The Pennsylvania State University The Graduate School Eberly College of Science PART I. TOTAL SYNTHESIS OF CELOGENTIN C VIA A STEREOSELECTIVE C-H FUNCTIONALIZATION PART II. DIVERGENT TOTAL SYNTHESES OF THE UNUSUAL MONOTERPENOID INDOLE ALKALOIDS ALSTILOBANINE A, E AND ANGUSTILODINE A Dissertation in Chemistry by Yiqing Feng © 2014 Yiqing Feng Submitted in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy May 2014 ii The dissertation of Yiqing Feng was reviewed and approved* by the following: Steven M. Weinreb Russell and Mildred Marker Professor of Natural Products Chemistry Dissertation Co-Advisor Co-Chair of Committee Gong Chen Assistant Professor of Chemistry Dissertation Co-Advisor Co-Chair of Committee Raymond L. Funk Professor of Chemistry Alexander Radosivech Assistant Professor of Chemistry Yan-Ming Wang Associate Professor of Biology and Molecular Biology Barbara J. Garrison Shapiro Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii Abstract Part I A total synthesis of the antimitotic bicyclic peptide celogentin C (4) has been completed. The unique Trp C6-Leu Cβ single bond linkage of the target molecule was constructed via a highly regio- and stereoselective palladium-catalyzed aminoquinoline carboxamide-directed C-H functionalization using an 8-aminoquinoline α-phthaloylleucinamide 86 and a fully functionalized 6-iodotryptophan derivative 122 as coupling partners. The α-amino group in the coupling product 125 was converted to an azido group to reduce steric hindrance around the leucine carbonyl in azide 126. The 8-aminoquinoline auxiliary was subsequently removed via a N-Boc activation/LiOH-cleavage sequence to afford the key azido acid 128, which was further elaborated to the left-hand ring peptide acid 135 of celogentin C (4). Compound 135 was further converted to 137 by peptide coupling with a proline benzyl ester. The key His-N/Trp C2 linkage embedded in the right-hand ring of the target molecule was furnished by adopting Castle’s strategy which involved an NCS-mediated oxidative C-N σ bond formation of the Trp-C2 of intermediate 137 with the His-N1 of an Arg/His dipeptide. The right-hand ring of the natural product celogentin C (4) was eventually formed via a macrolactamization to afford celogentin C (4) in 23 steps from simple α-amino acid building blocks. iv Part II Divergent total syntheses of the unusual monoterpenoid indole alkaloids alstilobanine A (15), E (14) and angustilodine (13) in racemic form have been completed. The synthesis started with a highly efficient Michael addition of a dianion of indole diester 44 to α-chloro-3- piperidone-derived nitrosoalkene 25, which forged the C15-C16 σ bond, producing a pair of diastereomers 47 and 82. Subsequent functional group manipulation including a C15/C16 epimerization afforded the key C15/C16 anti-ketoacid 57. A Romo nucleophile-promoted aldol- lactonization (NPAL) of 57 furnished the advanced pentacyclic intermediate 72 with the requisite C15, C19 and C20 stereochemical configuration for the target alkaloids. The C16 hydroxymethyl group was then introduced stereoselectively via alkylation of the enolate of NH indole β-lactone ester 89a with monomeric formaldehyde to afford C16 hydroxymethylated β- lactone 99, which was conveniently converted to the corresponding C17 OTBS diol 117. A two- step Appel iodination/palladium-catalyzed reductive deiodination sequence converted intermediate 117 to the C18 methyl compound 108 and utimately provided racemic alstilobanine A (15) after tosyl and TBS protecting group removal. After numerous unproductive attempts to access angustilodine and alstilobanine E, a silver(I)-promoted cyclic hemithioketal formation/palladium-catalyzed silane-mediated desulfurization sequence was established using C16 hydroxymethyl dithioketal 165, which provided an efficient access to the key oxepane 136. Syntheses of the target alkaloids were completed using oxepane 136, which afforded racemic alstilobanine E (14) in 21 steps in 16% overall yield, and racemic angustilodine (13) in 22 steps in 13% total yield. v Table of Contents LIST OF FIGURES...........................................................………………………......................xii LIST OF TABLES.......................................................................................................................xiii ACKNOWLEGEMENTS............................................................................................................xiv Part I. Total Synthesis of Celogentin C via Stereoselective C-H Functionalization………..1 Chapter 1. Introduction and Background……………………………………………………......1 1.1. Isolation and Structure Elucidation of the Celogentin and Moroidin Peptides......................1 1.2. Tubulin Polymerization Inhibitory Activities of Moroidin and Celogentin Compounds......3 1.3. Previous Synthetic Studies on Moroidin/Celogentin Compounds.........................................4 1.3.1. Previous Synthetic Studies on His N1-Trp C2 Linkage in the Right-Hand Ring of Moroidin and Celogentin C...........................................................................................................5 1.3.1.1. Synthetic Studies toward the Right-Hand Ring of Moroidin...................................5 1.3.1.2. Synthesis of Celogentin C Right-Hand Ring via a His-Trp Oxidative Coupling........................................................................................................................................7 1.3.2. Previous Synthetic Studies toward the Central Tryptophan Moiety of Celogentin C and Synthesis of Stephanotic Acid Methyl Ester.................................................................................8 1.3.2.1. Catalytic Asymmetric Synthesis of the Central Tryptophan Residue of Celogentin C..................................................................................................................................8 1.3.2.2. Asymmetric Synthesis of the Central Tryptophan Residue of Stephanotic vi Acid...............................................................................................................................................9 1.3.2.3. Synthesis of Stephanotic Acid Methyl Ester............................................................10 1.3.3. First Total Syntheis of Celogentin C..............................................................................13 Chapter 2. Results and Discussion.................................................................................................17 2.1. Synthetic Plan.........................................................................................................................18 2.2. Background on Auxiliary-Directed Palladium-Catalyzed sp3 C-H Arylation.......................20 2.2.1. Seminal Work on Regioselective sp3 C-H Arylation......................................................20 2.2.2. Palladium-Catalyzed Regio- and Stereoselective sp3 C-H Functionalization of Amino Acid Derivatives............................................................................................................................23 2.3 Application of a Palladium-Catalyzed Regio- and Stereoselective sp3 C-H Arylation in Total Synthesis of Celogentin C: Model Studies....................................................................................27 2.3.1 Model Studies on β C-H Functionalization of Leucine Derivatives.................................27 2.3.2 Model Studies on Removal of the Aminoquinoline Auxiliary.........................................28 2.4. Total Synthesis of Celogentin C.............................................................................................33 2.4.1. Preparation of the C-H Functionalization Precursors......................................................33 2.4.2. Construction of the Key Leu-Trp C-C Linkage via Regio- and Stereoselective C-H Functionalization...........................................................................................................................35 2.4.3. Removal of the Aminoquinoline Auxilliary....................................................................36 vii 2.4.4. Synthesis of the Left-hand Ring of Celogentin C...........................................................37 2.4.5. Completion of the Total Synthesis of Celogentin C.......................................................38 2.5. Concluding Remarks..............................................................................................................40 Chatper 3. Experimental Section...................................................................................................41 References.....................................................................................................................................65 Part II. Divergent Total Syntheses of the Unusual Monoterpenoid Indole Alkaloids Alstilobanines A, E and Angustilodine......................................................................................68 Chapter 1. Introduction and Backgrounds....................................................................................68 1.1. Monoterpenoid Indole Alkaloids: Background......................................................................68 1.2. The Alstilobanine-Angustilodine Family: Unusual Monoterpenoid Indole Alkaloids. Discovery, Structure Elucidation and Preliminary Bioactivity Studies........................................73 1.3. Synthetic Studies on the Angustilodine-Type Alkaloids........................................................75 1.3.1. Original Synthesis Plan Toward the Angustilodine-Type Alkaloids.............................76 1.3.2. Previous Synthetic Work Toward the Angustilodine-Type Alkaloids in the Weinreb Group.............................................................................................................................................77 1.3.2.1. Background on Nitrosoalkene Conjugate Additions...............................................77 1.3.2.2. Studies on Nitrosoalkene Conjugate Additions with Indole-2-acetate Enolates.....................................................................................................................................80 1.3.2.3. Synthesis of the Key Romo NPAL Cyclization Precursor......................................84 1.3.2.4. The Romo Nucleophile-Promoted Aldol-Lactonization (NPAL)...........................86 viii 1.3.2.5. Construction of the Cis-Fused Azadecalin Moiety of the Angustilodine-Type Alkaloids.......................................................................................................................................89 1.3.2.6. Studies on Introduction of the C16 Hydroxymethyl Group....................................90 Chapter 2. Results and Discussion................................................................................................94 2.1. Problems Associated with the First Generation Majireck Approach and Some Solutions.......................................................................................................................................94 2.1.1. Deoximation of Intermediate 54.....................................................................................94 2.1.2. Stereochemistry of the Nitrosoalkene Conjugate Addition Step....................................95 2.1.2.1. Discovery of the C15/C16 Diastereomer Problem..................................................95 2.1.2.2. Diastereoselectivity of the Nitrosoalkene Conjugate Addition..............................98 2.1.3. Reexamination of the Majireck Synthesis and Observations of Problems with the C15/C16 Syn-Diastereomeric Series............................................................................................101 2.1.3.1. Reexamination of the Majireck Approach Using the Pure C15/C16 anti- Diastereomeric Series..................................................................................................................102 2.1.3.1.1. Preparation of C15/C16 anti-Ketoacid 57.......................................................102 2.1.3.1.2. Romo NPAL of C15/C16 anti-Ketoacid 57....................................................103 2.1.3.2. Reexamination of the Majireck Approach Using the C15/C16 syn-Diastereomeric Series............................................................................................................................................104 2.1.3.2.1. Preparation of C15/C16 syn-Ketoacid 83........................................................104 ix 2.1.3.2.2. Romo NPAL of the C15/C16 syn-ketoacid 83................................................105 2.1.3.2.3. Solution to the C15/C16 syn-diastereomer Problem.......................................107 2.2. Modified Strategies for the Divergent Synthesis of the Angustilodine-Type Alkaloids......................................................................................................................................108 2.2.1. C16 Hydroxymethylation...............................................................................................108 2.2.1.1. A Modified C16 Hydroxymethylation Strategy.....................................................108 2.2.1.2. C16 Hydroxymethylation Studies..........................................................................110 2.2.2. C18 Deoxygenation and Total Synthesis of Alstilobanine A........................................117 2.2.2.1. The First Generation C18 Deoxygenation Approach.............................................117 2.2.2.2. A C18 Deoxygenation /C16 Hydroxymethylation Approach................................120 2.2.2.3. The Optimal End-Game Route and Total Synthesis of Racemic Alstilobanine A............................................................................................................................123 2.2.3. Total Syntheses of Alstilobanine E and Angustilodine.................................................126 2.2.3.1. Attempted Oxepane Formation from ɛ-Lactone 102..............................................126 2.2.3.1.1. Attempted Lewis Acid-Catalyzed ɛ-Lactone Reduction.................................127 2.2.3.1.2. Attempted Silane Radical-Mediated ɛ-Lactone Reduction..............................128 2.2.3.1.3. Thiolactonization/Reduction Approach...........................................................128 x 2.2.3.2. Oxepane Formation via Intramolecular Etherification...........................................130 2.2.3.2.1. Attempted Intramolecular Etherification via Mitsunobu Reaction of Triol 103......................................................................................................................................130 2.2.3.2.2. Attempted Intramolecular Etherifications via Mitsunobu Reactions Using Selectively Protected Triols.........................................................................................................131 2.2.3.2.3. Attempted Oxepane Formation via Intramolecular Etherification of Halo-Alcohols .............................................................................................................................133 2.2.3.3. Attempted Oxepane Formation via Intramolecular C16 Alkylation.......................136 2.2.3.4. Silver(I)-Promoted Cyclic Hemithioketal Formation/Reduction Approach......................................................................................................................................138 2.2.3.4.1. Background and a Revised End-Game Synthetic Plan....................................138 2.2.3.4.2. Optimized Preparation of Hydroxy Aldehyde 104..........................................140 2.2.3.4.3. Preparation of the Ag(I)-Promoted Cyclization Precursor Dithioacetal 173...........................................................................................................................143 2.2.3.4.4. Ag(I)-Promoted Cyclization of C16 Hydroxymethyl Dithioacetal 173 and Formation of the Key Cyclic Hemithioacetal..............................................................................144 2.2.3.4.5. Reduction of the Thiohemiketals to the Oxepane............................................146 2.2.3.5. Completion of the Total Syntheses of Racemic Alstilobanine E
Description: