ebook img

Industrial Applications of Evolutionary Algorithms PDF

136 Pages·2005·2.576 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Industrial Applications of Evolutionary Algorithms

ErnestoSanchez,GiovanniSquillero,andAlbertoTonda IndustrialApplicationsofEvolutionaryAlgorithms IntelligentSystemsReferenceLibrary,Volume34 Editors-in-Chief Prof.JanuszKacprzyk Prof.LakhmiC.Jain SystemsResearchInstitute UniversityofSouthAustralia PolishAcademyofSciences Adelaide ul.Newelska6 MawsonLakesCampus 01-447Warsaw SouthAustralia5095 Poland Australia E-mail:[email protected] E-mail:[email protected] Furthervolumesofthisseriescanbefoundonourhomepage: springer.com Vol.10.AndreasTolkandLakhmiC.Jain Vol.23.DawnE.HolmesandLakhmiC.Jain(Eds.) Intelligence-BasedSystemsEngineering,2011 DataMining:FoundationsandIntelligentParadigms,2011 ISBN978-3-642-17930-3 ISBN978-3-642-23165-0 Vol.11.SamuliNiiranenandAndreRibeiro(Eds.) Vol.24.DawnE.HolmesandLakhmiC.Jain(Eds.) InformationProcessingandBiologicalSystems,2011 DataMining:FoundationsandIntelligentParadigms,2011 ISBN978-3-642-19620-1 ISBN978-3-642-23240-4 Vol.12.FlorinGorunescu Vol.25.DawnE.HolmesandLakhmiC.Jain(Eds.) DataMining,2011 DataMining:FoundationsandIntelligentParadigms,2011 ISBN978-3-642-19720-8 ISBN978-3-642-23150-6 Vol.13.WitoldPedryczandShyi-MingChen(Eds.) GranularComputingandIntelligentSystems,2011 Vol.26.TauseefGulrezandAboulEllaHassanien(Eds.) ISBN978-3-642-19819-9 AdvancesinRoboticsandVirtualReality,2011 ISBN978-3-642-23362-3 Vol.14.GeorgeA.AnastassiouandOktayDuman TowardsIntelligentModeling:StatisticalApproximation Vol.27.CristinaUrdiales Theory,2011 CollaborativeAssistiveRobotforMobilityEnhancement ISBN978-3-642-19825-0 (CARMEN),2011 ISBN978-3-642-24901-3 Vol.15.AntoninoFrenoandEdmondoTrentin HybridRandomFields,2011 Vol.28.TatianaValentineGuy,MiroslavKa´rny´and ISBN978-3-642-20307-7 DavidH.Wolpert(Eds.) Vol.16.AlexieiDingli DecisionMakingwithImperfectDecisionMakers,2012 KnowledgeAnnotation:MakingImplicitKnowledge ISBN978-3-642-24646-3 Explicit,2011 Vol.29.RoumenKountchevandKazumiNakamatsu(Eds.) ISBN978-3-642-20322-0 AdvancesinReasoning-BasedImageProcessingIntelligent Vol.17.CrinaGrosanandAjithAbraham Systems,2012 IntelligentSystems,2011 ISBN978-3-642-24692-0 ISBN978-3-642-21003-7 Vol.30.MarinaV.SokolovaandAntonio Vol.18.AchimZielesny Ferna´ndez-Caballero FromCurveFittingtoMachineLearning,2011 DecisionMakinginComplexSystems,2012 ISBN978-3-642-21279-6 ISBN978-3-642-25543-4 Vol.19.GeorgeA.Anastassiou Vol.31.LudomirM.Laudan´ski IntelligentSystems:ApproximationbyArtificialNeural BetweenCertaintyandUncertainty,2012 Networks,2011 ISBN978-3-642-25696-7 ISBN978-3-642-21430-1 Vol.32.Jose´J.PazosArias,AnaFerna´ndezVilas, Vol.20.LechPolkowski andRebecaP.D´ıazRedondo ApproximateReasoningbyParts,2011 RecommenderSystemsfortheSocialWeb,2012 ISBN978-3-642-22278-8 ISBN978-3-642-25693-6 Vol.21.IgorChikalov AverageTimeComplexityofDecisionTrees,2011 Vol.33.JieLu,LakhmiC.Jain,andGuangquanZhang ISBN978-3-642-22660-1 HandbookonDecisionMaking,2012 ISBN978-3-642-25754-4 Vol.22.Przemys(cid:2)lawRz˙ewski, EmmaKusztina,RyszardTadeusiewicz, Vol.34.ErnestoSanchez,GiovanniSquillero, andOlegZaikin andAlbertoTonda IntelligentOpenLearningSystems,2011 IndustrialApplicationsofEvolutionaryAlgorithms,2012 ISBN978-3-642-22666-3 ISBN978-3-642-27466-4 ErnestoSanchez, GiovanniSquillero,andAlbertoTonda Industrial Applications of Evolutionary Algorithms 123 Authors Prof.ErnestoSanchez Dr.AlbertoTonda PolitecnicodiTorino-DAUIN PolitecnicodiTorino-DAUIN Italy Italy Prof.GiovanniSquillero PolitecnicodiTorino-DAUIN Italy ISSN1868-4394 e-ISSN1868-4408 ISBN978-3-642-27466-4 e-ISBN978-3-642-27467-1 DOI10.1007/978-3-642-27467-1 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2011945155 (cid:2)c Springer-VerlagBerlinHeidelberg2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword My motherwas a very simple plain person, with a hearth of gold.She was proud ofmyacademicsuccessesandresearchcareer;sheoftenaskedme“Butwhatdoes your work consist of?”. I am an expert in Computational Intelligence, i.e., neural networks,fuzzylogicandevolutionarycomputation,andalthoughIamafullpro- fessor at the Faculty of Engineering of the University of Pisa, it was not easy to answer my mother’squestion. She used to think that her world (“the real world”) andmyworld(“theartificial,intellectualworld”)weresofarfromeachotherthat nomeanscouldeverexisttolettheseworldsinteract.Butoneday,bychance,evo- lutionary computation made the miracle happen! Yes, that day I went to visit my mother and found her completely busy doing a lot of things. So I proposed her a sortofgame.Isaidtoher:“Youhavetoperformasetoftasks(suchascleaningup thehouse,cookingthedinner,etc),eachconsistingofaseriesofmoreelementary operations,whichcanbeperformedinparallelorsequentially.Youneedanopera- tionsequenceplanthatspecifiesthecollectionandtheorderofoperationstocarry out. Actually, notall the combinationsof operationsare feasible, e.g., youcannot startcookingthepastabeforeputtingasaucepanontocook.Further,somefeasible and valid sequences can be better, e.g., less time-consuming or demanding fewer toolchanges,thanothers.Ofcourseyourdesireistofinishyourworkasgoodand asearlyaspossible.Howdoyouchoosetheoperationplan?” “Idonotfollowanyrule,itisjusthabit”,sheanswered. “Then, consider all the single operations making the specific tasks to perform, and write down on a piece of paper a few randomly-generatedsequencesof these operations.Nowrankthegeneratedoperationsequencesbased,e.g.,onfeasibility andtime/fatigueeffortrequirements.Ifthebestsequencesatisfiesyourdesire,fol- lowthatoperationplan.Otherwise letanEvolutionaryAlgorithm(EA)generatea new list of operation sequences obtained by automatically combining the current sequencesin anappropriateway.Checkif the bestsequenceis goodforyou,oth- erwiserepeattheprocessagain,andsoon.YoucanbesurethattheEAwillfinda goodsolutionsoonerorlater.” Shelookedatmeastonished,withoutspeaking.Iwentonsaying“Thisisasimple waytomimicnaturalevolution,andEAsdoexactlythisinanautomaticway.” VI Foreword What had happened that day? I and my mother had simply managed to make our worlds interact, a thing that appearedimpossible up to that moment. It is like Columbus’segg. Probablythisistherightandonlywaytofillthegapbetweenapparentlydifferent worldslikethatofmodernindustrialapplicationsandthatofEAs.EAscanperform systematicrandomsearchinordertoimprovethelikelihoodoffindinggloballyopti- malsolutions.Ontheotherhandexperiencehasshownthatawarenessofreal-world industrial problems and knowledge of traditional computation techniques are not alwaysenoughtocopewiththegrowingcomplexityofmodernindustrialprocesses andproducts.Then,whynottousethepotentialityofEAs?Probablyindustrialex- pertsaresimplynotawareofhowEAscouldbeappliedtosolvetheirproblems.In fact the key point to applying EAs to solve otherwise intractable problemsis just representing and assessing the candidate solutions to a problem in an appropriate way. ItisjustlikeColumbus’segg.LettheexpertsofEAsshowindustrialengineers andoperatorswhatEAscando!Thecurrentbookmakesexactlythisbypresenting acollectionofrealsignificantindustrialproblemsandtheirEA-basedsolutions.The consideredcasestudieshelpthereaderlearntoemployEAswithaminimalinvest- mentintimeandeffort.Thisiswhatmakesthecurrentbookusefulandvaluablefor effective technology transfer into industrial organizations. Described applications include automatic software verification, test program generation for microproces- sors, test generation for hardware and circuits, antenna array synthesis and opti- mization,driftcorrectionofchemicalsensors,andgenerationoftestsetsforon-line testofmicroprocessors. Now that EAsrepresenta pretty maturefield this is the rightbookforall post- graduates,research scientists and practitionerswho wantto tackle challengingin- dustrialproblems,ofwhatevercomplexity,withthemostup-to-date,powerfuland easy-to-useoptimizationtechnology. Pisa,Italy,September2011 BeatriceLazzerini Preface Theincreasingcomplexityofproductsandprocessesleadsdirectlytothegrowing intricacyoftheproblemsandissuestheindustrialworldisfacing.Moreandmore often,traditionalcomputationaltechniquesproveunabletocopewithrealworldsit- uations,eitherbecausethetimeneededtoreachanoptimalsolutionisnotcompat- iblewiththefranticdevelopmentprocessesofacompany,orbecausethemodeling of complex systems to the degree of precision needed is unfeasible. Evolutionary Algorithms (EA) comprehenda wide class of stochastic bio-inspiredoptimization techniques, firstly developed by J. H. Holland, L. J. Fogel, I. Rechenberg and H. Schwefelduringthelate1960sandearly70s.Overthecourseofthelast35years, EAs demonstratedtheir effectivenessin an extendedvariety of problems, ranging fromairfoildesigntocreditcardfrauddetection.Theindustrialworld,however,is still reluctant to introduce these powerfultechniques into real procedures, mainly duetothesensationofinsufficientcontrollability,scarcerepeatabilityoftheresults, and the lack of experts with deep knowledge of both EAs and modern industrial needs.ThisbookpresentsdifferentcasestudiesofEAssuccessfullyappliedtoreal world problems, hopefully showing the untapped potential of these techniques in variousindustrialfields. Chapter 1 comprehendsa descriptionof typicalcomplexindustrialproblems,a briefhistoryofEAs,acomparisonwithtraditionalmethods,andadiscussiononthe applicationofevolutionarytechniquestorealworldproblems. Chapter2presentswhatismeanttobeasurelyincomplete,butextremelyuseful list of resources relevant for further elaboration and understanding of the multi- facetedworldofEAs. Thefirstsectiongroupsindustrialproblemsrelatedtotheverificationofhardware andsoftwareworkingprototypes. The case study presented in chapter 3 deals with the software verification of a wholeoperativesystemandallapplicationsrunningonamobilephoneprototype. ThechapterfocusspecificallyontheproblemsconcerningtheapplicationofanEA toa“needleinahaystack”kindofproblem;onhowtomaketheEAperform;and on how EAs can complete human expertise in the software verification field. The activityiscarriedoutincooperationwithMotorolaResearchLabs,Torino,Italy. VIII Preface The verificationofmicroprocessorsisa growingfield of study,mainlybecause design capability outperformscurrentverificationtechniques. Most studies on the correctbehaviorofamicroprocessorarethusrunonworkingprototypes,intheat- tempttolocatecriticalpathsbymakingthedevicefailitscomputations.Inchapter 4,anEA-basedmethodtoidentifycriticalspeed-pathsinamulti-coremicroproces- sor,exceedingtheperformanceofstate-of-the-artstresstests,isdescribed. The second section presents a collection of real-world case studies pertaining designandreliability. The design of an antenna array is the topic of chapter 5. When devising such a complex system, often manual or automatic optimization methods do not yield satisfactoryresults,beingeithertoolabour-intensiveorunsuitableforsomespecific classofproblems.Whenanevolutionaryalgorithmisusedtooptimizeparameters oftheantennaarray,theresultsshowthatthesetechniquesareabletoobtainbetter resultsthanbothmanualandautomaticapproaches. Inchapter6,anEA-basedtechniquetolengthenthelifespanofelectronicnoses, complexolfactorysensorarrays,ispresented.Sensorarraysareaffectedbythedrift problem,adegenerativeerrorinthemeasurements,hardtomodelandpredict.The proposedsolutionistodynamicallyadjustthesensorreadingswithastate-of-theart EvolutionaryStrategyprovestobeeffective.Theexperienceisperformedwiththe collaborationofSensorCNR-INFMLab,Brescia,Italy. Chapter 7 tackles the problem of automatically devising online test sets for microprocessor-basedsystems. While existing manufacturingtest set can be used forthispurpose,severaladditionalconstraintsmustbeconsideredforanonlineap- plication,includingtestlength,duration,andintrusiveness.Theproposedmethod- ology,hereappliedtoanIntel8051microcontroller,exploitsanEAtocreateonline testsetsstartingfromtestsdevisedbythemanufacturer. The third section introducesresults obtained throughthe application of EAs to testgenerationproblemsforhardwareandcircuits. Chapter 8 concerns the study of path delay faults in electronic devices, mis- behaviors where a device produces a correct result without conforming to time specifications.Devisingtesttouncoverthepresenceofthese faultsischallenging, exspeciallywhenonlyahigh-leveldescriptionofthedeviceisprovided.Totackle this problem,where the ideal result is a set of equally feasible solutions, a Multi- ObjectiveEvolutionaryAlgorithm(MOEA)isemployed. Inchapter9,EAsareappliedtothefieldofSoftware-BasedSelfTesting(SBST), anestablishedtesttechniqueforvarioushardwarearchitectures.SBST’sprincipleis toapplyasuitableseriesofstimulitothedeviceundertest,comparingtheproduced outputtotheexpectedone.Findingaminimalsetofstimulitothoroughlyexcitea deviceisnota trivialproblem:EAsprovesuccessfulonceagain,showingthatthe proposedmethodologyiseffectiveonawiderangeofhardwareperipherals. Chapter 10 deals again with stimuli generation for SBST, this time tackling a muchmorecomplexsystem,suchasamicroprocessorpipeline.Usingahigh-level representation of the target device, and a dynamically built Finite State Machine (FSM), fault coverage of the candidate stimuli are evaluated without resorting to time-expensive simulations on low-level models. Experimental results show that Preface IX theevolvedtestobtainsa nearlycompletefaultcoverageagainstthe targetedfault model. Acknowledgments The authors would like to express their gratitude towards their families and col- leaguesfortheirinvaluablesupport,usefulideasandintriguingdiscussion.Apartic- ularthanktoA.Aimo,P.Bernardi,A.Cerato,K.Christou,S.DiCarlo,S.Drappero, M.Falasconi,G.Fisanotti,M.Grosso,S.Loiacono,M.K.Michael,L.Manetta,A. Moscatello,L.Motta,L.Ollino,D.Ravotto,T.Rosato,W.Ruzzarin,M.Schillaci, A.SciontiandM.SonzaReorda;withouttheirhelp,thisbookwouldhavenotbeen possible. Contents 1 Introduction.................................................. 1 1.1 IndustrialProblems........................................ 1 1.2 ABriefHistoryofEvolutionaryAlgorithms ................... 2 1.2.1 NaturalandArtificialEvolution ....................... 3 1.2.2 GeneticAlgorithms ................................. 5 1.2.3 EvolutionaryProgramming........................... 6 1.2.4 EvolutionStrategies................................. 7 1.2.5 GeneticProgramming ............................... 9 2 Resources .................................................... 11 2.1 Books ................................................... 11 2.2 Journals ................................................. 12 2.3 InternationalConferencesandWorkshops ..................... 12 2.4 Software................................................. 13 2.5 SuggestedReadingsonNaturalEvolutionandBiology .......... 13 PartI Prototype-BasedValidationProblems 3 AutomaticSoftwareVerification ................................ 17 3.1 Introduction .............................................. 17 3.2 Background .............................................. 18 3.2.1 MobilePhones ..................................... 18 3.2.2 VerificationTechniques .............................. 19 3.3 ProposedApproach........................................ 22 3.3.1 Model............................................. 23 3.3.2 CandidateSolutions................................. 25 3.3.3 Evaluator.......................................... 25 3.4 ExperimentalResults ...................................... 27 3.4.1 VideoRecordingBug................................ 28 3.4.2 VoiceCallBug ..................................... 28

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.