influence of a cavity on the dynamical behaviour of an airfoil Copyright ' 2010 W.F.J. Olsman Cover design by W.F.J. Olsman Printed by Universiteitsdrukkerij TU Eindhoven, Eindhoven, The Netherlands A catalogue record is available from the Eindhoven University of Technology Library Olsman, W.F.J. Influence of a cavity on the dynamical behaviour of an airfoil / by Willem FrederikJurri¨enOlsman.–Eindhoven:TechnischeUniversiteitEindhoven, 2010. – Proefschrift. ISBN: 978-90-386-2230-9 NUR: 968 Trefwoorden:caviteit/trappedvortex/dynamischgedragvleugel/vleugel Subject headings: cavity / trapped vortex / dynamical behaviour wing / wing influence of a cavity on the dynamical behaviour of an airfoil PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op dinsdag 25 mei 2010 om 16.00 uur door Willem Frederik Jurri¨en Olsman geboren te Hilversum Dit proefschrift is goedgekeurd door de promotoren: prof.dr.ir. G.J.F. van Heijst en prof.dr.ir. A. Hirschberg Copromotor: dr.ir. R.R. Trieling Part of this research has been supported by the European project VortexCell2050 within the Sixth Framework, under contract number AST4-CT-2005- 012139. Contents Contents vii 1 Introduction 1 2 Theoretical considerations 7 2.1 Oscillating object versus oscillating flow . . . . . . . . . . . 7 2.2 Linearised thin airfoil theory . . . . . . . . . . . . . . . . . 8 2.3 Effect of finite airfoil thickness . . . . . . . . . . . . . . . . 17 2.4 Apparent mass . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 Wall interference effects . . . . . . . . . . . . . . . . . . . . 22 2.6 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . 23 2.6.1 Discrete vortex method . . . . . . . . . . . . . . . . 23 2.6.2 Solutions of Euler equations . . . . . . . . . . . . . . 25 2.6.3 Navier–Stokes solutions . . . . . . . . . . . . . . . . 28 3 Experimental method 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Experimental method . . . . . . . . . . . . . . . . . . . . . 35 3.3 Acoustics without main flow . . . . . . . . . . . . . . . . . . 39 3.3.1 Infinite duct . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 Acoustical validation setup . . . . . . . . . . . . . . 40 3.3.3 Finite duct . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.4 Test section with wing installed . . . . . . . . . . . . 45 3.3.5 Test section in wind tunnel without wing . . . . . . 47 3.3.6 Test section in wind tunnel with wing installed . . . 49 3.3.7 Determination of the transversal velocity . . . . . . 50 3.4 Numerical method for flow field . . . . . . . . . . . . . . . . 51 3.5 Measurements on a NACA0018 airfoil . . . . . . . . . . . . 52 vii 3.5.1 Steady flow . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Unsteady flow. . . . . . . . . . . . . . . . . . . . . . 53 3.5.3 Estimation of plunging velocity . . . . . . . . . . . . 55 3.5.4 Relation to plunging motion . . . . . . . . . . . . . . 56 3.5.5 Dependency of ∆C on excitation amplitude . . . . 57 pu 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Numerical simulation of flow without forcing 61 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Numerical method based on Euler equations . . . . . . . . . 63 4.3 Numerical method based on Navier–Stokes . . . . . . . . . 68 4.4 Experimental facility . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.5.1 NACA0018 . . . . . . . . . . . . . . . . . . . . . . . 72 4.5.2 NACA0018 with cavity . . . . . . . . . . . . . . . . 77 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5 Flow visualisation and three-dimensional flow effects 87 5.1 Water channel setup . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Cavity modes . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Three-dimensional flow effects . . . . . . . . . . . . . . . . . 93 5.3.1 Two closed end plates . . . . . . . . . . . . . . . . . 93 5.3.2 One end plate removed . . . . . . . . . . . . . . . . 95 5.3.3 External forcing . . . . . . . . . . . . . . . . . . . . 97 5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Airfoils with cavities and applied forcing 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 Numerical results of Navier–Stokes method . . . . . . . . . 103 6.2.1 Clean airfoil . . . . . . . . . . . . . . . . . . . . . . . 104 6.2.2 Airfoil with cavity A . . . . . . . . . . . . . . . . . . 107 6.2.3 Airfoil with cavity B . . . . . . . . . . . . . . . . . . 107 6.3 Wind tunnel experiments . . . . . . . . . . . . . . . . . . . 109 6.3.1 Steady flow . . . . . . . . . . . . . . . . . . . . . . . 109 6.3.2 Hot-wire anemometry . . . . . . . . . . . . . . . . . 112 6.3.3 Unsteady flow. . . . . . . . . . . . . . . . . . . . . . 122 6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7 Conclusions 127 viii A Geometry of NACA0018 airfoils 131 B Added mass of a flat plate 134 C K´arm´an–Trefftz airfoil 138 C.1 Quasi-steady solution . . . . . . . . . . . . . . . . . . . . . 139 C.2 Added mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 D Pressure difference without Kutta condition 141 E Lock-in method 143 F Hot-wire measurements for cavity B 145 Bibliography 153 Summary 159 Samenvatting 161 Dankwoord 163 Curriculum Vitae 165 ix
Description: