1NimplantedwithMn.Noadditionalphases areobservedascomparedtoundopedA1N 15 3.2 Powderx-raydiffractionscanofA1NimplantedwithCr.Additionalphasesas comparedtotheA1Nareshowninthefigure 16 3.3 Powderx-raydiffractionscanofA1NimplantedwithCo.Additionalphasesas comparedtotheA1Nareshowninthefigure 17 3.4 MagnetizationversusappliedfieldtraceofMn+-implantedA1Natatemperature of100K 18 3.5 MagnetizationversusappliedfieldtraceofCr+-implantedA1Natatemperature of300K 19 3.6 MagnetizationversusappliedfieldtraceofC0+-implantedA1Natatemperature of300K 20 3.7 MagnetizationasafunctionoftemperatureforCo+-implantedA1N.Amagnetic fieldof500Oewasappliedduringthemeasurement 21 4.1 Estimatedsaturationmagnetizationandestimatedremanentmagnetizationof AlMnN.ThefilmwasgrownwithMncelltemperatureof650°Candundera nitrogenflowof1.3seem 33 4.2 MagnetizationversusappliedmagneticfieldforAlMnNattemperaturesof10K and300K.ThefilmwasgrownwithaMncelltemperatureof650°Candundera nitrogenflowof1.3seem 34 4.3 Magnetizationvs.appliedfieldoftheundopedA1Nshowingparamagnetic behavior 35 4.4 MagnetizationversustemperatureforfilmsofeitherundopedA1N,singlephase AlMnN,orM114N 36 4.5 ReflectionhighenergyelectrondiffractionphotoofAlCrNfilmgrownataCr celltemperatureof992°C.Thephotodepictsa2D/3Dpatternwithonebythree reconstruction 37 VI 4.6 Atomicforcemicroscopyimage(1urnby1um)ofAlCrNwithanrmsroughness valueofapproximately11nm 38 4.7 MagnetizationversusnitrogenflowforAlCrNfilmsgrownatasubstrate temperatureof780°CandwithaCrcelltemperatureof987°C 39 4.8 Magnetizationvs.appliedfieldfortheoptimalAlCrNandAlMnNfilms 40 4.9 Magnetizationvs.temperatureinthetemperaturerangefrom10K-50Kfor AlMnNandAlCrN.Adifferenceincurvatureisseenforthetwomaterials 41 5.1 EstimatedsaturationmagnetizationforAlCrNateachannealtemperature 46 5.2 Magnetizationversusappliedfieldmeasurementscomparingtheas-grown AlCrNtothepost-annealAlCrN.Verylittlemagnetizationisleftafterananneal oftheAlCrNat700°C 47 5.3 Magnetizationversustemperaturetakenunderanappliedfieldof250Oe comparingasgrownAlCrNtopost-annealAlCrN 48 5.4 Powderx-raydiffractionscanscomparingasgrownAlCrNtopost-annealed AlCrN.Nosecondphasesareapparentafterthe700°Canneal 49 6.1 Schematicoftheallsemiconductortunnelingmagneto-resistancestack.The referencestackcontainedundopedA1NinplaceoftheAlMnNlayer,andall thicknessedremainedthesame.Thedarksquaresrepresentohmiccontactsmade tothetopGaN:SilayerandtotheunderlyingMOCVDGaNbuffer 55 6.3 Maskdesignusedforfabricationofallsemiconductordevice.Alignmentmarks arefoundateachcornerandinthemiddleofthemask.Thelargerdarkbars representtheareaofthemesaofthedevice.Theopen,orlightareas,represent whereohmiccontactwasmadetothedevice 56 6.4 Scanningelectronmicrographofallsemiconductordevice.Topviewshowstop andbottomTi/Auohmiccontact,thetopofthemesaandtheetchedvalley showingtheMOCVDGaNbuffer 57 6.5 Current-voltagemeasurementofallsemiconductortunnelingmagneto-resistance devicewithandwithoutandappliedmagneticfield.OpencirclesrepresenttheI- Vmeasurementtakenwithoutanappliedfield.DarksquaresrepresentI-V measurementtakenafterapplicationofa4000Oefield.Notethattunneling increasesafterthefieldisapplied 58 6.6 Resistancevs.appliedfieldmeasurementtakenat5Kfortheallsemiconductor referencedevice 59 6.7 Resistancevs.appliedfieldtakenat300Kfortheallsemiconductortunneling magneto-resistancedevice 60 vn 1 6.8 DarkfieldZSTEMimagetakenoftheallsemiconductortunnelingmagneto- resistancedevice.ThedarkAlMnNlayershowsroughnessindicatingpoor growthqualityattheinterface 61 6.9 Selectedareadiffractionpatterntunnelingelectronmicrographtakenoftheall semiconductortunnelingmagneto-resistancedevice.TheAlMnNspinfilter layerisindicatedwithanarrow.StraincanbeseenwithintheAlMnNlayeras indicatedinthephoto 62 6.10 Scanningelectronmicrographofatunnelingmagneto-resistancedevicewith FeNiasaspininjector.Fromthephoto,thedegradationoftheFeNiisvisibleon thecontactpad.Thisdegradationrepresentsnearly90%ofthedevices.The FeNidegradedduringphotolithography,mostlikelyduetotheuseofsolvents duringprocessing 63 7.1 ReflectionhighenergyelectrondiffractionpatternofGaN:Gd,Tod=1050°C. Thepictureshowsa2D/3Dpatternwith1x3reconstruction 70 7.2 AtomicforcemicroscopyimagerepresentingGaN:Gdwithrmsroughnessof 1.541ran 71 7.3 Magnetizationvs.appliedfieldlooptakenat50KforGaN:Gd,withTea= 950°C.Hysteresisisobservedat50K,butnotnecessarilyat300Kor350K 72 7.4 Magnetizationvs.appliedfieldtakenat50KforGaN:GdcorrespondingtoTed= 1000°C-1100°C 73 7.5 Estimatedsaturationmagnetizationvs.inverseofGdcelltemperatureplot whichshowstheoptimalTed 74 7.6 Magnetizationvs.appliedfieldloopstakenat50K,300K,and350Kfor GaN:GdwithTGd=1050°C 75 7.7 Magnetizationvs.temperatureforGaN:GdwithTGd=1050°C.Notethatthe magnetizationissignificantlydecreasednearroomtemperature 76 7.8 Estimatedsaturationmagnetizationvs.annealtemperatureforGaN:GdwithTod =1050°C 77 7.9 Magnetizationvs.appliedfieldcomparingtheasgrownGaN:Gdtothat annealedat600°C 78 7.10 Magnetizationvs.temperatureofGaN:Gdafter700°Canneal 79 7.1 Magnetizationvs.appliedfieldat50Kand350KforGaN:Gdannealedat 700°C 80 7.12 Magnetizationvs.appliedfieldat300KforGaN:Gdannealedat700°C 81 vni AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy INFLUENCEOFCATIONCHOICEONMAGNETICBEHAVIOROFIII-NDILUTE MAGNETICSEMICONDUCTORS By RachelMarianFrazier August2005 Chair: CammyAbernathy MajorDepartment: MaterialsScienceandEngineering Withtheincreasinginterestinspintronics,manyattemptshavebeenmadeat incorporatingspin-basedfunctionalityintoexistingsemiconductortechnology.One approach,utilizingdilutemagneticsemiconductors(DMS)formedviaintroductionof transitionmetalionsintoIll-Nitridehosts,wouldallowforintegrationofspinbased phenomenaintocurrentwidebandgapdevicetechnology. Toaccomplishsuchdevicestructures,itisnecessarytoachievesinglephase transitionmetaldopedGaNandA1Nwhichexhibitroomtemperaturemagneticbehavior. Ionimplantationisaneffectivesurveymethodforintroductionofvarioustransition metalsintoA1N.InionimplantedA1N,theCoandCrdopedfilmsshowedhysteresisat 300KwhiletheMndopedmaterialdidnot. However,itisnotatechniquewhichwill allowforthedevelopmentofadvancedspinbaseddevices.Suchdeviceswillrequire epitaxialmethodsofthesortcurrentlyusedforsynthesisofIll-Nitrideoptoelectronics. IX Onesuchtechnique,GasSourceMolecularBeamEpitaxy(GSMBE),hasbeen usedtosynthesizeA1NfilmsdopedwithCrandMn.Roomtemperatureferromagnetism hasbeenobservedforAlMnNandAlCrNgrownbyGSMBE.Inbothcases,themagnetic signalwasfoundtodependonthefluxofthedopant.ThemagnetizationoftheAlCrN wasfoundtobeanorderofmagnitudegreaterthanintheAlMnN.Thetemperature dependentmagneticbehaviorofAlCrNwasalsosuperiortoAlMnN;however,the AlCrNwasnotresistanttothermaldegradation. Anall-semiconductortunnelingmagnetoresistivedevice(TMR)wasgrownwith GaMnNasaspininjectorandAlMnNasaspinfilter.Theresistanceofthedeviceshould changewithappliedmagneticfielddependingonthemagnetizationoftheinjectorand filter.However,duetotheimpuritybandsfoundintheAlMnN,theresistancewasfound tochangeverylittlewithmagneticfield. ToovercomesuchobstaclesasfoundinthetransitionmetaldopedA1N,another dopantmustbeused.OneviabledopantisGd,whichduetothelowconcentration incorporatedinthesemiconductormatrixshouldprovideasingleimpuritylevelwithin theDMSinsteadofanimpurityband.TheincorporationofGdintoGaNandA1Nmaybe theultimatedopantfortheseIII-NbasedDMS.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.