ebook img

Industrial Applications of Poly(lactic acid) PDF

233 Pages·2018·3.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Industrial Applications of Poly(lactic acid)

Advances in Polymer Science 282 Maria Laura Di Lorenzo René Androsch Editors Industrial Applications of Poly(lactic acid) 282 Advances in Polymer Science Editorial Board: A. Abe, Yokohama, Kanagawa, Japan A.-C. Albertsson, Stockholm, Sweden G.W. Coates, Ithaca, NY, USA J. Genzer, Raleigh, NC, USA S. Kobayashi, Kyoto, Japan K.-S. Lee, Daejeon, South Korea L. Leibler, Paris, France T.E. Long, Blacksburg, VA, USA M. M€oller, Aachen, Germany O. Okay, Istanbul, Turkey V. Percec, Philadelphia, PA, USA B.Z. Tang, Hong Kong, China E.M. Terentjev, Cambridge, UK P. Theato, Karlsruhe, Germany M.J. Vicent, Valencia, Spain B. Voit, Dresden, Germany U. Wiesner, Ithaca, NY, USA X. Zhang, Beijing, China Aims and Scope TheseriesAdvancesinPolymerSciencepresentscriticalreviewsofthepresentand futuretrendsinpolymerandbiopolymerscience.Itcoversallareasofresearchin polymerandbiopolymerscienceincludingchemistry,physicalchemistry,physics, materialscience. The thematic volumes are addressed to scientists, whether at universities or in industry,whowishtokeepabreastoftheimportantadvancesinthecoveredtopics. AdvancesinPolymerScienceenjoysalongstandingtraditionandgoodreputa- tioninitscommunity.Eachvolumeisdedicatedtoacurrenttopic,andeachreview critically surveys one aspect of that topic, to place it within the context of the volume.Thevolumestypicallysummarizethesignificantdevelopmentsofthelast 5to10yearsanddiscussthemcritically,presentingselectedexamples,explaining and illustrating the important principles, and bringing together many important referencesofprimaryliterature.Onthatbasis,futureresearchdirectionsinthearea canbediscussed.AdvancesinPolymerSciencevolumesthusareimportantrefer- ences for every polymer scientist, as well as for other scientists interested in polymerscience-asanintroductiontoaneighboringfield,orasacompilationof detailedinformationforthespecialist. Review articles for the individual volumes are invited by the volume editors. Singlecontributionscanbespeciallycommissioned. Readership:Polymerscientists,orscientistsinrelatedfieldsinterestedinpoly- merandbiopolymerscience,atuniversitiesorinindustry,graduatestudents. Specialoffer: For all clients with a standing order we offer the electronic form of Advances in PolymerSciencefreeofcharge. Moreinformationaboutthisseriesathttp://www.springer.com/series/12 Maria Laura Di Lorenzo • Rene´ Androsch Editors Industrial Applications of Poly(lactic acid) With contributions by D. Bezuidenhout (cid:1) A. Bouzouita (cid:1) H. Bru¨nig (cid:1) A. Cain (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) X. Chen J. Ding P. Dubois G. G. Ferrer T. Groth W. Hadasha (cid:1) I. Ku¨hnert (cid:1) F. Lauro (cid:1) J. Li (cid:1) A. Liedmann (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) J.F.Liu T.Liu Z.-M.Liu M.Malinconico M.S.Niepel (cid:1) (cid:1) (cid:1) € (cid:1) D. Notta-Cuvier J.-M. Raquez N. Rudolph Y. Sporer (cid:1) (cid:1) (cid:1) Y. Tajitsu N. H. A. Tran M. Van den Eynde (cid:1) (cid:1) P. Van Puyvelde E. T. H. Vink L. Yan Editors MariaLauraDiLorenzo Rene´Androsch NationalResearchCouncil InterdisciplinaryCenterforTransfer-Oriented InstituteofPolymers,Compositesand ResearchinNaturalSciences Biomaterials MartinLutherUniversityHalle-Wittenberg Pozzuoli,Italy Halle/Saale,Germany ISSN0065-3195 ISSN1436-5030 (electronic) AdvancesinPolymerScience ISBN978-3-319-75458-1 ISBN978-3-319-75459-8 (eBook) https://doi.org/10.1007/978-3-319-75459-8 LibraryofCongressControlNumber:2018941238 ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictionalclaims inpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Poly(L-lactic acid) (PLLA) industrial production has been rapidly increasing because it can fulfil the dream of having cost-efficient and non-petroleum-based plastics with numerous advantageous properties. The huge benefits of PLLA as a renewableandenvironment-friendlypolymerareitsversatilityandbiodegradation afterdiscardinginnaturalconditions.Forexample,aPLLAbottleleftintheocean typically degrades within 2 years, whereas conventional plastics may survive several hundred to a thousand years before degrading in the same environment. Accordingly, there is a high potential for PLLA to be useful in short-lifespan applicationswherebiodegradabilityishighlybeneficial.Ofnote,despiteitsability todegradeafterdisposal,PLLAisextremelyrobustwhenusedforapplicationslike food packaging, parts in electronic industry, automotive, or in the biomedical sector. Synthesis,structureandpropertiesofPLLAwerecoveredinaprecedingvolume of Advances in Polymer Science. The present volume completes our collection of researchtopicsonthishighlypromisingbiopolymer,withanoverviewofthestate- of-artofthemainindustrialapplications. The volume starts with a description of processing challenges of PLLA com- pared to commodity petroleum-based polymers, with details on processing condi- tions in extrusion, melt spinning, injection molding and additive manufacturing. This is followed by an overview of applications of PLLA in commodities and specialties,focusingonfoodpackagingandagriculture,wherecompostabilityand biodegradationofPLLArepresentanaddedvalue. The three next chapters describe biomedical applications of PLLA, as it is biocompatible, safe for direct contact with biological tissues, and bioresorbable. PLLAisnowwidelyacceptedasbiomaterialincardiovasculardevicesandskeletal tissue engineering, as well as for controlled drug release. These chapters are followed by details on one of the main processing methods of PLLA used in the biomedical field to produce scaffolds for tissue engineering: additive manufactur- ingtechnologies,commonlycalled3Dprinting. v vi Preface Besides being compostable, biodegradable, biocompatible, and bioresorbable, PLLAhasalsopiezoelectriccharacteristics,whichpermitsitsapplicationinsensor devices, being discussed in a separate chapter. Brand new applications of PLLA appearedintheautomotiveindustry,asthemoreandmorestringentenvironmental regulationsleadtohugeresearcheffortsdevotedtoecofriendlyalternativesolutions intheautomotivemarket,summarizedinthefinalchapterofthisvolume. AsEditors,wewouldliketoexpressoursinceregratitudetoallourfriendsand colleagues that contributed to this volume, including all the authors that provided excellentcontributionsonthevariousaspectsofindustrialproductionandapplica- tions of PLLA, as well as to all who actively participated in the review process, investingtimeandeffortstoreviseandcommenteachchapter. We hopethatthisvolumepromotes further development ofPLLA towiden its rangeofapplicationsasabio-sourcedandbiodegradablepolymer,thuslimitingthe wasteofnaturalresourcesforplasticproductionanddecreasingplasticproduction, alltopreserveasustainableenvironmentforourfuturegenerations. Pozzuoli,Italy MariaLauraDiLorenzo Halle/Saale,Germany Rene´ Androsch Contents ProcessingofPoly(lacticAcid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 InesKu¨hnert,YvonneSp€orer,HaraldBru¨nig,NguyenHoaiAnTran, andNatalieRudolph ApplicationsofPoly(lacticAcid)inCommoditiesandSpecialties. . . . . . 35 MarioMalinconico,ErwinT.H.Vink,andAndreaCain Poly(lacticacid)asBiomaterialforCardiovascularDevices andTissueEngineeringApplications. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 WaledHadashaandDeonBezuidenhout TailoringBulkandSurfaceCompositionofPolylactides forApplicationinEngineeringofSkeletalTissues. . . . . . . . . . . . . . . . . 79 GloriaGallegoFerrer,AndreaLiedmann,MarcusS.Niepel,Zhen-MeiLiu, andThomasGroth Poly(lacticacid)ControlledDrugDelivery. . . . . . . . . . . . . . . . . . . . . . . 109 JiannanLi,JianxunDing,TongjunLiu,JessicaF.Liu,LesanYan, andXuesiChen 3DPrintingofPoly(lacticacid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 MichaelVandenEyndeandPeterVanPuyvelde Poly(lacticacid)forSensingApplications. . . . . . . . . . . . . . . . . . . . . . . . 159 YoshiroTajitsu Poly(lacticacid)-BasedMaterialsforAutomotiveApplications. . . . . . . 177 AmaniBouzouita,DelphineNotta-Cuvier,Jean-MarieRaquez, FranckLauro,andPhilippeDubois Index. . . .. . . . .. . . . .. . . . .. . . .. . . . .. . . . .. . . . .. . . .. . . . .. . . . . 221 vii AdvPolymSci(2018)282:1–34 DOI:10.1007/12_2017_30 ©SpringerInternationalPublishingAG2017 Publishedonline:28October2017 Processing of Poly(lactic Acid) InesKu€hnert,YvonneSp€orer,HaraldBru€nig,NguyenHoaiAnTran, andNatalieRudolph Abstract Polymer applications range from biomedical devices and structures, packaging, or toys to automotive and industrial items. So far, biopolymers could replace commodity polymers in a variety of products, especially for biomedical applications or food packaging. One of the most used and widely studied bio- polymersispoly(lacticacid)(PLA).Togeneratenewapplicationfieldsandprovide abroaderapplicationofPLA,researchonprocessingbehaviorisstillrequired.This chaptercoverstheprocessingrelevantbehaviorofPLAandprocessingconditions for extrusion melt spinning, injection molding, and additive manufacturing. The processing-relatedbehavioriscomparedtothatofcommoditypolymers.Theaimis toprovideanoverviewofthestateoftheartandsomerecentnewdevelopmentsin thisresearchfield. Keywords 3D printing (cid:129) Additive manufacturing (cid:129) Crystallization (cid:129) Injection molding (cid:129) Interface (cid:129) Interphase (cid:129) Mechanical properties (cid:129) Melt spinning (cid:129) Morphology (cid:129) Poly(lactic acid) (cid:129) Processing (cid:129) Rheological behavior (cid:129) Skin-core morphology(cid:129)Thermalproperties(cid:129)Weldline I.Kühnert(*),Y.Sp€orer,andH.Brünig Leibniz-InstitutfürPolymerforschungDresdene.V.,HoheStraße6,01069Dresden,Germany e-mail:[email protected] N.H.A.Tran InstituteofTextileMachineryandHighPerformanceMaterialTechnology,Technische Universita¨tDresden,01062Dresden,Germany N.Rudolph PolymerEngineeringCenter,DepartmentofMechanicalEngineering,Universityof Wisconsin-Madison,1513UniversityAvenue,Madison,WI53706,USA 2 I.Kühnertetal. Contents 1 Poly(lacticAcid)andItsProcessing-RelatedBehavior..................................... 2 1.1 Introduction............................................................................. 2 1.2 Poly(lacticAcid)........................................................................ 2 1.3 Processing-RelatedBehaviorofPLA.................................................. 3 2 InsightsintotheProcessingofPLA......................................................... 8 2.1 Extrusion................................................................................ 8 2.2 MeltSpinning........................................................................... 10 2.3 InjectionMolding....................................................................... 17 2.4 AdditiveManufacturing................................................................ 25 3 Summary...................................................................................... 29 References........................................................................................ 29 1 Poly(lactic Acid) and Its Processing-Related Behavior 1.1 Introduction Biopolymers(bio-basedand/orbiodegradable)suchaspoly(lacticacid)(PLA)are processed and used in the same way as petrochemical-derived polymer materials [1–3]. Morphology development during processing and its correlation with final productproperties,togetherwithsketchylong-termbehavior,keepsthesematerials from accelerated market growth [3]. PLA is one of the best known and best understood bio-based materials. Its biocompatibility, biodegradation, and non-toxic behavior makes this material attractive for use as structural parts and also as a functional polymer, for example as an additive in paper materials, adhesives, coatings, thickening agent, flocculants, and concrete agent [1, 2]. In this chapter the processes for manufacturing structural parts and several specific strategiestoimprovethe“structure-process-property”relationshiparedescribed. 1.2 Poly(lactic Acid) The lactic acid monomer for PLA exists in two optically active configurations, namely L-lactic acid and D-lactic acid. Depending on the monomers used and the synthesis reaction conditions, it is possible to control the L-to-D ratio of the final polymer. Therefore, different grades of PLA are available on the market, such as purepoly-L-lacticacid(PLLA),poly-D-lacticacid(PDLA),orPLAwithvariation of the D content. There are three possible paths for polymerization of lactic acid: direct condensation polymerization, direct poly-condensation in an azeotropic solution, and polymerization through lactic acid formation [4]. As with conven- tionalpolymers,ahighdegreeofpolymerizationandincreasingcrystallinityleadto anincreaseinstrength,elasticmodulus,glasstransitiontemperature(T ),andmelt g temperature [5]. According to process parameters, a recrystallization step for the

Description:
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science.The thematic volumes are addressed
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.