ebook img

Inelastic spatial stability of circular wide flange steel arches PDF

109 Pages·2017·56.97 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inelastic spatial stability of circular wide flange steel arches

Inelastic spatial stability of circular wide flange steel arches Citation for published version (APA): La Poutre, D. (2005). Inelastic spatial stability of circular wide flange steel arches. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Built Environment]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR585818 DOI: 10.6100/IR585818 Document status and date: Published: 01/01/2005 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 30. Jan. 2023 Inelastic spatial stability of circular wide flange steel arches Inelastic spatial stability of circular wide flange steel arches Dagowin Ia Poutre Inelastic spatial stability of circular wide flange steel arches PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. R.A. van Santen, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 27 januari 2005 om 16.00 uur CIP-DATA Dagowin Ia Poutre Inelastic spatial stability of circular wide flange steel arches ISBN 90-9018930-0 Subject headings: steel structures-stability I experimental research I structural mechanics I finite element analysis door Trefwoorden: staalconstructies -stabiliteit I experimenteel onderzoek I boogconstructies I constructief ontwerpen I eindige elementen analyse NUR: 955 Dagowin Bernolf Ia Poutre Publisher: D.B. Ia Poutre (contact [email protected]) Illustration on the cover: overhead wire support of Brenner Railway, Austria. geboren te Rotterdam Cover design by K. Widmann © 2005 Dagowin Ia Poutre All rights reserved. No part of this material protected by this copyrights notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system, without written permission of the author Dit proefschrift is goedgekeurd door de promotoren: Samenstelling promotiecommissie: Rector Magnificus voorzitter prof.ir. H.H. Snijder Prof.ir. H.H. Snijder Technische Universiteit Eindhoven en Prof. Dipl.-lng. Dr.techn. R. Greiner Technische UniversiUit Graz prof.Dr.Dipl.-lng. R. Greiner Dr.ir. J.C.D. Hoenderkamp Technische Universiteit Eindhoven Copromotor: Dr.ir. M.C.M. Bakker Technische Universiteit Eindhoven dr.ir. J.C.D. Hoenderkamp Prof.ir. F.S.K. Bijlaard Technische Universiteit Delft Prof.dr.ir. J.G.M. Kerstens Technische Universiteit Eindhoven Prof.dr.ir. J. Blaauwendraad Technische Universiteit Delft Prof.dr. R. Maquoi Universite de Liege Acknowledgements Table of contents First of all, I would like to express my gratitude to Prof. Bert Snijder and Dr. Summary .......................................................................................... v Hans Hoenderkamp for initiating this project and guiding it to successful Samenvatting ..................................................................................v i completion. Their advice during the research and comments on the thesis were Kurzfassung ..................................................................................... vii Glossary of terms ............................................................................. ix invaluable. Secondly, I wish to acknowledge the guidance and the valuable Notations ......................................................................................... x contributions made by Prof. Richard Greiner at the TU Graz in Austria. Abbreviations .................................................................................. xi Furthermore, I would like to thank Dr. Monique Bakker and Prof. Frans Bijlaard (TU Delft) for their contributions to the completion of the thesis. Thanks are due to the Department of Structural Design of the Technische INTRODUCTION .............................................................. 1 Universiteit Eindhoven for the extensive facilities offered to carry out the 1.1 Arches .................................................................. 1 research. Experiments formed a large part of this work and it goes without 1 .1. 1 Classification of arches ................................................. 2 saying that I could not have completed them without the help of the laboratory 1.1.2 Bridges ......................................................................... 5 staff. In particular, the efforts of Thea van de Loo, Martien Ceelen and Eric Wijen 1.1.3 Buildings and other structures ........................................ 9 are greatly appreciated. I also would like to thank the student assistants Eelco 1 .2 Stability .............................................................. 12 Aartsma and Jaap Boon for carrying out the tensile tests and residual stress 1.2.1 Phenomena ................................................................ 12 measurements respectively. 1.2.2 Analyses ..................................................................... 14 Furthermore, I would like to thank all colleagues of the Department of 1.2.3 Design process ........................................................... 14 Structural Design for the pleasant working atmosphere during the past five 1 .3 Problem statement and objective ........................ 1 6 years. In particular, I would like to thank the research assistants Guillermo 1 .4 Research Approach ............................................ 1 6 Gonzalez, Steffen Zimmermann and Bright Ng'andu with whom I shared an office. Our discussions both on and off the topic were helpful and motivating, 1 .5 Outline of thesis .................................................. 1 7 but most often simply hilarious. I would not forget to thank my partner Karin Widmann for her endurance and support during this project, and for making 2 LITERATURE REVIEW ....................................................... 19 sure that the thesis looked pretty. Finally, I owe a debt of gratitude to many 2.1 Analytical eigenvalue for curved beams .............. 21 people, much too numerous to mention, who have contributed in one way or 2.2 Experimental work ............................................... 22 another. 2.2.1 Glossary of experiments .............................................. 23 Dagowin Ia Poutre 2.2.2 Dimensions of arches and cross sections ..................... 26 2.2.3 Boundary conditions ................................................... 27 Eindhoven, November 2004 2.2.4 Loading ...................................................................... 28 2.2.5 Materials and arch production .................................... 30 2.3 Nonlinear Finite element analyses ....................... 31 2.3.1 Curved beams ............................................................ 31 2.3.2 Arches ........................................................................ 33 STABILITY OF STEEL ARCHES CONTENTS iii 3 EXPERIMENTS ............................................................... 35 4 EFFECTS OF BENDING PROCESS ..................................... 99 3.1 Motivation and objectives .................................. 35 4.1 The bending process ........................................... 99 3.2 Test program ...................................................... 36 4.2 Tensile testing ................................................... 102 3.2.1 Selection of cross section ............................................ 36 4.2.1 Straight members ...................................................... 102 3.2.2 Selection of arches ..................................................... 39 4.2.2 Curved ribs ............................................................... 1 04 3.3 Model tests ........................................................ 41 4.3 Residual stresses ............................................... 106 3.3.1 Production of model sections ...................................... 41 4.3.1 Theoretical analysis ................................................... 1 07 3.3.2 Geometric similarity analysis ....................................... 43 4.3.2 Measuring residual stresses ....................................... 1 08 3.4 Design of test setup ............................................ 45 4.3.3 Discussion of residual stress ....................................... 110 4.4 Cross sectional measurements ........................... 111 3.4.1 Analysis of load case .................................................. 45 3.4.2 Testrig ........................................................................ 47 4.4.1 Dimensions and tolerances ....................................... 112 3.4.3 Load introduction ........................................................ 49 4.4.2 Shape deviations ...................................................... 115 3.4.4 Supports ...................................................................... 53 4.4.3 Section properties ..................................................... 117 3.4.5 Actuator guidance system ........................................... 55 3.4.6 Tilting load .................................................................. 57 5 FINITE ELEMENT ANALYSES ............................................ 121 3.4. 7 Axle for measuring arch radius .................................... 58 3.5 Imperfections and permanent deformations ........ 59 5.1 Modeling the cross section ................................ 1 21 3.5.1 Aligning the test setup ................................................. 59 5.1.1 Approach ................................................................. 1 22 3.5.2 Assembling the arch .................................................... 60 5.1 .2 Analytical section properties ..................................... 122 3.5.3 Influence of imperfections ........................................... 61 5.1 .3 Selection of element type ......................................... 1 24 3.5.4 Imperfections of the arch-rib ....................................... 62 5.1.4 Determining elastic FE-section properties .................. 1 25 3.5.5 Permanent deformations after testing .......................... 67 5.1.5 Results and discussion of modeling cross sections ..... 126 3.5.6 Categories of imperfections and permanent deformations .. 6 7 5.1.6 Final FE-model of cross section .................................. 127 5.1. 7 Plastic FE section properties ...................................... 130 3.6 Testing procedures and measurements ............... 70 5.2 Modeling the arch ............................................ 130 3.6.1 Testing procedures ...................................................... 70 3.6.2 Data acquisition .......................................................... 72 5.2.1 Arch-rib and imperfections ........................................ 130 3.6.3 Controlling the actuator .............................................. 73 5.2.2 Supports ................................................................... 131 3.6.4 Measuring frame ......................................................... 74 5.2.3 Load introduction ..................................................... 132 3.6.5 Correcting nonlinear effects ........................................ 75 5.3 Material modeling and residual stress ................ 133 3.6.6 Rigid body displacement of test setup ......................... 76 5.3.1 Material law .............................................................. 133 3.6.7 Lateral stiffness hinge-block ........................................ 78 5.3.2 Strain rate ................................................................. 1 34 3.6.8 Load ........................................................................... 80 5.3.3 Residual and assembly stress .................................... 135 3.6.9 Strain .......................................................................... 80 5.4 Analyses ........................................................... 13 7 3.6.10 Monitoring the hydrostatic bearing .............................. 82 5.4.1 Calibration ............................................................... 13 7 3. 7 Experimental results ............................................ 8 7 5.4.2 Results ...................................................................... 141 3. 7.1 Load-deformation graphs ............................................ 8 7 3.7.2 Ultimate loads ............................................................. 94 3.7.3 Stiffness ....................................................................... 96 3.8 Discussion of results ............................................ 97 iv STABILITY OF STEEL ARCHES Summary 6 DISCUSSION ON DESIGN METHOD ................................. 143 This thesis is on the inelastic out-of-plane stability of circular steel arches 6.1 Design method applied to arches tested ............ 143 loaded in bending and compression. Currently, for such structures, no design 6.1.1 Eigenvalue analysis ................................................... 144 equations are available in literature and in building standards. The objectives of 6.1.2 Plastic analysis .......................................................... 145 this research are to obtain experimental load-deformation relations, and to cali 6.1.3 Non-dimensional slenderness .................................... 147 brate a finite element model with the experimental data. The calibrated model is 6.1.4 Stability versus plastic strength .................................. 149 needed to be able to perform a parameter study to derive design equations. 6.2 Numerical Reduction factors for arches .............. 149 The experiments were performed on arches with wide flange ribs that were 6.3 Towards buckling curves for arches .................... 152 loaded by a single point load at the crown. A series of 15 tests was performed in which the developed length of the arches was kept constant, but the sub tended angle was varied between 90° and 180°. Of these tests, 12 were on full 7 CONCLUSIONS AND RECOMMENDATIONS ..................... 155 scale HEA 10 0-ribs and three on model arches with HEB 600 ribs. In the ex 7.1 Conclusions ...................................................... 1 55 periments, special attention was paid to the boundary conditions: at the crown, 7.2 Recommendations ............................................ 158 the load was introduced at the centroid of the arch-rib without giving any tor sional support. This was accomplished with a spherical hydrostatic bearing. REFERENCES ..................................................................... 161 The supports were so designed that they acted as hinges in-plane while they provided fixity out-of-plane. As the arch deformed out-of-plane, the load tilted but remained directed at the center of the chord between the supports. APPENDIX A ...................................................................... 167 A finite element model was developed in a commercially available finite ele A. 1 Design calculations hydrostatic bearing ............ 16 7 ment program to simulate the experiments. The cross section was composed of A.2 Imperfections .................................................... 1 70 several shell-elements. Along the developed length, many elements were used. A.3 Imperfections and permanent deformations ....... 1 72 Beam-elements were included to model the influence of the fillets on the tor A.3.1 Lateral imperfections and deformations .................... 1 72 sional stiffness. The measured cross sectional dimensions of the specimens in A.3.2 Radial imperfections and deformations ..................... 1 7 4 addition to their lateral and radial imperfections were used in the finite element A.3.3 Twist imperfections and deformations ........................ 1 76 model. The actual material relation after bending, which varied over the cross section, was determined experimentally and modeled in the material law. The initial stress conditions, governed by residual stresses and assembly stresses, APPENDIX 8 ...................................................................... 1 79 were determined experimentally and modeled as well. 8.1 Material law ...................................................... 1 79 The finite element model including all the above described features showed 8.2 Dimensions ........................................................ 183 moderate to very good agreement with the experiments. The underestimation in 8.3 Results of FEA .................................................... 184 ultimate load was within 8.3% and the overestimation within 6.1 %. The load deformation curves of the experiments and simulations display good agreement. With the calibrated FE-madel, the method of designing an arch with the CURRICULUM VITAE ........................................................... 1 89 Overall Method of Eurocode 3, which is intended for use on structures under general loading, was explored. It was found that the buckling curves, available for columns and beams, are not applicable to the arches under investigation in this thesis, and new buckling curves should be derived. vi STABILI1Y OF STEEL ARCHES SUMMARY vii Samenvatting Method) van Eurocode 3, die bedoeld is voor constructies onder willekeurige belastingen. Hieruit bleek dat de huidige knikkrommen voor kolommen en bal ken niet toepasbaar zijn voor de bogen onderzocht in dit proefschrift en dat Dit proefschrift behandelt de plastische ruimtelijke stabiliteit van cirkelvormige nieuwe knikkrommen afgeleid zouden moeten worden. stalen bogen belast op buiging en normaalkracht. Voor dit type constructies zijn op het moment geen toetsingsregels beschikbaar, noch in de literatuur, noch in Kurzfassung norm- en regelgeving. De doelstellingen van dit onderzoek zijn het bepalen van experimentele last-vervormingsdiagrammen en het kalibreren van een eindig elementenmodel met deze gegevens. Het gekalibreerde model is nodig om een parameterstudie uit te voeren waaruit een toetsingsregel voor boogconstructies Die vorliegende Arbeit befasst sich mit der Stabilitiit senkrecht zur Tragwerks kan worden afgeleid. ebene, von Kreisbogen die auf Biegedruck beansprucht werden. Zur Bemessung De experimenten zijn uitgevoerd op bogen met H-profiel als doorsnede die solcher Tragwerke liegen momentan weder in der Literatur noch in den entspre werden belast door een puntlast aan de top van de boog. In totaal zijn chenden Normenwerken Bemessungsgleichungen vor. Die Zielsetzung dieser 15 proeven uitgevoerd waarbij de ontwikkelde lengte van de boog constant werd Arbeit ist zweigeteilt. So sollen in Experimenten Last-Verformungsbeziehungen gehouden, maar de ingesloten hoek tussen goo en 180° werd gevarieerd. Twaalf ermittelt und mit Hilfe der daraus erhaltenen lnformationen ein Finite Elemente proeven werden gedaan op ware grootte en met een doorsnede HEA 100 en drie Modell kalibriert werden. Das kalibrierte Modell wird benotigt, um Bogentrag op schaal met een doorsnede HEB 600. Veel aandacht is besteed aan het ant werke hinsichtlich ihres Stabilitatsverhaltens bemessen zu konnen. werp van de randvoorwaarden: de belasting werd aangebracht aan de top van Die experimentellen Untersuchungen wurden an Breitflansch - Bogentragern de boog in het zwaartepunt van de doorsnede zonder dat enige torsiesteun werd durchgefOhrt. In einer Serie von 15 Versuchen wurden diese an ihrem Scheitel verleend. Dit werd mogelijk gemaakt door de toepassing van een hydrostatisch durch eine nichtrichtungstreue Einzellast belastet. Hierbei wurde die abgewickel bolscharnier. De opleggingen zijn zo ontworpen dat ze in het vlak van de boog te Lange der Bogentrager konstant gehalten, der Kreisausschnittswinkel jedoch als scharnieren werken maar uit het vlak als inklemmingen. Bij het vervormen uit zwischen goo und 180° variiert. Zwolf der Versuche wurden an HEA 100- het vlak van de boog veranderde de puntlast van richting met als richtpunt het Tragern im OriginalmaBstab und drei an skalierten HEB 600 Modellbogen midden van de koorde tussen de opleggingen. durchgefOhrt. Besonderes Augenmerk wurde auf die Randbedingungen gelegt: In een commercieel beschikbaar computerprogramma is een eindig elemen die auBere Last wurde so aufgebracht, dass einerseits die Wirkungslinie der tenmodel ontwikkeld ten behoeve van het simuleren van de experimenten. In de einwirkenden Kraft und die Schwerelinie des Bogentragers zusammenfielen und doorsnede en omtrek zijn schaalelementen gebruikt. Balkelementen zijn aan het andererseits keine Torsionsbehinderung auftreten konnte, was durch die Ver model toegevoegd om de invloed van de afrondingstralen op de torsiestijfheid te wendung eines hydrostatischen Lagers am Lastangriffspunkt vermieden wurde. modelleren. De werkelijke zijdelingse en radiale imperfecties en de afmetingen Die Widerlager waren so entworfen, dass der Trager in der Ebene gelenkig und van de doorsnede, zoals die gemeten zijn in de proefopstelling, zijn gemodel aus der Ebene heraus eingespannt war. Sobald der Bogentrager aus der Trag leerd. Het werkelijke materiaalgedrag is bepaald met trekproeven en bleek te werksebene ausknickt, kippt die einwirkende Last derart, dass sie nach wie vor varieren over de doorsnede wat gemodelleerd is in de constitutieve relatie. De auf den Mittelpunkt des zwischen den Widerlagern angeordneten Untergurts initiele spanningstoestand, bestaand uit rest- en montagespanningen, is experi zeigt. menteel bepaald en gemodelleerd. Um die durchgefOhrten Versuche simulieren zu konnen, wurde in einem Het eindige elementenmodel met bovengenoemde eigenschappen gaf goede kommerziell verfugbaren Finite Elemente Programm ein Modell entwickelt. Der tot zeer goede resultaten in vergelijking met de experimenten. De gesimuleerde Tragerquerschnitt setzte sich aus einer Anzahl von Schalenelementen zusam bezwijkbelastingen onderschatte de experimentele bezwijkbelastingen met men. Entlang der Tragerachse wurde eine groBe Anzahl von Elementen einge maximaal 8.3% en overschatte deze met maximaal 6.1 %. Aile experimentele en setzt. Die Auswirkungen der Profilausrundungen auf die Torsionssteifigkeit wur gesimuleerde last-vervormingsdiagrammen vertoonden een goede gelijkenis. den durch Balkenelemente berucksichtigt. Die seitlichen und radialen lmperfek Met het gekalibreerde eindige elementenmodel is onderzocht hoe een boog tionen und die Querschnittsabmessungen wurden den tatsachlichen Gegeben ontworpen zou kunnen worden met behulp van de Algemene Methode (Overall heiten entsprechend modelliert. Nach dem Biegevorgang wurden die Werkstoff- Glossary of terms Viii STABILITY OF STEEL ARCHES beziehungen experimentell ermittelt und im Stoffgesetz beri.icksichtigt. Glei Arch - plane structure curved in elevation and supported chermaBen wurden die Spannungsanfangsbedingungen, die im Einzelnen durch such that no spreading occurs Eigenspannungen und ungewollte Vorspannung aufgrund von Montagetoleran Abutment - support at the extreme end of an arch-rib zen hervorgerufen werden, im Modell beri.icksichtigt. Curved beam - structure curved in elevation and supported such that Das Finite Elemente Modell, das aile oben angefi.ihrten Merkmale enthalt, spreading can occur. zeigte durchwegs gute bis sehr gute Obereinstimmung mit den Experimenten. Cross section - section perpendicular to the longitudinal axis of a Die Simulationen i.iber- beziehungsweise unterschatzten die tatsachliche Trag beam or the tangential axis of an arch-rib last maximal urn 6,1% beziehungsweise 8,3%. Aile simulierten Last Direct stress - stress normal to the plane of the cross section Verformungskurven stimmten in ihrer Gestalt mit den experimentellen i.iberein. FE-model - model based on finite element method Das kalibrierte Finite Elemente Modell wurde eingesetzt, urn zu untersuchen, FE-program - computer program based on finite element method ob die in Eurocode 3 fi.ir allgemein beanspruchte Konstruktion vorgeschlagene Freestanding arch - arch supported only at its ends Bemessungsmethode moglicherweise auf Bogentragwerke i.ibertragbar ist. Da Gravity load - also conservative load, load that remains vertical in bei wurde festgestellt, dass die vorhandenen Knicklinien auf die in dieser Arbeit direction untersuchten Bogentragwerke nicht angewendet werden konnen und neue Mixed torsion -a combination of Saint Venant torsion and warping Knicklinien entwickelt werden mi.issen. restraint torsion Model - scale model of prototype Point load -also concentrated load, load acting at one point Prototype - full-scale structure Rib - curved structural element that constitutes the arch Section -shape of the cross section i.e. structural shape, such as !-section or wide flange beam Support -location where one or more degree(s) of freedom is/are restrained Tied arch -also bow string arch, the horizontal reaction forces at the abutments are transmitted to each other by means of a connecting element (e.g. bridge deck) Tilting load - also non-conservative load, load with a fixed orienta tion which can change in direction Wide flange beam - section with the shape of an I with wide flanges

Description:
Subject headings: steel structures- stability I experimental research I structural mechanics I . 2.2.2 Dimensions of arches and cross sections . Prototype. Rib. Section. Support. Tied arch. Tilting load. Wide flange beam lateral torsional buckling vides a large open space unobstructed by columns.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.