ebook img

Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl [b PDF

18 Pages·2017·1.69 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl [b

molecules Article Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl[b]quinolines and Subsequent Transformation to Cryptolepine Derivatives KyoheiYonekura ID,MikaShinoda,YukoYonekuraandTeruhisaTsuchimoto* ID DepartmentofAppliedChemistry,SchoolofScienceandTechnology,MeijiUniversity,1-1-1Higashimita, Tama-ku,Kawasaki214-8571,Japan;[email protected](K.Y.);[email protected](M.S.); [email protected](Y.Y.) * Correspondence:[email protected];Tel.:+81-44-934-7228 AcademicEditor:AkioBaba (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:9March2018;Accepted:31March2018;Published:5April2018 Abstract: We disclose herein the first synthetic method that is capable of offering heteroaryl[b]quinolines(HA[b]Qs)withstructuraldiversity,whichincludetricyclicandtetracyclic structureswith(benzo)thienyl,(benzo)furanyl,andindolylrings. ThetargetHA[b]Qisaddressedby theannulationofo-acylanilinesandMeO–heteroareneswiththeaidofanindiumLewisacidthat effectivelyworkstomaketwodifferenttypesoftheN–CandC–Cbondsinonebatch. Aseriesof indolo[3,2-b]quinolinespreparedherecanbesubsequentlytransformedtostructurallyunprecedented cryptolepinederivatives. MechanisticstudiesshowedthattheN–Cbondformationisfollowedby theC–Cbondformation. Theindium-catalyzedannulationreactionthusstartswiththenucleophilic attackoftheNH groupofo-acylanilinestotheMeO-connectedcarbonatomoftheheteroarylringin 2 anS Arfashion,andtherebytheN–Cbondisformed. Theresultingintermediatethencyclizesto N maketheC–Cbondthroughthenucleophilicattackoftheheteroaryl-ring-basedcarbonatomtothe carbonylcarbonatom,providingtheHA[b]Qafteraromatizingdehydration. Keywords: anti-canceractivity;anti-malarialactivity;heteroarenes;indium;Lewisacids;pyridine; one-pot;quindolines;tandemreaction 1. Introduction Heteroaryl[b]quinolines (HA[b]Qs), wherein electron-rich heteroaryl rings are fused to the [b] site of quinoline, are important frameworks found in natural products [1–3] and biologically active molecules [1,4–6] as well as functional organic materials [7–9]. Due to their significance, numeroussyntheticapproacheshavebeendevelopedfortheconstructionofsuchstructuralmotifs. Theseapproachescouldbecategorizedsimplyintothreestrategiesonthebasisofthering-constructing method(Figure1),whicharetheheteroarylringformation(strategya)[10–22],thecentralpyridyl ringformation(strategyb)[23–39],andtheformationofbothrings(strategyc)[4,40–53]. Although thereareadvantagesanddisadvantagestoeachstrategyfromvariousaspects,thestrategybseemsto bethemostuser-friendlyintermsoftheaccessibilityofthestartingsubstrates. Ontheotherhand,wehaverecentlyreportedanewC(heteroaryl)–Nbond-formingreactionby reactingelectron-richmethoxyheteroareneswithaminesviaanucleophilicaromaticsubstitution(S Ar) N reaction[54]. Inadditiontothis,wehavealsodevelopedseveralnewC(heteroaryl)–Cbond-forming reactionsbyreactingalkynes[55–57]orcarbonylcompounds[58–60]withheteroarenes. Allofthese reactionsareeffectivelycatalyzedbyasaltofanindium(III)Lewisacid,whichhasbeenalsoemployed Molecules2018,23,838;doi:10.3390/molecules23040838 www.mdpi.com/journal/molecules Molecules2018,23,838 2of18 forvariousorganictransformationsbyotherresearchgroups[61–71]. Wethereforeenvisagedthat conductingthetwodifferenttypesofreactionsinatandemfashionwouldbeanewmethodologyof thestrategybtooffertheHA[b]Qinaneasyway,therebyalsoleadingtothefurtherexpansionof ourindium-basedtechnology. OurworkinghypothesisisillustratedmoreintelligiblyinScheme1. We thus expected that the synthesis of HA[b]Qs 4 could be achieved by mixing o-alkynylanilines 1 or o-acylanilines 2 with methoxyheteroarenes 3 in the presence of a catalytic indium Lewis acid (InX =In). ThefirststageistheS Ar-basedN–Cbond-formingreactionthroughthenucleophilic 3 N attackoftheaminogroupof1or2toelectrophiliccomplexAtoafford5or6,respectively.Intermediate 5or6successivelycyclizesbyformingtheC–Cbondinanintramolecularfashion,thusgiving7or8, respectively,viatheactivationmodeofBorC.Theisomerizationordehydrationasthefinalstage results in the formation of desired HA[b]Q 4. We also expected that combining the two indium transformations, both of which are compatible with a broad range of substrates, should lead to the development of the HA[b]Q synthesis with good substrate generality. As stated above, a lot of studies that synthesize the HA[b]Q have appeared so far in literature, but these studies have been limited to preparing HA[b]Qs with one to three types of heteroaryl rings, to the best of our knowledge [72–74]. We report herein that an indium salt effectively catalyzes the N–C and C–C bond-formingsequencetoaffordarangeofHA[b]Qsincludingtricyclicandtetracyclic[2,3-b]and [3,2-b]structureswithsulfur-,oxygen-,andnitrogen-basedfive-memberedheteroarylrings. Among theproducts,indolo[3,2-b]quinolines,whichcanbeeasilyconvertedtocryptolepinederivativesthat havebeenknowntoexhibitanti-malarialandanti-canceractivities,areincluded[75]. Figure1.Syntheticstrategiesfortheconstructionoftheheteroaryl[b]quinoline(HA[b]Q)structure. Scheme1.AworkinghypothesisforthesynthesisofHA[b]Qs4.In=InX . 3 Molecules2018,23,838 3of18 2. ResultsandDiscussion In order to verify the working hypothesis, we first investigated the possibility of whether o-ethynylaniline(1a)worksasasubstrateforthesynthesisoftheHA[b]Qunderindiumcatalysis,and selected3-methoxybenzothiophene(3a)asthesubstratepartner(Table1). Upontreatmentof1aand 3awith5mol%ofIn(NTf ) (Tf=SO CF )inPhClat110◦Cfor24h,wewerepleasedtoobservethat 2 3 2 3 thedesiredannulationproceededtogive11-methyl[1]benzothieno[3,2-b]quinoline(4aa),albeitinlow yield(entry1). Whilethescreeningofotherindiumsaltsprovidednosignificantimprovementsinthe yieldof4aa,asmallamountofo-acetylaniline(2a)wasformedalongwith4aawhenusingIn(ONf) 3 (Nf=SO C F )asacatalyst(entries2–6). Inthiscontext,awidevarietyofLewisacids,including 2 4 9 indiumsalts,havebeenknowntoactascatalystsforthehydrationofaC≡Cbondtocreateacarbonyl functionality [76,77]. A possible explanation for the formation of 2a is thus the indium-catalyzed hydrationof1awithH O,whichcouldhavebeenpresentinasmallquantityinthereactionmixture. 2 Accordingly,wepresumedthat,asroutesfortheformationof4aa,therewouldbetwopossibilities: oneisdirectlyfrom1a, andtheotherisindirectlyfrom2aformedinsituafterthehydrationof1a. Inordertogetaninsightintowhichroutesoperatehere,thefollowingexperimentswereconducted. Thus,theannulationcarriedoutundertheconditionsofentry3,additionallyincludingfivemolar equivalentsofH O,resultedinhigheryieldsofboth4aaand2a(entry7). Moreover,theprolonged 2 reactiontimefrom24hto36hraisedtheyieldof4aato61%withthecompleteconsumptionof2a (entry8). Theseresultssuggestthat4aaislikelytobeformedthroughthegenerationof2abythe hydrationof1a,whereasthecontributionofthedirectroutefrom1acannotbecompletelyexcluded. Table1.Indium-catalyzedannulationofo-ethynylanilinewith3-methoxybenzothiophenea. Entry InX3 t(h) Yieldof4aa(%)b Yieldof2a(%)b 1 In(NTf ) 24 11 <1 2 3 2 In(OTf) 24 9 <1 3 3 In(ONf) 24 14 2 3 4 InCl 24 2 <1 3 5 InBr 24 3 <1 3 6 InI 24 5 <1 3 7c In(ONf) 24 26 30 3 8c In(ONf)3 36 61(61)d <1 aReagentsandconditions(unlessotherwisespecified):1a(0.250mmol),3a(0.300mmol),InX3(12.5µmol,5mol%), PhCl(0.20mL),andperformedunderargon(1atm).bDeterminedby1H-NMRusingMeNO2asaninternalstandard. cPerformedinthepresenceofH2O(1.25mmol,5equiv.).dTheisolatedyieldof4aaisshowninparentheses. Onthebasisoftheaboveresults,weturnedourattentiontotheannulationwith2ainsteadof 1a(Table2). Asexpected,underthesamereactionconditionsasthoseforentry3ofTable1,4aawas produced in significantly higher yield of 62% (entry 1). Inspired by this result, we continuously examinedtheeffectofvariousindiumsaltsotherthanIn(ONf) forthesameannulationreactionof 3 2awith3a. Thus,In(OTf) andIn(NTf ) withthestrongelectron-withdrawingligandsasIn(ONf) 3 2 3 3 alsocatalyzedtheannulation,andtheyieldof4aaincreasedto74%intheuseofIn(NTf ) (entries2 2 3 and3). Amongtheindiumhalidesexamined,InBr andInI werefoundtobehighlyeffective,giving 3 3 4aain92%yieldinboththecases,insharpcontrasttotheinactivityofthefluoridesalt(entries4–7). However,thecorrespondinghydroxideandacetatesaltsweretotallyinactive(entries8and9). Dueto theremarkablecatalyticactivityofInBr ,metalbromidesof,forinstance,Sc,Fe,Co,Pd,Cu,Ag,Zn,Pb, 3 andBiweretested,butprovedtobelesseffective(entries10–18). No4aawasformedintheabsence Molecules2018,23,838 4of18 ofacatalyst,whichisthusindispensablefortheprogressoftheannulation(entry19). WithInBr as 3 thepromisingcatalyst,acontinuoussurveyofthesolventeffectindicatedthatPhClwouldbethe mostsuitablesolventofchoicefortheannulation,andthatthereactionrategreatlydecreasesinH O 2 (entries20–27). Whiletheloweringofthecatalystloadingto1mol%accompaniesthedecreaseofthe reactionrate,thegoodyieldof4aacanbesecuredbyextendingthereactiontimeto96h(entry28). Favorably,theannulationcanbealsocarriedoutunderanatmosphereofairinsteadofargontoafford 4aain88%yield(entry29). Table2.Lewisacid-catalyzedannulationofo-acetylanilinewith3-methoxybenzothiophenea. Entry LewisAcid Solvent Conversionof2a(%)b Yieldof4aa(%)c 1 In(ONf) PhCl 86 62 3 2 In(OTf) PhCl 73 55 3 3 In(NTf ) PhCl 79 74 2 3 4 InF PhCl 4 <1 3 5 InCl PhCl 95 83 3 6 InBr PhCl 97 92 3 7 InI PhCl 97 92 3 8 In(OH) PhCl <1 <1 3 9 In(OAc) PhCl <1 <1 3 10 ScBr PhCl 61 50 3 11 FeBr PhCl 86 62 3 12 CoBr PhCl 31 22 2 13 PdBr PhCl 47 29 2 14 CuBr PhCl 28 18 2 15 AgBr PhCl 3 <1 16 ZnBr PhCl 15 5 2 17 PbBr PhCl <1 <1 2 18 BiBr PhCl 45 33 3 19 None PhCl 5 <1 20 InBr PhMe 91 82 3 21 InBr Bu O 85 74 3 2 22 InBr 1,2-Diethoxyethane 91 80 3 23 InBr 1,4-Dioxane 87 66 3 24 InBr3 MeNO2 88 76d 25 InBr PrCN 82 76 3 26 InBr BuOH 92 73 3 27 InBr H O 48 37 3 2 28e InBr PhCl 89 70 3 29f InBr3 PhCl 97 88 aReagentsandconditions(unlessotherwisespecified):2a(0.250mmol),3a(0.300mmol),Lewisacid(12.5µmol, 5mol%),solvent(0.20mL),andperformedunderargon(1atm). bDeterminedbyGCusingn-dodecaneasan internalstandard. cDeterminedby1H-NMRusingMeNO2asaninternalstandard. dDeterminedby1H-NMR usingCH2Br2insteadofMeNO2asaninternalstandard.ePerformedwithInBr3(2.50µmol,1mol%)for96h.f Performedunderair(1atm). Withtheproperreactionconditionsinhand, wenextexaminedthescopeoftheo-acylaniline substrate to 3a (Table 3). Similar to o-acetylaniline (2a), its derivatives with the OH, OMe, or methylenedioxygroupsuccessfullyparticipatedintheannulation(4aa–4da). Theformationof4ba in such high yield shows that the OH group does not interfere with the progress of the desired annulationbyactingasthenucleophilicsite,astheNH groupdoes. Noundesiredringfragmentation 2 oftheacetalmoietyin4dawasobserved,evenundertheLewisacidicconditions[78]. Thebulkier Molecules2018,23,838 5of18 isopropylgrouponthecarbonylcarbonatomdoesnotaffecttheefficiencyoftheannulation,giving 4eain97%yield. ACF group,theC–Fbondofwhichisknowntoincreasemetabolicstabilityand 3 membranepermeability,thusleadingtoimprovementinbioavailability[79],canbealsoinstalledonto theC11-positionofthebenzothieno[3,2-b]quinolinestructure(4faand4ga). Acommerciallyavailable hydrochloride–hydrateadductofo-acylaniline2gcanbeusedasasubstratewithoutneutralizingand drying. Ourprotocolisapplicableaswelltoo-acylanilineswithaseriesofarylgroupswithdifferent electronicandstericnatures,inwhichthesimplephenylgroupfor4haand4ia,p-MeOC H for4ja, 6 4 p-FC H for4ka,o-MeC H for4la,ando-fused-aroylC H for4maareincluded. Theatmosphereof 6 4 6 4 6 4 airwasagainconfirmedtobeavailableonthesynthesisof4ha. Inthereactionofaminoanthraquinone 2mwithtwocarbonylmoieties,onlytheoneadjacenttotheNH groupworkedasareactionsiteto 2 providehexacyclic-fusedringsystem4mainoneshot. OfimportancetonoteisthattheMeO,Cl,andF groupsonthearylringareknowntobehaveasleavinggroupsinthegeneralS Arreaction,butwere N foundtobecompatiblewiththereactionconditions,thuscontributingtothehigh-yieldformationof thetargetmolecules(4ca,4ga,4ia,4ja,and4ka)[80]. Besidesthebenzothieno[3,2-b]quinoline,ourmethodisapplicabletopreparingarangeofHA[b]Qs byusingothersulfur-andoxygen-basedmethoxyheteroarenes(Table4). Thereplacementof3awith 2-methoxybenzothiophene(3b)enablestheswitchofthefused-ringorientationfromthe[3,2-b]to the [2,3-b], and products 4ab and 4bb were obtained in high yields. However, in contrast to the successfulconstructionofthieno[2,3-b]quinoline4ac,4hc,and4ad,changingthefused-ringorientation to the [3,2-b] in this case resulted in low yield of 4he. In the reaction of 3-methoxythiophene (3e), aself-condensationreaction,inwhichtwomoleculesof2hreactwitheachothertoformcyclicdiimine9, occurredasamajorsidereaction(Figure2). Thisresultislikelytoberelated,atleastinpart,tothe relativelylowreactionrateofthedesiredS Arprocessbetween2hand3e,and,infact,70%of3e N loadedforthereactionremainedunconsumed. Inthiscontext,wehavepreviouslyconfirmedthatthe S Araminationreactionof3-methoxythiophene(3e)requiresahigherloadingofanindiumcatalyst N as well as higher temperature compared to those for the reaction of 2-methoxythiophene (3c) [54]. Inadditiontothesulfur-containingHA[b]Qs,thetetracyclicandtricyclicoxygen-containinganalogues canbeaddressedbyourmethodinmoderatetogoodyields(4af,4hf,and4ag). Whenpreparing4ag, InI workedasacatalystmoreefficientlythanInBr . Unfortunately,noannulationreactionof2awith 3 3 2-methoxy-1-phenylpyrrole(3h)forthesynthesisofpyrrolo[2,3-b]quinoline4ahproceeded,dueto someundesiredsidereactions, includingN-methylationof2abytheMeOgroupof3hactingasa sourceofamethylgroup. AscollectedseparatelyinTable5,wesuccessivelypresenttheresultofconstructingtheframework oftheindolo[3,2-b]quinoline,whichisalternativelynamedquindoline,havingbeenknowntoshow cytotoxic activity against human cancer cell lines [81]. As in our preceding S Ar amination [54], N commercially unavailable 3-methoxyindole was not required, but rather commercially available 3-acetyloxyindole(3i)canbeusedhereagainasasubstrate. Thus,mixing2a,3i,andInBr (5mol 3 %)inPhCl,andthenheatingthemixtureat110◦Cfor24hgave4aiin55%yield. Otherquindoline derivatives 4di, 4fi, and 4gi could also be synthesized by our method. Unlike the annulation of 2g–HCl–H Owith3-methoxybenzothiophene(3a)(see4gainTable3),thepre-removalofHCland 2 H O from 2g–HCl–H O as a commercial source is required here to obtain 4gi in reasonable yield. 2 2 With 2g–HCl–H O instead, the formation of 4gi resulted in only 1% NMR yield. These results 2 inspiredustoaddresscryptolepinederivatives, duetotheirpotentialitiesasanti-malarialand/or anti-cancerdrugs. Molecules2018,23,838 6of18 Table3.Indium-catalyzedannulationofo-acylanilineswith3-methoxybenzothiophenea. aReagentsandconditions(unlessotherwisespecified):2(0.250mmol),3a(0.300mmol),InBr3(12.5µmol,5mol%), PhCl(0.20mL),andperformedunderargon(1atm).Yieldsofisolated4basedon2areshownhere.bYieldswhen performedunderair(1atm).cPerformedinPhCl(0.40mL)for36h.dPerformedwithaHCl–H2Oadductof2g. ePerformedinPhCl(0.50mL)at130◦C. Molecules2018,23,838 7of18 Table4.Indium-catalyzedannulationofo-acylanilineswithmethoxyheteroarenesa. aReagentsandconditions(unlessotherwisespecified):2(0.250mmol),3(0.300mmol),InBr3(12.5µmol,5mol%), PhCl(0.20mL),andperformedunderargon(1atm).Yieldsofisolated4basedon2areshownhere.bPerformed witha1.2:1mixtureof2b(0.300mmol)and3b(0.250mmol).cPerformedwith3(0.500mmol,2equiv.).dPerformed withInBr3(37.5µmol,15mol%).ePerformedfor3h.fPerformedwithInI3insteadofInBr3. Figure2.Amajorbyproductformedinthereactionof2hwith3e. Molecules2018,23,838 8of18 Table5.Indium-catalyzedannulationofo-acylanilineswith3-acetyloxyindolea. aReagentsandconditions(unlessotherwisespecified):2(0.250mmol),3i(0.625mmol),InBr3(12.5µmol,5mol%), PhCloro-C6H4Cl2asasolvent,andperformedunderargon(1atm).Yieldsofisolated4basedon2areshownhere. bPerformedonthefollowinglargerscaleinthepresenceofH2O:2a(2.20mmol),3i(5.50mmol),H2O(11.0mmol), InBr3(110µmol,5mol%),PhCl(1.7mL).cPerformedinPhCl(0.30mL).dPerformedino-C6H4Cl2(0.20mL).e Performedwith2g–HCl–H2Oasacommercialsourceinsteadof2g. As previously demonstrated, the HOTf adduct of the 11-methylated cryptolepine (11-Me-10) shows higher anti-malarial and antitrypanosomal activities than that of the original cryptolepine (10)(Figure3). SincetheN-methylationofthepyridineringof4aiwithmethyltriflate(MeOTf)has been already reported [82], we targeted the synthesis of analogues thereof from other quindoline derivatives4di,4fi,and4gi(Table6). TheN-methylationinaccordancewiththemodifiedliterature proceduresuccessfullydelivered10di,10fi,and10gi,whicharenewcompoundsunreportedinthe literature[82]. Especially,10fi,whichhasthe11-CF groupinsteadofthe11-CH groupin11-Me-10, 3 3 mightbeexpectedtobepromisinginviewofanti-malarialandantitrypanosomalactivities,dueto thepossiblehigherbioavailability. Moreover,sincetheacid-freecryptolepinederivativeshavebeen thefocusofexamininganti-canceractivity(11and11-Me-11inFigure3),thereshouldbeademand fortheacid-freeform. Accordingly,weconfirmedthattheneutralizationof,forinstance,10fiwitha Na CO aqueoussolutionprovides11fiwithnoTfOHinquantitativeyield(Scheme2). 2 3 In order to get insight into the reaction pathway of the present annulation reaction, someexperimentswereperformed(Scheme3). Atfirst,upontreating2ewith3aatroomtemperature ratherthanthestandardheatingtemperature,onlytheS Ar-basedintermolecularN–Cbond-forming N reactionproceededtofurnish6eain53%yieldwith60%conversionof2e,thusbeingnotcontaminated by 12ea derived from the C–C bond formation as a possible alternative first stage, and by final annulation product 4ea [Equation (1) in Scheme 3]. Subsequently, 6ea isolated from the reaction ofEquation(1)washeatedunderthestandardreactionconditions, andthereby4eawasobtained highlyefficientlyviatheintramolecularC–Cbond-formingannulation[Equation(2)inScheme3]. Ontheotherhand, Me -2e, whereinthenitrogenatomisdimethylatedandwouldthusnolonger 2 act as a nucleophilic site, did not participate in making a C–C bond with 3a, leading possibly to Me -12ea. Asaresult,Me -2ewasrecoveredquantitatively,evenunderthestandardheatingreaction 2 2 conditions[Equation(3)inScheme3]. Accordingly,theseresultsstronglysuggestthattheannulation reactionproceedsintheorderoftheS Ar-basedintermolecularN–Cbondformation,followedbythe N S Ar-basedintramolecularC–Cbondformation. ExperimentalproceduresforEquations(1)and(2)as E wellasspectralandanalyticaldata(meltingpoint,NMR,andHRMS),andNMRchartsforproducts 6eaand4eaareprovidedinSupplementaryMaterials. Molecules2018,23,838 9of18 Figure 3. Anti-malarial, antitrypanosomal and anti-cancer activities of cryptolepine, 11-methylcryptolepine,andtheirHOTfadducts[82]. Table6.N-Methylationofindolo[3,2-b]quinolineswithMeOTfa. aReagents:4(0.100mmol),MeOTf(0.190mmol),solvent[CH2Cl2(1.2mL)ortoluene(0.60mL)].Yieldsofisolated 10basedon4areshownhere. Scheme2.Neutralizationof10fi. Molecules2018,23,838 10of18 Scheme3.Controlexperimentsformechanisticstudies. Onthebasisoftheaboveexperimentalresultsaswellasthepreviousones,aproposedreaction mechanism is illustrated in Scheme 4 that exemplifies the reaction of 2e with 3a. First up is the S Ar-basedintermolecularaminationof3abythenucleophilicattackofthenitrogenatomof2evia N previouslyproposedtransitionstateA[54],followedbythereleaseoftheindiumcatalyst(In)and MeOHtogiveintermediate6ea. Nextisthenucleophilicattackofthethienylringtothecarbonyl moietyactivatedbyInasshownintransitionstateB,herebyproviding8ea,andthendesiredstructure 4eaafteraromatizingdehydration.Thering-closingC–Cbond-formingprocessmightbeacceleratedby theelectronflowfromthelonepaironthenitrogenatom. However,duetothefactthat6eaistheonly intermediateconfirmedduringtheannulationprocess[Equation(1)inScheme3],therate-determining stepislikelytobepresentattheintramolecularC–Cbond-formingstage.

Description:
Antihyperglycemic Activities of Cryptolepine Analogues: An Ethnobotanical. Lead Structure Isolated from Cryptolepis sanguinolenta. J. Med Thieno(2,3-b)quinolines via an Unexpected Domino Aza-MBH/Alkylation/Aldol Reaction. J. Org. Chem. 2016, 81, 1216–1222. [CrossRef] [PubMed]. 53. Gao
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.