Individual eigenvalue distributions for chGSE-chGUE crossover and determination of low-energy constants in two-color QCD+QED 5 1 Shinsuke M. Nishigaki∗† 0 2 GraduateSchoolofScienceandEngineering r ShimaneUniversity,Matsue690-8504,Japan p E-mail: [email protected] A 1 Takuya Yamamoto GraduateSchoolofScienceandEngineering ] t ShimaneUniversity,Matsue690-8504,Japan a l - p We compute statistical distributions of individual low-lying eigenvalues of random matrix en- e h semblesinterpolatingchiralGaussiansymplecticandunitaryensembles. Tothisaimweusethe [ Nyström-type discretization of Fredholm Pfaffians and resolvents of the dynamical Bessel ker- 2 nelcontainingasinglecrossoverparameterρ. Theρ-dependentdistributionsofthefoursmallest v eigenvaluesarethenusedtofittheDiracspectraofmodulatedSU(2)latticegaugetheory,inwhich 8 0 therealityofthestaggeredSU(2)DiracoperatorisweaklyviolatedeitherbytheU(1)gaugefield 5 orbyaconstantbackgroundflux.Combineduseofindividualeigenvaluedistributionsiseffective 7 0 in reducing statistical errors in ρ; its linear dependence on the imaginary chemical potential µ I . 1 enables precise determination of the pseudo-scalar decay constant F of the SU(2) gauge theory 0 fromasmalllattice. TheU(1)-couplingdependenceofanequivalentofF2µ2intheSU(2)×U(1) 5 I 1 theoryisalsoobtained. : v i X r a The32ndInternationalSymposiumonLatticeFieldTheory 23-28June,2014 ColumbiaUniversityNewYork,NY ∗Speaker. †SMNissupportedinpartbyJSPSGrants-in-AidforScientificResearch(KAKENHI)No.25400259. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ IndividualeigenvaluedistributionsforchGSE-chGUEcrossover ShinsukeM.Nishigaki 1. Introduction Wigner-Dyson universality of the local correlation of energy levels among various stochastic [1] and quantum-chaotic systems [2] under well-defined conditions was established through the ten-foldclassificationofsymmetricspacesofspectralσ models[3],towhichtheGutzwillertrace formulaalsoreduces[4]. Thisuniversalityhasinturnprovidedasolidandsecuregroundonwhich system-specific information can be decoded by measuring deviations of spectral correlation func- tionsfromtheiruniversalforms,ortransitionbetweentwouniversalityclasses. Primeexamplesof theformeraretheweaklocalizationcorrectioninAndersonHamiltonians[5]andthenonuniversal effectofshortperiodicorbits(smallprimes)inchaoticsystems(intheRiemannζ zeroes[6]). Study on the latter “universality crossover", initiated by Dyson [7], has also come to encom- pass a variety of settings, an example being the GUE-GOE transition that appears in a disordered ring [8] and chaotic systems [9] both under magnetic fields. Recent years saw applications of the universality crossover in lattice QCD, in an effort to explore the effects of the isospin chemical potential[10]andofthefinitelatticespacingintheWilsonDiracoperator[11]. Thesestudieshave revealedthepowerofthespectralapproachindeterminingthepiondecayconstantandtheWilso- nian chPT constants from relatively small lattices. The aim of this work is to apply this approach to the determination of low-energy constants in another setting, namely the two-color QCD sub- jected under the imaginary chemical potential [12] or coupled to QED. Our novelty is to employ theindividualdistributionsofsmallDiraceigenvalues[13]insteadofn-levelcorrelationfunctions, infittingthelatticedata. Practicaladvantagesofourmethodwillbemanifestedsubsequently. 2. chGSE-chGUEcrossover LetAandBbeN/2×N(cid:48)/2quaternionmatrices,representedbycomplexN×N(cid:48) matricesas 3 (cid:16) (cid:17) 3 (cid:16) (cid:17) A= ∑ A(µ) ⊗e , B= ∑ B(µ) ⊗e (j=1,...,N/2, k=1,...,N(cid:48)/2). (2.1) jk µ jk µ µ=0 µ=0 Hereasetoffour2×2matricese =(1 ,−i(cid:126)σ)spansthebasisofthequaternionfieldH. Letthe µ 2 matrix elements belong to A(µ) ∈R and B(µ) ∈C, so that the matrix A is quaternion-real and B jk jk is not (i.e. a generic N×N(cid:48) complex matrix). We consider A(µ), ReB(µ), and ImB(µ) to be inde- jk jk jk pendentrandomvariablesdistributedaccordingtotheGaussiandistributionse−12trAA† ande−trBB†, respectively,andintroduceanensembleof(N+N(cid:48))×(N+N(cid:48))HermitianmatricesH oftheform (cid:32) (cid:33) 0 C (cid:112) H = N×N , C=e−τA+ 1−e−2τB. (2.2) C† 0 N(cid:48)×N(cid:48) Herearealparameterτ playstheroleoffictitioustimefortheBrownianmotionoftheeigenvalues [7]. Thisensembleenjoysthechiralsymmetry{H,γ }=0withγ =diag(1 ,−1 ),implyingthat 5 5 N N(cid:48) thespectrumofH consistsofN ±pairsofnonzeroeigenvaluesandν =|N(cid:48)−N|zeroeigenvalues. ThepresenceofBviolatesthequaternion-realityofCandtheselfdualityofH,liftingtheKramers degeneracy of nonzero eigenvalues of H. Accordingly this ensemble interpolates the two limiting cases,chiralGSEatτ =0andchiralGUEatτ →∞,dependingonasingleparameterτ. 2 IndividualeigenvaluedistributionsforchGSE-chGUEcrossover ShinsukeM.Nishigaki WeconsiderthecaseinwhichtheKramersdegeneracyisweaklybrokenbyτ (cid:28)1. Thenthe spectral density of H in the large-N limit is identical to that of the chGSE (τ =0), i.e. Wigner’s √ semi-circleρ¯(λ)= 4N−λ2/π. Wemagnifythevicinityoftheoriginoftheλ axisbyintroducing √ unfoldedvariablesx =λ/∆ with∆ =1/ρ¯(0)=π/ 4N. Inordertorealizeanontrivialcrossover i i behavior,wetakethetriple-scalinglimitN,N(cid:48)→∞,λ →0,τ →0whilekeepingthecombinations √ i ρ = τ/∆,ν =N(cid:48)−N(≥0),andx fixedfinite. Thenthej.p.d.ofN positiveunfoldedeigenvalues i P (x ,...,x )isexpressedasaPfaffianofthedynamicalBesselkernelK(x,y)[14], N 1 N (cid:34) (cid:35) (cid:34) (cid:35) (cid:16) (cid:17) S(x,y) I(x,y) 0 1 P (x ,...,x )=Pf Z[K(x,x )]N , K(x,y)= , Z= ⊗1, (2.3) N 1 N i j i,j=1 D(x,y) S(y,x) −1 0 √ (cid:26)J (πx)yJ (πy)−xJ (πx)J (πy) J (πx)(cid:90) π (cid:27) S(x,y)=π xy ν ν−1 ν−1 ν − ν dυeρ2(υ2−π2)J (υy) , x2−y2 2 ν 0 √ xy(cid:90) π (cid:90) 1 D(x,y)= dυυ dueρ2υ2(1+u2){J (υux)J (υy)−J (υx)J (υuy)}, ν ν ν ν 2 √ 0 0 xy(cid:90) ∞ I(x,y)= dυυ2e−2ρ2υ2{J (υx)yJ (υy)−xJ (υx)J (υy)}. ν ν−1 ν−1 ν 2 π (cid:16) (cid:17) (cid:16) (cid:17) Duetotherecursionrelation(cid:82)∞dx Pf Z[K(x,x )]k =(N−k+1)Pf Z[K(x,x )]k−1 ,cor- 0 k i j i,j=1 i j i,j=1 relationfunctionsofneigenvaluesaregivenby N! (cid:90) ∞ (cid:16) (cid:17) R (x ,...,x )= dx ...dx P (x ,...,x )=Pf Z[K(x,x )]n . (2.4) n 1 n (N−n)! n+1 N N 1 N i j i,j=1 0 3. Individualeigenvaluedistributions ThePfaffianformsin(2.3)∼(2.4)originatefromquaterniondeterminants(Tdet)composedof a quaternionic kernel, [K (x,x )] , whose C-number representative is the antisymmetric matrix i j i,j Z[K(x,x )] . Accordingly, the probability E (s) for an interval [0,s] to contain exactly k eigen- i j i,j k values is also given in terms of the Fredholm Tdet of a quaternionic integral operator Kˆ, i.e. the s squarerootofthecorrespondingFredholmdeterminantofKˆ (i.e.FredholmPfaffianofZKˆ ), s s 1 (cid:12) E (s)= (−∂ )k Det(1−ξKˆ )1/2(cid:12) . (3.1) k k! ξ s (cid:12)ξ=1 Here Kˆ denotes an integral operator with the dynamical Bessel kernel K(x,y) (2.3) acting on the s spaceoftwo-componentL2-functionsovertheinterval[0,s]. FirstfewE (s)’sareexpressedas k T 1 (cid:18)T2 T (cid:19) E (s)=Det(1−Kˆ )1/2, E (s)=E (s) 1, E (s)=E (s) 1 − 2 , (3.2) 0 s 1 0 2 0 2 2! 4 2 1 (cid:18)T3 3 (cid:19) 1 (cid:18)T4 3 3 (cid:19) E (s)=E (s) 1 − T T +T , E (s)=E (s) 1 − T2T + T2+2T T −3T , 3 0 3! 8 4 1 2 3 4 0 4! 16 4 1 2 4 2 1 3 4 where T (s) = Tr(cid:0)Kˆ (I−Kˆ )−1(cid:1)n denote functional traces of the resolvents of Kˆ . Probability n s s s distribution pk(s) of the kth smallest positive eigenvalue is then given as pk(s)=−∂s∑(cid:96)k=−01E(cid:96)(s). An efficient way of numerically evaluating the Fredholm determinant of a trace-class operator Kˆ s actingonL2-functionsoveraninterval[0,s]istheNyström-typediscretization[15] Det(1−Kˆ )(cid:39)det(I−K ), K =(cid:2)K(x,x )√w w (cid:3)m . (3.3) s s s i j i j i,j=1 3 IndividualeigenvaluedistributionsforchGSE-chGUEcrossover ShinsukeM.Nishigaki Hereweemployaquadratureruleconsistingofasetofpoints{x}takenfromtheinterval[0,s]and i associated weights {wi} such that (cid:82)0s f(x)dx(cid:39)∑mi=1 f(xi)wi. Similarly, the resolvents in (3.2) are approximatedasT (s)(cid:39)tr(cid:0)K (I−K )−1(cid:1)n.ForapracticalpurposewechoosetheGaussquadra- n s s ture rule, i.e. sampling {x} from the nodes of Legendre polynomials normalized to [0,s]. Previ- i ously we applied the Nyström-type method to the dynamical Bessel kernels interpolating chGSE- chGUE (2.3) and chGOE-chGUE and evaluated the smallest eigenvalue distributions p (s) [12]. 1 In this work we extend our computation to the first four eigenvalues, aiming to reduce the fitting errors in determining the low-energy constants. We set the approximation order m to be at least 100,andconfirmedthestabilityoftheresultsforincreasingm(upto200∼400). Thedistributions p (s),···,p (s)fortheν =0case,computedfrom(2.3)∼(3.3)forρ ≤0.70 1 4 are exhibited in Fig. 1L. A practical advantage of using individual eigenvalue distributions over the spectral density R1(x)=∑∞k=1pk(x)=S(x,x)(Fig. 1R) for fitting the lattice data is clear from the figure: the oscillation of the latter immediately becomes structureless and insensitive to the interpolationparameterρ duetotheoverlappingofmultiplepeaksoftheformer,whereasthequasi- Gaussian shape of each peak is clearly distinguishable and is extremely sensitive to ρ. Another advantage specific to the current case originates from the fact that p (s) and p (s) move in 2k−1 2k oppositedirectionsasρ isincreasedtobreaktheKramersdegeneracy. Bycombiningthetwobest- fittingvaluesofρ forthesetwodistributions,anyerrorpresentinthemeanlevelspacing∆ ofthe Diracspectrum,whichwouldresultinshiftingtheunfoldeddataof2k−1thand2ktheigenvaluesto thesamedirection,isexpectedtobecancelled. Wehaveconfirmedthisbygenerating105 samples of crossover random matrix ensembles with N = N(cid:48) = 64 and various ρ ≤ 0.50 and by fitting histograms of first four eigenvalues to the analytic results. Combined values of ρ from these four fittingshavereproducedthetrueinputvalueswithinafewpermilofsystematicerror(max.0.5%), anorderofmagnitudeclosertotheinputvaluesthanusinganysingleindividualdistribution. Such anaccuracycouldneitherbehopedforhadweusedthespectraldensityR (x)forfitting. 1 4. Effectivetheoryandlow-energyconstants TheDiracoperatorD/ofaQCD-liketheorywithquarksinapseudoreal(real)representation, 1.2 1.5 1.0 0.8 (cid:72)(cid:76)ps1,2,3,4 0.6 (cid:72)(cid:76)Rx1 1.0 0.4 0.5 0.2 0.0 0.0 0 1 2 3 4 5 0 1 2 3 4 5 s x Figure1:Firstfoureigenvaluedistributions p (s)(left)for0.04≤ρ≤0.70(step0.01,purpletored)and 1∼4 thespectraldensityR (x)for0.01≤ρ≤1.00(step0.01)forthechGSE(black)tochGUE(grey)crossover. 1 4 IndividualeigenvaluedistributionsforchGSE-chGUEcrossover ShinsukeM.Nishigaki suchasthefundamentalofSp(2N)(SO(N)),possessesanantiunitarysymmetryunlikeQCDwith quarks in a complex representation [16]: D/ commutes with CZ∗ (C∗), with C being the charge conjugationand∗thecomplexconjugation. As(CZ∗)2=+1((C∗)2=−1),Dcanbebroughtto arealsymmetric(quaternionselfdual)matrixbyasimilaritytransformation. Duetothisproperty, the distinction between left-handed quarks and conjugated right-handed quarks is lost, leading to the Pauli-Gürsey extension of the flavor symmetry from SU(N ) ×SU(N ) to SU(2N )=:G F L F R F anditsvectorsubgroupfromSU(N ) toSp(2N )orSO(2N )=:H. Accordinglyitslow-energy F V F F effectivetheorybecomesanonlinearσ modelonanexoticNambu-GoldstonemanifoldG/H. Since the Dirac operator charged under the U(1) gauge field is complex, coupling QCD-like theories with electromagnetism or even subjecting them to the constant U(1) background breaks the antiunitary symmetry of D/ and the Pauli-Gürsey extended flavor symmetry. In the latter case thatisequivalenttoputtingonaweakimaginarychemicalpotential µ =iµ ,itseffectonthelow- I energy Lagrangian is systematically incorporated by the flavor covariantization of the derivatives [17]. Furthermore,ifthetheoryisinafinitevolumeV =L4 andtheThoulessenergyE (cid:39)F2/ΣL2 c ismuchlargerthanm,thepathintegralisdominatedbythezero-modeintegration(theε regime), (cid:90) (cid:18)1 (cid:19) Z= dU exp VΣmRetrMˆU−Vµ2F2tr(BˆU†BˆU+BˆBˆ) . (4.1) 2 I SU(2NF) HereU isanSU(2N )matrix-valuedNambu-Goldstonefield,Bˆ=σ ⊗1 ,Mˆ =iσ ⊗1 (σ ⊗1 ) F 3 NF 2 NF 1 NF for quarks in a pseudoreal (real) representation. Σ=(cid:104)ψ¯ψ(cid:105)/N denotes the chiral condensate and F F thepseudo-scalardecayconstant,bothmeasuredinthechiralandzero-chemicalpotentiallimit. Note that the above 0D σ model for the case of fermions in a real representation can as well be derived from the random matrix ensemble (2.2) through the standard procedure: (i) introduce N F species of complex Grassmannian (N+N(cid:48))-vectors ψ ,ψ¯ and consider a replicated spectral de- f f (cid:68) (cid:69) terminant (cid:10)det(λ−H)NF(cid:11)= (cid:82) dψdψ¯ e∑fψ¯f(λ−H)ψf , where (cid:104)···(cid:105) denotes averaging over A and B, (ii) perform Gaussian integrations over A and B, (iii) introduce a 2N ×2N -matrix valued F F Hubbard-StratonovichvariableQandopenupthe4-fermiterm,(iv)performGaussianintegrations overψ andψ¯,(v)taketheaforementionedtriple-scalinglimitanddenotetheangularpartofQ(not fixedby thelarge-N saddlepoint equation)asU. Then thecoefficients ofthe massand chemical- potential terms are identified as VΣm = iπx and 2VF2µ2 = π2ρ2. By substituting m → iλ I Dirac which turns the QCD partition function into the Dirac spectral determinant, the former equality provides the definition of unfolded Dirac eigenvalues x=λ /∆ due to the Banks-Casher rela- Dirac tionΣ=π/∆V. ThelatterequalityisusedtodetermineF2 fromtheslopeoftheµ -ρ plot. I 5. FittingDiracspectraofSU(2)×U(1)gaugetheory Astheaimofthisworkistodemonstratethevalidityandadvantageofthemethodandnotto approachthecontinuum,chiral,orthermodynamiclimit,wechosethesimplestpossiblesettingon the lattice side: (i) generate 104 samples of quenched SU(2)=Sp(2) gauge fieldsU (x) on an (in- µ tentionally)smalllatticeV =64,withaplaquetteactionatβ =6/g2 =0∼1.75(step.25), SU(2) SU(2) usingthestandardheat-bath/overrelaxationalgorithm. (ii-a)multiplytheSU(2)fieldsontemporal links U0(x) by a constant phase eiµI with µI =0.00524 ∼.05240 (step .00524), or (ii-b) gener- atequenchednoncompactU(1)gaugefieldsA (x)undertheCoulombgauge-fixingcondition[18] µ 5 IndividualeigenvaluedistributionsforchGSE-chGUEcrossover ShinsukeM.Nishigaki andmultiplytheSU(2)fieldsU (x)byexp(ie A (x)),withe =0.0004∼.0024(step.0004), µ U(1) µ U(1) (iii)substitutethegaugefieldsintoanunimprovedstaggeredDiracoperatoranddiagonalize. Due to the absence of the C matrix, the antiunitary symmetries of staggered Dirac opera- tors are swapped between real and pseudoreal representations [19]. Accordingly, our case with SU(2)×U(1)fundamentalfermionsindeedcorrespondstothechGSE-chGUEcrossover(2.2). The low-energyconstantsaredeterminedbythefollowingsteps: (I)fitthehistogramofeachofthetwo smallest Dirac eigenvalues (i.e. four counting the Kramers degeneracy) of the pure SU(2) case to therescaledchGSE(ρ =0)prediction p (λ /∆)/∆ byvarying∆,(II)combinetwooptimalvalues k k of ∆ and their variances to determine ∆¯ and thus Σ=π/∆¯V, (III) fit the histogram of each of the four smallest unfolded Dirac eigenvalues x =λ /∆¯ of (a) SU(2)+µ or (b) SU(2)×U(1) case to k k I thechGSE-chGUEprediction p (x )byvaryingρ,(IV)combinefouroptimalvaluesofρ andtheir k k variancestodetermineρ¯ andthusF2µ2=(π2/2)ρ¯2/V. I Wefirstobservethatthefourvaluesof∆ obtainedinthestep(I)aremutuallyconsistent,giving risetocombinedrelativeerrorsinΣthatareextremelysmall,∼0.1%(Table1,top). One-parameter fittingsinthesteps(I),(III-a),or(III-b)arequitesatisfactory,withχ2/dof=0.5∼1.5forallrange of parameters in concern (exemplified in Fig. 2, above). We also confirmed our expectation that the best-fitting values of ρ for k =1,3 and those for k =2,4 have a tendency to counter-move, in favor of cancelling the unfolding ambiguity due to a tiny error within ∆. Relative errors in ρ¯ are considerably reduced by the combined use of four individual eigenvalue distributions (Fig. 2 below), and are no larger than ±.018(stat)±.005(sys). Linear response of ρ¯ on µ or e is I U(1) confirmedfortheSU(2)+µ case(Fig.3,left),andthepseudo-scalardecayconstantF2 atvarious I values of β is obtained from the slopes (Table 1, middle). For the SU(2)×U(1) case, the SU(2) coefficients (equivalent of F2µ2) of the trBˆU†BˆU term in (4.1) divided by e2 , extrapolated to I U(1) e →0aresummarizedinTable1,bottom. Completelatticeresults,anddetailsofanalyticand U(1) numericalcomputationspresentedin§2and§3willbereportedinasubsequentpublication. β 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 SU(2) Σa3 1.310(2) 1.255(2) 1.199(1) 1.139(1) 1.070(1) .987(1) .883(1) .743(1) F2a2 .284(2) .268(2) .247(2) .226(2) .205(1) .178(1) .153(1) .115(1) F2µ2a4/e2 220(2) 198(2) 186(2) 163(1) 145(1) 123(1) 99.5(8) 68.0(6) I U(1) Table1: ChiralcondensateΣfromquenchedSU(2)[top],pseudo-scalardecayconstantF2 fromSU(2)+µ I [middle],andanequivalentofF2µ2(dividedbye2 )fromSU(2)×U(1)[bottom],allinthelatticeunit. I U(1) References [1] Seee.g.M.L.Mehta,Randommatrices,3rded.(Elsevier,NewYork,2004),Chap.1. [2] O.Bohigas,M.-J.Giannoni,andC.Schmidt,Phys.Rev.Lett.52,1(1984). [3] M.R.Zirnbauer,J.Math.Phys.37,4986(1996). [4] S.Müller,S.Heusler,A.Altland,P.Braun,andF.Haake,NewJ.Phys.11,103025(2009). [5] Seee.g.K.B.Efetov,Supersymmetryindisorderandchaos(CambridgeUniv.Press,1997). [6] M.V.BerryandJ.P.Keating,SIAMReview41,236(1999). 6 IndividualeigenvaluedistributionsforchGSE-chGUEcrossover ShinsukeM.Nishigaki 1.2 1.0 0.8 1st 1st 1st psk0.6 !" 23nrdd 23nrdd 23nrdd 0.4 4th 4th 4th Full Full Full 0.2 0.0 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 s s s 0.285 0.380 0.190 0.375 0.280 0.370 Ρ 00..118805 !! !! !! !! 00..227705 !! !! !! !! 00..336605 !! !! 0.355 !! !! 0.175 0.265 0.350 0.260 1 2 3 4 1 2 3 4 1 2 3 4 k k k Figure2: Histogramsofkth unfoldedDiraceigenvaluesforβ =0.25ande =0.0008,.0012,.0016 SU(2) U(1) [above,lefttoright]andbest-fitting p (s)(k=1∼4)fromthechGSE-chGUEcrossover. Theρ parameter k determinedforeachk,theircombinedvalues[dots]andstatisticalerrors[band]areshownbeloweachgraph. 8.20 234 8.15 232 ! 8.10 ! 230 ! ΡΜI 8.05! ! ! ! ! ! Ρe 228! ! ! ! ! ! 8.00 ! 226 7.95 ! 224 7.90 0.01 0.02 0.03 0.04 0.05 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 ΜI e Figure 3: Ratios ρ¯/µ for SU(2)+µ at β =0.5 [left] and ρ¯/e for SU(2)×U(1) at β =0.25 I I SU(2) U(1) SU(2) [right]. [7] F.J.Dyson,J.Math.Phys.3,1191(1962). [8] N.DupuisandG.Montambaux,Phys.Rev.B43,14390(1991). [9] K.Saito,T.Nagao,S.Müller,andP.Braun,J.Phys.A:Math.Theor.42,495101(2009). [10] P.H.Damgaard,U.M.Heller,K.Splittorff,andB.Svetitsky,Phys.Rev.D72,091501(2005). [11] P.H.Damgaard,K.Splittorff,andJ.J.M.Verbaarschot,Phys.Rev.Lett.105,162002(2010). [12] S.M.Nishigaki,Prog.Theor.Phys.128,1283(2012);Phys.Rev.D86,114505(2012). [13] P.H.DamgaardandS.M.Nishigaki,Phys.Rev.D63,045012(2001). [14] P.J.Forrester,T.Nagao,andG.Honner,Nucl.Phys.B553,601(1999). [15] F.Bornemann,Math.Comp.79,871(2010);MarkovProcessesRelat.Fields16,803(2010). [16] J.J.M.Verbaarschot,Phys.Rev.Lett.72,2531(1994). [17] J.B.Kogutetal.,Nucl.Phys.B582,477(2000). [18] T.Blum,T.Doi,M.Hayakawa,T.Izubuchi,andN.Yamada,Phys.Rev.D76,114508(2007). [19] M.A.HalaszandJ.J.M.Verbaarschot,Phys.Rev.Lett.74,3920(1995). 7