ebook img

Influence of a cavity on the dynamical behaviour of an airfoil PDF

177 Pages·2017·7.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Influence of a cavity on the dynamical behaviour of an airfoil

Influence of a cavity on the dynamical behaviour of an airfoil Citation for published version (APA): Olsman, W. F. J. (2010). Influence of a cavity on the dynamical behaviour of an airfoil. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Applied Physics and Science Education]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR673149 DOI: 10.6100/IR673149 Document status and date: Published: 01/01/2010 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 30. Jan. 2023 influence of a cavity on the dynamical behaviour of an airfoil Copyright ' 2010 W.F.J. Olsman Cover design by W.F.J. Olsman Printed by Universiteitsdrukkerij TU Eindhoven, Eindhoven, The Netherlands A catalogue record is available from the Eindhoven University of Technology Library Olsman, W.F.J. Influence of a cavity on the dynamical behaviour of an airfoil / by Willem FrederikJurri¨enOlsman.–Eindhoven:TechnischeUniversiteitEindhoven, 2010. – Proefschrift. ISBN: 978-90-386-2230-9 NUR: 968 Trefwoorden:caviteit/trappedvortex/dynamischgedragvleugel/vleugel Subject headings: cavity / trapped vortex / dynamical behaviour wing / wing influence of a cavity on the dynamical behaviour of an airfoil PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op dinsdag 25 mei 2010 om 16.00 uur door Willem Frederik Jurri¨en Olsman geboren te Hilversum Dit proefschrift is goedgekeurd door de promotoren: prof.dr.ir. G.J.F. van Heijst en prof.dr.ir. A. Hirschberg Copromotor: dr.ir. R.R. Trieling Part of this research has been supported by the European project VortexCell2050 within the Sixth Framework, under contract number AST4-CT-2005- 012139. Contents Contents vii 1 Introduction 1 2 Theoretical considerations 7 2.1 Oscillating object versus oscillating flow . . . . . . . . . . . 7 2.2 Linearised thin airfoil theory . . . . . . . . . . . . . . . . . 8 2.3 Effect of finite airfoil thickness . . . . . . . . . . . . . . . . 17 2.4 Apparent mass . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Wall interference effects . . . . . . . . . . . . . . . . . . . . 22 2.6 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . 23 2.6.1 Discrete vortex method . . . . . . . . . . . . . . . . 23 2.6.2 Solutions of Euler equations . . . . . . . . . . . . . . 25 2.6.3 Navier–Stokes solutions . . . . . . . . . . . . . . . . 28 3 Experimental method 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Experimental method . . . . . . . . . . . . . . . . . . . . . 35 3.3 Acoustics without main flow . . . . . . . . . . . . . . . . . . 39 3.3.1 Infinite duct . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Acoustical validation setup . . . . . . . . . . . . . . 40 3.3.3 Finite duct . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.4 Test section with wing installed . . . . . . . . . . . . 45 3.3.5 Test section in wind tunnel without wing . . . . . . 47 3.3.6 Test section in wind tunnel with wing installed . . . 49 3.3.7 Determination of the transversal velocity . . . . . . 50 3.4 Numerical method for flow field . . . . . . . . . . . . . . . . 51 3.5 Measurements on a NACA0018 airfoil . . . . . . . . . . . . 52 vii 3.5.1 Steady flow . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Unsteady flow. . . . . . . . . . . . . . . . . . . . . . 53 3.5.3 Estimation of plunging velocity . . . . . . . . . . . . 55 3.5.4 Relation to plunging motion . . . . . . . . . . . . . . 56 3.5.5 Dependency of ∆C on excitation amplitude . . . . 57 pu 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Numerical simulation of flow without forcing 61 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Numerical method based on Euler equations . . . . . . . . . 63 4.3 Numerical method based on Navier–Stokes . . . . . . . . . 68 4.4 Experimental facility . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5.1 NACA0018 . . . . . . . . . . . . . . . . . . . . . . . 72 4.5.2 NACA0018 with cavity . . . . . . . . . . . . . . . . 77 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Flow visualisation and three-dimensional flow effects 87 5.1 Water channel setup . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Cavity modes . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Three-dimensional flow effects . . . . . . . . . . . . . . . . . 93 5.3.1 Two closed end plates . . . . . . . . . . . . . . . . . 93 5.3.2 One end plate removed . . . . . . . . . . . . . . . . 95 5.3.3 External forcing . . . . . . . . . . . . . . . . . . . . 97 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Airfoils with cavities and applied forcing 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Numerical results of Navier–Stokes method . . . . . . . . . 103 6.2.1 Clean airfoil . . . . . . . . . . . . . . . . . . . . . . . 104 6.2.2 Airfoil with cavity A . . . . . . . . . . . . . . . . . . 107 6.2.3 Airfoil with cavity B . . . . . . . . . . . . . . . . . . 107 6.3 Wind tunnel experiments . . . . . . . . . . . . . . . . . . . 109 6.3.1 Steady flow . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.2 Hot-wire anemometry . . . . . . . . . . . . . . . . . 112 6.3.3 Unsteady flow. . . . . . . . . . . . . . . . . . . . . . 122 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Conclusions 127 viii A Geometry of NACA0018 airfoils 131 B Added mass of a flat plate 134 C K´arm´an–Trefftz airfoil 138 C.1 Quasi-steady solution . . . . . . . . . . . . . . . . . . . . . 139 C.2 Added mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 D Pressure difference without Kutta condition 141 E Lock-in method 143 F Hot-wire measurements for cavity B 145 Bibliography 153 Summary 159 Samenvatting 161 Dankwoord 163 Curriculum Vitae 165 ix

Description:
The pressure transducers mounted in the side and top walls are indicated with M1 to M5. The flow through the test section is from left to right. such that it spans the entire test section from top to bottom, closing tightly at the ends. The vertical positioning of the airfoil provides practical adv
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.