ebook img

Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging PDF

305 Pages·2017·26.03 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging

Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging Pamela Beatriz Guevara Alvez To cite this version: Pamela Beatriz Guevara Alvez. Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging. Other [cond-mat.other]. Université Paris Sud - Paris XI, 2011. English. ￿NNT: 2011PA112123￿. ￿tel-00638766￿ HAL Id: tel-00638766 https://theses.hal.science/tel-00638766 Submitted on 7 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PhD THESIS prepared at LNAO, Neurospin, CEA and presented at the University of Paris-Sud 11 Graduate School of Sciences and Information Technologies, Telecommunications and Systems A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF SCIENCE Specialized in Physics Inference of a human brain fiber bundle atlas from high angular resolution diffusion imaging Pamela Beatriz GUEVARA ALVEZ Reviewers Dr. Nicholas Ayache INRIA Sophia Antipolis, France Dr. Christian Barillot IRISA, CNRS/INRIA, France Examiners Pr. Jacques Bittoun Universit´e Paris Sud 11, France Pr. Marco Catani King’s College London, United Kingdom Pr. Dominique Hasboun UPMC/ CHU Piti´e-Salpˆetri`ere, France Dr. Cyril Poupon LRMN, NeuroSpin, CEA, France Adviser Dr. Jean-Fran¸cois Mangin LNAO, NeuroSpin, CEA, France ´ UNIVERSITE PARIS-SUD 11 - UFR Sciences E´cole Doctorale STITS (Sciences et Technologies de l’Information des T´el´ecommunications et des Syst`emes) ` THESE pour obtenir le titre de DOCTEUR EN SCIENCES de l’UNIVERSITE´ Paris-Sud 11 Discipline: Physique pr´esent´ee et soutenue par Pamela Beatriz GUEVARA ALVEZ Inf´erence d’un mod`ele des faisceaux de fibre du cerveau humain `a partir de l’imagerie de diffusion `a haute r´esolution angulaire Th`ese dirig´ee par Jean-Fran¸cois MANGIN Date pr´evue de soutenance: 5 octobre 2011 Composition du jury: Rapporteurs Dr. Nicholas Ayache INRIA Sophia Antipolis, France Dr. Christian Barillot IRISA, CNRS/INRIA, France Examinateurs Pr. Jacques Bittoun Universit´e Paris Sud 11, France Pr. Marco Catani King’s College London, Royaume-Uni Pr. Dominique Hasboun UPMC / Piti´e-Salpˆetri`ere, France Dr. Cyril Poupon LRMN, NeuroSpin, CEA, France Directeur de th`ese Dr. Jean-Fran¸cois Mangin LNAO, NeuroSpin, CEA, France Contents Contents iv List of Figures viii List of Tables ix List of Symbols xi Abstract xv R´esum´e xvii I Introduction 1 1 Introduction 3 II Background 9 2 Nervous Tissue and Human Brain White Matter 11 2.1 Human Brain General Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 The Nervous Tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 White Matter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Association Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Commissural Pathways . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.3 Projection Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Principles of Diffusion MRI 29 3.1 From the diffusion phenomenon to diffusion MRI . . . . . . . . . . . . . . . 30 3.1.1 Diffusion Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 i 3.1.2 Basics on Magnetic Resonance Imaging . . . . . . . . . . . . . . . . 32 3.1.3 Diffusion-weigthed MR. . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.4 EPI sequence and correction of geometric distortions . . . . . . . . . 38 3.2 Diffusion MRI models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Diffusion Tensor Model (DTI) . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 High Angular Resolution Diffusion Imaging (HARDI) . . . . . . . . 49 3.3 MR Diffusion Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 Streamline Deterministic Tractography. . . . . . . . . . . . . . . . . 60 3.3.2 Streamline Probabilistic Tractography . . . . . . . . . . . . . . . . . 64 3.3.3 Other Tractography Algorithms . . . . . . . . . . . . . . . . . . . . . 66 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4 White Matter Clustering 71 4.1 Cross-subject registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1.1 Normalization to Talairach space . . . . . . . . . . . . . . . . . . . . 74 4.1.2 Non-linear registration methods . . . . . . . . . . . . . . . . . . . . . 76 4.2 White Matter segmentation of DW images . . . . . . . . . . . . . . . . . . . 77 4.3 ROI-based WM fiber tract segmentation . . . . . . . . . . . . . . . . . . . . 77 4.4 White Matter fiber clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.4.2 Fiber similarity measures . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.3 Fiber clustering methods . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Quantitative DW measures across bundles . . . . . . . . . . . . . . . . . . . 105 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 III Methods 113 5 Intra-subject fiber clustering 115 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.1.1 Previous works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.1.2 Main output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.1.3 Tractography dataset size . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.4 Hierarchical fiber clustering overview . . . . . . . . . . . . . . . . . . 120 5.2 Robust intra-subject fiber clustering . . . . . . . . . . . . . . . . . . . . . . 122 5.2.1 Step 1: Hierarchical decomposition . . . . . . . . . . . . . . . . . . . 122 5.2.2 Step 2: Length-based segmentation . . . . . . . . . . . . . . . . . . . 122 5.2.3 Step 3: Voxel-based clustering . . . . . . . . . . . . . . . . . . . . . 123 5.2.4 Step 4: Extremity-based clustering . . . . . . . . . . . . . . . . . . . 130 5.2.5 Step 5: Fascicle merge . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.3 Method validation and parameters tuning . . . . . . . . . . . . . . . . . . . 135 5.3.1 Whole method evaluation using simulated datasets . . . . . . . . . . 136 ii 5.3.2 Cost of scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3.3 Clustering parameters setting . . . . . . . . . . . . . . . . . . . . . . 143 5.4 Intra-subject fiber clustering results . . . . . . . . . . . . . . . . . . . . . . 144 5.4.1 A T1-based tractography propagation mask . . . . . . . . . . . . . . 144 5.4.2 Adult HARDI datasets . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.4.3 Child DTI datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.1 Physical phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.2 Top-down decomposition of large known WM tracts . . . . . . . . . 156 5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6 Inter-subject clustering: Inference of a multi-subject bundle atlas 161 6.1 Two-level fiber clustering stractegy . . . . . . . . . . . . . . . . . . . . . . . 163 6.1.1 First level: intra-subject clustering . . . . . . . . . . . . . . . . . . . 164 6.1.2 Second level: inter-subject clustering . . . . . . . . . . . . . . . . . . 165 6.2 Inter-subject clustering validation . . . . . . . . . . . . . . . . . . . . . . . . 169 6.3 An example of application for the analysis of U-fibers . . . . . . . . . . . . 173 6.4 HARDI multi-subject atlas of DWM known bundles . . . . . . . . . . . . . 174 6.5 HARDI multi-subject atlas of SWM short association bundles . . . . . . . . 178 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 IV Application 185 7 Automatic segmentation of massive tractography datasets 187 7.1 Automatic segmentation of massive tractography datasets . . . . . . . . . . 189 7.2 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.2.1 Results for the segmentation of deep white matter bundles . . . . . 191 7.2.2 Results for the segmentation of short association bundles of SWM . 195 7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 V Conclusion 201 8 Conclusion 203 VI Appendix 209 A White Matter atlases 211 B Publications of the Author Arising from this Work 219 iii Bibliography 223 iv List of Figures 2.1 Central nervous system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Coronal slices of an human brain . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Human brain lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Schematic representation of the major cellular elements of neural tissue . . 18 2.5 White matter axons main structure . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Anatomic relationships of several WM fiber tracts. . . . . . . . . . . . . . . 22 2.7 Main known white matter fiber tracts. . . . . . . . . . . . . . . . . . . . . . 23 2.8 Main areas involved in language. . . . . . . . . . . . . . . . . . . . . . . . . 24 2.9 Internal face of the right hemisphere. . . . . . . . . . . . . . . . . . . . . . . 25 2.10 Dissection showing the course of the cerebrospinal fibers. . . . . . . . . . . . 26 2.11 Thalamic radiations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1 Brownian motion simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Illustration of MRI pulse sequences . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Illustration of spin dephasing in spin echo sequence . . . . . . . . . . . . . . 35 3.4 Pulse Gradient Spin Echo sequence experiment . . . . . . . . . . . . . . . . 36 3.5 Effect of diffusion-encoding axis direction . . . . . . . . . . . . . . . . . . . 39 3.6 Example of a field map image. . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.7 Anisotropy and two-compartments model . . . . . . . . . . . . . . . . . . . 41 3.8 Diffusion Tensor and anitropic diffusion . . . . . . . . . . . . . . . . . . . . 44 3.9 Mean diffusivity and Fractional anisotropy examples . . . . . . . . . . . . . 45 3.10 Example of FA as a measure of WM integrity . . . . . . . . . . . . . . . . . 46 3.11 Examples of prolate and oblate DT ellipsoids. . . . . . . . . . . . . . . . . . 47 3.12 Colour encoded fiber orientation maps . . . . . . . . . . . . . . . . . . . . . 48 3.13 Partial volume effect for two fiber populations . . . . . . . . . . . . . . . . . 49 3.14 Major diffusion MRI acquisition and reconstruction methods . . . . . . . . 50 3.15 Illustration of fODFs and dODFs for several simple WM configurations . . 52 3.16 DSI reconstruction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.17 Qball reconstruction scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.18 Examples of spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . 55 3.19 QBI: dODFs for the analytical and numerical solutions . . . . . . . . . . . . 56 3.20 Spherical deconvolution illustration . . . . . . . . . . . . . . . . . . . . . . . 57 v

Description:
6 Inter-subject clustering: Inference of a multi-subject bundle atlas. 161. 6.1 Two-level fiber clustering 2.8 Main areas involved in language. ODF. Orientation Distribution Function. PAS. Persistent Angular Structure. PC PDF. Probability Density Function. PGSE. Pulsed Gradient Spin Echo. PNS.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.