ebook img

Indirect Search for Dark Matter in M31 with the CELESTE Experiment PDF

0.34 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Indirect Search for Dark Matter in M31 with the CELESTE Experiment

1 M31 (Andromeda)is our nearest neighbourspiral galaxy,and both its high mass and its low distance make it a source of interest for the indirect search for dark matter through γ-ray detection. The ground based atmospheric Cherenkov telescope CELESTEobservedM31from2001to2003,inthemostlyunexploredenergyrange50-500GeV.Theseobservationsprovide anupperlimitonthefluxabove50GeVaround10 10cm 2s 1 intheframeofsupersymmetricdarkmatter,andmoregenerally − − − onanygammaemissionfromM31. Keywords.Gamma-RayObservations–DarkMatter–SpiralGalaxy 6 0 0 2 n a J 3 1 1 v 8 9 2 1 0 6 0 / h p - o r t s a : v i X r a Astronomy&Astrophysicsmanuscriptno.celeste˙M31 February5,2008 (DOI:willbeinsertedbyhandlater) Indirect Search for Dark Matter in M31 with the CELESTE Experiment J.Lavalle1,⋆,H.Manseri2,A.Jacholkowska1,E.Brion3,R.Britto1,P.Bruel2,J.BussonsGordo1,D.Dumora3,E. Durand3,E.Giraud1,B.Lott3,F.Mu¨nz4,E.Nuss1,F.Piron1,T.Reposeur3,andD.A.Smith3 1 Laboratoire de Physique The´orique et Astroparticules, CNRS-IN2P3 / Universite´ de Montpellier II, 34095 Montpellier, France 2 LaboratoireLouisLeprince-Ringuet,CNRS-IN2P3/E´colePolytechnique,91128Palaiseau,France 3 Centred’EtudesNucle´airesdeBordeaux-Gradignan,CNRS-IN2P3,33175Bordeaux,France 4 Laboratoired’AstroparticuleetCosmologie,CNRS-IN2P3/Colle`gedeFrance,75231Paris,France Receivedxx,xx;acceptedxx,xx Abstract.Ifdarkmatterismadeofneutralinos,annihilationofsuchMajoranaparticlesshouldproducehighenergycosmic rays,especiallyingalaxyhalohighdensityregionslikegalaxycentres. 1. Introduction The presence of dark matter in the Universe has been known for decades. Since early measurements in galaxy clusters (Zwicky, 1937), the mass distribution of the Universe has been studied at different scales with a focus on dynamical effects bymeansofgalaxystarrotationcurves,large-scalegalaxyclusterdynamics(Ostrikeretal.,1974).Recentdevelopmentsinob- servationaltechniquesincosmologyhaveresultedinindependentestimatesofthemattercontentoftheUniverseΩ h2,through m large-scale structure surveys(Hawkins et al., 2003 ; Lovedayet al., 2002) and measurementsof the cosmic microwave back- groundradiation(themostrecentbeingtheWMAPmission(Spergeletal.,2003)).Givenstandardcosmology,allsuggestthat mostofthematterintheUniverseisdark,coldandnon-baryonic.SuchhypotheseshaveledtotheconstructionoftheColdDark Matter(CDM)paradigm(Blumenthaletal.,1984):darkmatterwouldbemadeofWeaklyInteractingMassiveParticles(WIMPs) whichareneutral,stableandoriginatingfromtheBigBangera(Lee&Weinberg,1977). Supersymmetrictheories(SUSY) (see for instanceNilles, 1984) offer an excellentWIMP candidate(Goldberg,1983), the neutralino,whichisamixtureofthesuperpartnersoftheneutralHiggsbosonsandoftheelectroweakgaugebosons.Wewillnot discussthecaseofextra-dimensionphenomenologicaltheories,whichalsoprovideinterestingcandidates(Servant&Tait,2003). Thenatureofdarkmatterispresentlyprobedinbothdirectsearches,bymeansofundergroundexperimentsthatcoulddetect elastic interactionsofneutralinoswithnuclei,andindirectsearchesusinggroundbasedorsatellite telescopestodetectcosmic rays (gamma, leptons or hadrons) created by neutralino pair annihilations in galactic or extragalactic media (for review, see Bergstro¨m2000). Thesedifferenttypesofsearches,togetherwithcolliderexperiments,arenecessarytoconstraininawiderviewthequantum natureofdarkmatter,becausetheyalloweitheradditionalorcomplementarysurveysoftheparticlemodelparameterspaces. SearchingforWIMPannihilationsignatureswithgroundbasedγ-raytelescopesleadstothequestionofthechoiceoftargets. Agoodcandidatewillhavealargeamountofdarkmatter,andcombineasbigadensityaspossible,assmalladistancefromus aspossible,andfinally,willtransitathighelevationintheexperimentalsky.TheGalacticcentreisaprimecandidateexceptfor beingtooclosetothehorizonforCELESTE,whichisinthenorthernhemisphere.Instead,wehavechosenM31andtheDraco dwarfgalaxyfor oursearches.M31,whichis the nearestgiantspiralgalaxy,is verymassive ( 1012M ),and itsstar rotation ∼ ⊙ curve indicates a large amount of dark matter. Draco, a neighbour dwarf spheroidal galaxy dominated by a dark component (Kleynaetal.,2001),isalsoaverygoodcandidatebutourattemptstostudyitwerefoiledbybadweather. Inthispaper,wepresenttheresultofsearchesforγ-rayemissionfromM31withtheCELESTEtelescope.Insection2,we reviewthepredictionsmadefortheobservations(moredetailsinFalvard2004,hereafterF04),forwhichweconsideredCDMin theframeofminimalsupergravity(mSUGRA)phenomenology.Theimpactoftheastrophysicalmodellingisbrieflyrevisited,as Sendoffprintrequeststo:[email protected] ⋆ Presentaddress:CentredePhysiquedesParticulesdeMarseille,CNRS-IN2P3/Universite´Aix-MarseilleII,13288France J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment 3 wellaspossibleconsequencesofnon-standardcosmologies.Focusingontheexperimentaltechniques,wepresentinsection3the methodweusetosearchforaγ-raysignal,withexplicitcomparisonstoCrabdata.Intheabsenceofadetection,2σconfidence levellimitsarecomputedforallstudiedSUSYmodels. 2. Gamma-rayfluxpredictionsforsupersymmetricannihilatingdarkmatterinM31 Undertheassumptionthatneutralinoshaveanisotropicandhomogeneousvelocitydistribution,whichislikelytobethecasein halocentreswheretheWIMPvelocityisexpectedtobelow,theaveragedγ-rayfluxduetotheirannihilation,integratedabove anenergythresholdE andwithinthesolidangle∆Ωcanbewrittenas: th Φ(E )= 1 Nγ(Eth)<σv> ρ2(s)dsdΩ 1 Nγ(Eth)<σv> Σ(θ) (1) th 4π 2m2χ0 Z∆Ω(θ)Zl.o.s. ≡ 4π 2m2χ0 We thus decoupleastrophysicsmodellingfrom SUSY contributions.The first part of the right hand term is related to particle physics, via the thermally averaged product of the cross section σ with the velocity v producing N (E ) photons of energy γ th E > E , and the neutralino mass m . The second term refers to the (squared) halo density profile ρ integrated within an th χ0 experimentalfieldofviewofangularradiusθ alongthelineofsightds. Atthesame time,wedefineΣ(θ) astheastrophysical factoroftheflux. As γ-rays result mainly from hadronization of annihilation final states (mainly quarks and gauge bosons), their spectral shapemainlytakesits origininthedecayofπ0.Ithasbeenshownbyseveralauthors(seeforinstanceBergstro¨metal.,1998, or Tasitsiomi et al., 2002) that such a spectrum can be fitted or modelled with respect to the neutralino mass. Therefore, the differentialspectrumaboveathresholdenergyE canbewrittenasfollows: th dΦ (E > E ) Φ(E ) f(E,m ) (2) dE th ≡ th × χ0 where f(E,mχ0) is the spectral shape derived from the SUSY model and normalized such that E∞th f(E,mχ0)dE = 1, so that Φ(E )istheintegratedspectrumaboveanenergythresholdE .ThisexpressionwillbeusefulwhRenweinterprettheM31data th th collectedbyCELESTE. 2.1.Halomodelling M31isalate-typeSbspiralgalaxy,whichliesatadistanceofabout675kpc,andisobservablefromtheNorthernhemisphere(RA =10.68o,DEC=41.27o).AstudybyBraun(1991),basedupontheanalysisofHIdataandamodel-independentreconstruction ofthevelocityfield,showedthatthestar rotationcurvearisesnaturallybyconsideringtwo opticallytracedmasscomponents: abulge,withatotalmassof(7.8 0.5) 1010M ,andadiskof(1.22 0.05) 1011M within28kpc.Nevertheless,itseems thatthestarmass-to-lightratiosus±edint×hispaper⊙,Υ =6.5andΥ ±=6.4(×solaruni⊙tsinblueband),areover-estimated(cf. bulge disk F04). Byloweringthebulgeanddiskcontributions,thatisΥ =3.7andΥ =2.5asindicatedbyF04,weassumedthatadark bulge disk halosignificantlyaccountsforthegravitationalpotential.LetusconsiderthefollowingCDMdensityprofile: r γ rα+aα ǫ ρ (r)=ρ 0 0 , (3) CDM 0(cid:18) r (cid:19) rα+aα! wherer usuallystandsforacoreradiusandaascalelength.AnNavarro-Frenk-Whiteprofile(Navarroetal.,1996),i.e.with 0 γ = 1,α = 1andǫ = 2,fitstherotationcurve,andhasitsparametersentirelydeterminedbythepreviousmass-to-lightratios. Thefittedvaluesareρ 0.07GeV.cm 3,r 20kpcanda 5kpc.Theresultingcontributiontotheγ-fluxwithinCELESTE’s 0 − 0 ∼ ∼ ∼ fieldofview(θ=5mrad 0.3o,correspondingtoa3.5kpcradius)hasbeencalculated: ∼ Σ(θ=5mrad)=3 1019GeV2cm 5. (4) − × Thisresultdependsstronglyonthecentraltailofthedarkhalo,butisratherconservativesincecalculatedwithar 1profile. − 2.2.ProbingtheSUSYparameterspace We choose the minimal supergravity framework (mSUGRA) to scan over the SUSY parameter space. In this frame, a SUSY modelcanbedefinedattheunificationscalewith5parameters:theunifiedscalarmassm ,theunifiedgauginomassm ,the 0 1/2 Higgsvacuumexpectedvalueratio tan(β), the unifiedtrilinear coupling A and the sign ofthe mixingparameterof the Higgs 0 superfieldsµ.WeuseaninterfacebetweenthepubliccodesSuspect(Djouadietal.,2002)andDarkSusy(Gondoloetal.,2004) to compute SUSY masses, annihilation rates and relic densities for various random models. The constraints on these models 4 J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment 1 ) 2 - s 10-8 -m x (c 10-9 d Flu 10-10 150000 << mmχχ << 161000 GGeeVV e at gr 10-11 e nt I -12 10 -13 10 -14 10 -15 10 -16 10 -17 10 2 1 10 10 Energy Threshold (GeV) Fig.1.Integratedexpectedγ-fluxfromM31asafunctionoftheenergythreshold,fortwoselectionsoflow(100-110GeV)and high(500-600GeV)neutralinomasses(Ω h2 [0.086,0.14]),showingthemass-dependenceoftheflux,andthecomplemen- χ0 ∈ taritybetweenEGRETandCELESTE. comefromstandardacceleratorlimits,andweselectaratherlargerangefortherelicdensity(Ω h2 [0.05,0.14])1,according χ0 ∈ totheWMAPmeasurementΩ h2 =0.113 0.009(Bennettetal.,2003). χ0 ± Combining the resulting γ-spectrum with the astrophysical factor Σ, we calculate the integrated flux as a function of the thresholdenergy,asshowninFig.1,inwhichwehaveselectedonlytwogroupsofWMAPcompatibleneutralinos(respectively small and high masses) in order to exhibit the mass-dependence of the expected flux. The SUSY models plotted there are characterizedbyahighvalueoftanβ(typically>30),forwhichtheproductionofγ-raysismoreefficient(duetohighbranching ratioinbquarks).Onthesameplot,werepresenttheupperlimitprovidedbytheEGRETcollaboration(Blometal.,1999)and CELESTE’ssensitivity, 6 10 11ph.cm 2s 1, estimated for50hoursofobservation.Thisfigureillustratesthe mass-and/or- − − − ∼ × energyexperimentalcomplementarities. 2.3.Othercontributions Althoughthepredictedfluxesarelow( 10 13cm 2s 1 atathresholdof 50GeV), 3ordersofmagnitudesmallerthanfor − − − ∼ ∼ ∼ theCrabnebula(thereforefarfromCELESTE’ssensitivity),severaleffectscouldenhancethem. First ofall, darkmattersubstructures,the so-calledclumps,arise naturallyinthe hierarchicalschemeofgalaxyformation, and simulations of the non-linear regime of collapse allow a semi-theoretical study of their statistics and structure (Moore et al.,1999).Suchlocaloverdensitiesshouldinduceextraneutralinoannihilations,andtranslatetoanadditionalfactortotheflux. Although it is rather difficult to estimate how clumpy the galaxies remain today, this enhancement factor was until recently supposedtobesmallerthan 10(Stoehretal.,2003).Nevertheless,arecentstudybyDiemandetal.(2005)suggeststhatabout ∼ 50%ofaMilky-Way-likegalaxymassispossiblyboundtodarkmattersubstructures,whosemassrangespreadsfrom10 6 up − to107M .Theauthorsclaimthatabout 1015ofsuchsubstructuresmayhavesurvivedagainstgravitationaldisruption,leading ⊙ ∼ toa boostfactorofovertwoordersofmagnitudecomparedtothe smoothcontribution.M31beingverysimilar toourgalaxy, thisstatementshouldalsostandforthatsource. As another possible astrophysical effect, the supermassive black hole at the centre of M31 could raise the central halo profile up due to adiabatic accretion (Gondolo & Silk, 1999). There are other interesting mechanisms involving baryons to enhancethedarkmatterdensity.Gnedinetal.(2004)sketchsuchresponsesofhalostocondensationofbaryons,whileBertone 1 Theupper limitisgivenbytheWMAPresultplusthreesigma.Higher valuesfortherelicdensityarenot thatinterestingbecausethey correspondtolowervaluesoftheannihilationcross-section. J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment 5 etal.(2005)proposeapossibleenhancementoftheWIMPannihilationrateduetothepresenceofintermediate-massblackholes. Beside those astrophysical effects, some recent developments in the frame of theoretical cosmology have focused on the quintessencescheme(Caldwelletal.,1998)tosolvetheso-calledcoincidenceproblem(thefactthatΩ Ω today).Sucha Λ matter ∼ quintessentialfieldcouldundergoakinationregimeintheearlyuniverse(Salati,2003),sothatitskineticenergydominatesover itspotential.Inthisregime,theexpansionrateoftheuniverseisenhancedandthethermalhistoryofneutralinosisconsequently modified: the decoupling of neutralinos can take place more rapidly at earlier times. Therefore, the WMAP constraint leads to a higherneutralinoannihilationcross-section.Thismeansthatthis phenomenonrehabilitatesSUSY modelsfor whichrelic densities are too low, when calculated in standard cosmology. Salati (2003) shows that the relic density enhancement can be parameterizedby: m Ω Ω˜ 1000 χ0 √η Ω withη 0.3. (5) χ0 → χ0 ≃ (cid:18)100GeV(cid:19) 0 χ0 0 ≤ η ρ /ρ ,wherethe0-indexreferstoatemperatureof1MeV,andρ (respectivelyρ )isthequintessence(photon)energy 0 Φ,0 γ,0 Φ γ ≡ density.Theupperlimitonη comesfromBigBangNucleosynthesisstagesthatshouldnotbeperturbedbythekinationregime 0 (Yahiroetal.,2002). Accordingtothiscosmology,higherannihilationratemodelsarerequired,whichthereforemeansthattheγ-rayproduction isenhanced.ThiseffectappearsinthefinalresultsshowedinFig.7,forasmallsampleofselectedSUSYmodels. Finally,weemphasizeanotherinterestingeffectcomingfromAffleck-DinebaryogenesisinSUSY(Fujiietal.,2004),which yieldsnaturalmatter-antimatterasymmetryintheearlyuniverse.Insuchascenario,meta-stableparticlesresultfromoscillations in flat directions of the scalar potential, carrying baryon and/or lepton number, namely Q-balls. These Q-balls can have a lifetimelongenoughtodecayafterthefreeze-outofneutralinos.Thisinducesanon-thermalproductionofneutralinos,andthus enhancestheirrelicdensity.Thisalsorequires,aspreviously,higherneutralinoannihilationratestonotoverclosetheuniverse. Therefore,althoughstandard conservativepredictionsare notthat optimistic, all these putative contributionsmay increase the γ-flux from M31 significantly.This further motivatesobservationsof such a source with CELESTE, keepingin mind that CDMcouldbesomethingbesidesSUSY. 3. ObservationsofM31withCELESTE 3.1.TheCELESTEexperiment CELESTE(Pare´ etal. 2002, deNauroisetal. 2002)is anatmosphericCherenkovtelescopedetectingγ-raysabove 50GeV ∼ (theexperimentshutdowninJune2004).Reachingsuchalowenergythresholdrequiredalargelightcollectionarea,achieved by exploitingthe mirrorsofa solar plant.These mirrorsare used to sample the arrivaltime and photonflux of the Cherenkov wavefrontgeneratedbyatmosphericshowersinitiatedbycosmicraysatmanypointsinthelightpool.Incontrasttotheimag- ing technique(Weekes, 1988) the sampling technique uses informationon the shape of the wavefrontfor hadronrejection, as describedbelow. TheCELESTEexperimentuses53heliostats(40until2001)oftheThe´misformersolarplant(FrenchPyre´ne´es,42.50oN, 1.97oE, altitude 1650 m). Each heliostat (54 m2) reflects the light onto the secondary optics, located at the top of a 100 me- ter tower, focussing the light onto a single photomultiplier (PMT) for each heliostat. The PMT signals are sent to the trigger electronicsandtothedataacquisitionsystemwheretheyaredigitizedby 1GHzflashanalog-to-digitalconverters(FADCs). ∼ The mean altitude of the maximum Cherenkov emission for γ-ray induced showers is around 11 km above the site. The heliostatsareaimedatthisaltitude inthe directionofthe sourceunderstudyto enhancelightcollection.Theobservationsare made in the On-Off tracking mode: the observationof the source (On) is followedor preceded by an observationat the same declinationoffsetinrightascensionby20minutes.Thelatterisusedasareferenceforthecosmic-raybackgroundandthesignal isgivenbythedifferencebetweenOnandOff,afteranalysiscuts. M31 is a specialsourceforCELESTE in thatits bluemagnitudeis about4.3,and 5.4if integratedin the 5 mradfield ∼ ± ofviewofCELESTE(deVaucouleurs,1958).Hence,pointingOn-sourceincreasesthePMTilluminationcomparedtotheOff- sourcedata.ThesameproblemarisestoalesserdegreeforthestudyoftheblazarMrk421,duetothepresenceofthem =6.16 B star51UMainthesamefield-of-view.On-offilluminationdifferencesintroducebiasesatthetriggerlevelandintherecorded datawhichfakeasignalifnothandledproperly.Weremovethesebiasesby“padding”theOff-sourcedatawithextrabackground lightaspartofthedataanalysis,andbymakingapulseheightcut10%abovethehardwaretriggerthreshold,asdescribedin(de Nauroisetal.,2002)andupdatedin(Manseri,2004). In the following, all Monte Carlo simulations are performed at the transit position of sources in the The´mis sky, unless specified.We haveusedtheatmosphericshowersimulatorCorsika(Hecketal.,1998)forourMonteCarlo studies.Moreover, stellarphotometrystudiesusingthePMTanodecurrentsprovidedanimproveddescriptionofouropticsinthedetectorsimulation (Smith&Brion,2004). 6 J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment s 0.35 vt1400 e N 1200 0.3 1000 0.25 800 0.2 600 0.15 400 200 0.1 0 0.05 -200 0 -400 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ξ ξ Fig.2.Left:normalizeddistributionsofthediscriminatinganalysisvariableξ forasimulationofγ-rays(solidline)fromM31 following a CDM-like spectrum (m = 500 GeV), with respect to M31 Off-data (2001-03, black markers). Right: number χ0 distribution of ξ for a E 2-spectrum simulated at the Crab transit (solid line), with respect to the On-Off difference for a data − sampleoftheCrabnebula(takenbetween2002and2004,blackmarkerswitherrorbars). 3.2.Hadronrejection In our energy range, the Cherenkov wavefront from γ-ray induced showers is, on average, more spherical than for showers initiated by hadrons(that is, by charged cosmic rays, mainly protons). The CELESTE field of view is small comparedto the angularextentoftheshowers,whichlessensthedifference,butefficienthadronrejectionisstillpossible. Justabovethetriggerthreshold,theCherenkovsignalformanyheliostatsiscomparabletothefluctuationsofthenightsky backgroundlight,so we sum allthe signalsinsteadof usingeachindividually.Summingthe signalsimpliescompensatingfor thepropagationdelays,whichrequiresknowledgeoftheshowercorepositionwhenassumingasphericalCherenkovwavefront. AsdescribedinManseri2004,thisisdonebyscanningtheplaneat11kmandevaluatingtheratioH/W foreachpositionofthe scan,whereH andW aretheheightandthewidthofthesummedsignal.ThelargestvalueoftheratioH/W yieldsourmeasure oftheshowercoreposition.ThesphericityofthewavefrontisestimatedbyhowmuchtheratioH/W decreaseswhenestimated 200m away fromthe shower coreposition.Thisrelative decrease,called ξ, is shownin Fig. 2-leftfor an Off observationand forasimulationofaγ-rayspectrum.Asexpected,becauseoftheirCherenkovwavefrontsphericity,γ-rayshowershavelowerξ valuesthanhadronicshowers. The On-Offdifferenceofthisrelativedecreaseisshownin Fig.2-rightfora sample ofCrab nebuladata, whichwastaken between2002and2004withthesameexperimentalsetupasforM31.Itexhibitsaclearexcessduetotheγ-rayemissionfrom theCrabnebula.Requiringξ <0.35leadstoa13.5σexcessandasensitivityof6.5σ/√h. 3.3.Observations,dataselectionandsignalsearches M31 was observed with CELESTE from 2001 to 2003, and 68 On-Off pairs were collected ( 22 hours of On-source data). ∼ Nevertheless,variationsinatmosphericconditionsareknowntocausesystematicshiftsintheOn-Offdifference,soweapplied aselectionbasedoncriteriarequiringstabledetectoroperation(characterizedbyPMTanodiccurrentandtriggerratestability). Thisselectionreducedthedatasetto6.5hoursbecauseofbadweatherconditionsatThe´missince2001. TheOn-OffdifferenceofξfortheM31dataisshowninFig.3-left.Noevidenceofanexcesscanbefound,andtheOn-Off differenceis 0.75σwhenrequiringξ<0.35. − SUSY annihilating dark matter could produce soft spectra or peaked signals, so we search for a signal in various energy bands.Our energyreconstructionusesγ-ray simulationswith fixedenergies,and is basedon the correlationbetweenthe total chargerecordedwiththeFADCsandthetrue(i.e.MonteCarlo)energy,foragivenimpactparameter.(Theshowercoreposition at11km,obtainedbymaximizingH/W asdescribedabove,givestheimpactparameteronthegroundassumingthatthegamma ray comes from the source under study.) Figure 4 (left) shows the mean charge per heliostat versus the reconstructed impact parameter,fordifferentγ-rayenergies.Weusethechargedistributionsateachenergyandimpactparametertobuildtheinverse function,thatis,thefunctionpredictingtheenergyfromtheobservedchargeandthereconstructedimpactparameterintherange of[0 120]m.Tocheckthefunction,weinverseitagainandcompareittotheoriginalpoints,alsoshowninFig.4(left).The − rightpanelofFig.4showstheenergybiasandresolutioncurvesobtainedfromthisestimationmethod.Theenergyresolutionis below30%withasmallbiasof 5%,adequatetosearchforanexcessinthedata. ∼ The On-Off difference of the measured energy distribution, after analysis cuts, is shown in Fig. 3-right, in which the 50 GeVbinningcoversatleastonestandarddeviationoftheenergyresolutionfunction.Noexcesshasbeenfound.Allresultsare J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment 7 s1500 s evt evt150 N N 100 1000 50 0 500 -50 0 -100 -150 -500 -200 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 200 400 600 800 1000 ξ Estimated energy Eγ (GeV) Fig.3.Left:On-OffdistributionofξforM31data(2001-03,blackmarkerswitherrorbars),withrespecttothesamesimulated spectrumasFig.2-left(solidline).Right:On-Offdistributionoftheestimatedenergyforalleventswithinanalysiscuts. el 0.3 h >/1000 <Q 0.25 800 0.2 0.15 600 0.1 400 0.05 200 0 0 -0.05 0 20 40 60 80 100 120 140 50 100 150 200 250 300 350 400 450 500 Impact parameter (m) True energy (GeV) Fig.4.Left:Thecrossesarethe meanchargeper heliostat(arbitraryunits)forγ-rayssimulatedwith energiesof50,100,150, 200,300and400GeV (bottom-top),versusthe reconstructedcoreposition(i.e.theimpactparameter).Thesolidcurvesshow thechargeobtainedfromthefunctionsusedtopredicttheenergy.Right:resolution(soliduppercurve)andbias(lowerdashed curve)fortheenergyreconstructionmethodwithrespecttothetrueenergy(sameMonte-Carloset-upasinplotatleft). Analysislevel On-sourceevts Off-sourceevts On-Off Significance(N ) σ Rawdata 463520 462327 1193 -0.59 Analysiscuts 10615 10740 -125 -0.75 Emeas <100GeV 6101 6167 -66 -0.53 100 Emeas <200GeV 3143 3197 -54 -0.61 ≤ 200 Emeas <300GeV 870 824 46 1.02 ≤ 300 Emeas <400GeV 260 269 -9 -0.35 ≤ Table1.FinalstatisticsresultingfromM31dataanalysis.Theanalysiscutsarethefollowing:weimposeasoftwaretrigger10% higherthan thehardwareone,andwe applya cutξ < 0.35(see textfordetails) ;forsignalsearchesinenergybins, we adda selectiononthereconstructedimpactparameter–<120m–accordingtothevalidityrangeofourenergyreconstructionmethod. Nosignificantexcessappearsoverthewholesample,norwithindifferentrangesofenergy. summarizedinTable1,inwhichasearchforanexcesswithinbinsof100GeV,muchlargeratlowenergythantheresolution,is presented. 3.4.Stabilityandupperlimit Wehavealsostudiedthestabilityofthisresult,asacheckofpossiblesystematiceffects.WeshowinFig.5howthesignificance remainsstablewhenvaryingthecutvalueonthemaindiscriminatingvariableξ. Asacomparison,thesameexercisehasbeen 8 J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment Nσ 15 Crab 2003 10 5 M31 2001-03 0 M31 2001 M31 2002 M31 2003 -5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 cut ξ <x Fig.5.Significancelevelaccordingtovaryingthecutonξ (afterraisingthethresholdby10%).Thisfigureshowsthestudyof stabilityoftheanalysisaswellforCrabasforM31data.AsignalevidenceisclearlyseenfortheCrab,whereasthesignificance levelremainsflatforM31. done for a Crab dataset (same figure), and the γ-ray signal clearly exhibits a bump in significance up to N 13.5 around σ ∼ ξ <0.35. On-Offdifferencemeasurestheintegraloverenergyofthetheoreticalspectrumofequation2convolutedwiththeeffective area,timestheobservationtime.Asthestatisticscollectediscompatiblewiththeabsenceofasignal,wehaveonlymeasuredthe backgroundanditsfluctuationsindirectionofM31.Thiscanbetranslatedtoanupperlimitonafluxcomingfromthatsource, givena normalizedtheoreticalspectralshape f(E). Fora N upperlimit,andgivenan experimentalenergythreshold E ,any σ th integratedfluxabovethisenergyshouldbeboundedlike: δN Φ(E > E ) N bkgd (incm 2s 1), (6) th σ − − ≤ Tobs E∞thA(E)f(E)dE R whereδN 2 N isthemeasuredbackgroundRMS,T isthetotalexposuretimeand (E)standsfortheenergy- bkgd Off obs ≃ × A dependenteffectipvedetectionarea.Thelatterisdeterminedbymeansofsimulations,andisplottedinFig.6-left.Accordingto equation2,notethatthespectrum f(E)ismass-dependentincaseofneutralinoannihilation,sothatthelimitshoulddependon themass.Forthesakeofsimplicity,wewillusetheparametrizationgiveninTasitsiomietal.(2002)forthespectralshape,that is: 6√x 10 5 3x2+6x 1 th f(E)= − (7) 5mχ0(√xth−1)4 3 − 12 x3/2 ! where x E/m and x E /m . This spectrum dependson the mass, butassumes that γ-rays come only from π0 decay. ≡ χ0 th ≡ th χ0 Therefore, it does not take into account all specificities of SUSY models. Nevertheless, it is sufficient for our purpose. This parametrizationisillustratedinFig.6-rightfortwomasses,250and500GeV,andcomparedwitha1/E2powerlawspectrum. The threshold is set to 50 GeV, taken from the effective area shown in Fig. 6 (left). Given this threshold, a flux limit can becomputedforeachneutralinomass,usingequation6.TheresultispresentedinFig.7,wherethepredictedintegratedfluxes of γ-raysabove50 GeV are plottedwith respectto neutralinomasses. The averagedlimit in a mass rangeof [50 700]GeV − lies around 10 10ph.cm. 2s 1. We emphasize that this is the first experimental result in the energy range 50-500 GeV, and is − − − complementarytothoseprovidedbyEGRET(Blometal.,1999)andHEGRA(Aharonianetal.,2003)observationsofM31. 4. Discussionandconclusion ObservationsofM31withCELESTEprovidea2σupperlimitontheγ-fluxabove50GeV,dependingontheexpectedspectrum. This limit, around10 10ph.cm 2s 1, is quite far from the SUSY parameter space, but significantly constrainscombinationsof − − − different enhancement factors discussed in 2.3 (which are also likely to be excluded by EGRET limits, depending on the § neutralino mass), and also any other model of annihilating dark matter besides SUSY. Whereas these observationshave been motivatedbyindirectsearchesforSUSYCDM,thisresultyieldsageneralastrophysicalresult:thefirstobservationofaspiral galaxyinthisenergyrange,somehowconstrainingγ-rayemissionfromthisclassofobjects. AnygammaraydetectionfromagalaxylikeM31wouldbedifficulttointerpretintermsofdarkmatterannihilation.Spiral galaxiesareknownsitesofnon-thermalprocessesandcosmicrayacceleration,andtherelevantphysicalmechanismsarenotyet wellunderstood.Inthissense,aDwarfSpheroidalgalaxylikeDracoisaverypromisingsourceforindirectdetection,givenitis clearlydominatedbythedarkmattercomponent.Unfortunately,wehavetoofewdataonDracotoperformarelevantanalysis. J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment 9 2)m A(4405000000 )f(E,mχ1100--21 Emm-2χχ == 520500 GGeeVV 35000 30000 10-3 25000 10-4 20000 10-5 15000 10-6 10000 5000 10-7 100 200 300 400 500 600 700 800 900 1000 10-8 Eγ (GeV) 60 70 80 90 100 200 300 E4γ0 0(GeV) Fig.6.Left:effectivedetectionarea–dashedlinefortrigger,fullaftereventselection–asafunctionofthetrueenergy,basedon simulationsofγ-rayscomingfromthetransitpositionofM31.Right:normalizedspectrabetween50and500GeVforapower lawofindex-2,andforformulaofequation7withm =500(dashedcurve)and250GeV(dottedcurve). χ0 However, the upcoming generation of γ-ray instruments will undoubtedly further constrain dark matter models and halo modelsforvariousastrophysicalsources.Thesesearchesarenotonlycomplementarytofutureparticlephysicsexperiments,but alsoveryimportanttounderstandhowthequestionofdarkmatterisconnectedtotheparticlecontentoftheUniverse. Aknowledgements Funding was provided by the IN2P3 of the French CNRS and by the Grant Agency of the Czech Republic. We gratefully acknowledgethesupportoftheRegionalCouncilofLanguedoc-Roussillon,andofElectricite´ deFrance.Thetechnicalsupport byAntoinePe´rez,JacquesMaurandandSte´phaneRivoireatThe´miswasinvaluable.Lastbutnotleast,weappreciativelythank KarstenJedamzik,GilbertMoultakaandPierreSalatiforveryusefuldiscussionsduringthiswork. References AharonianF.A.etal.,2003,A&A400,153-159. BennetC.L.,2003,APJS148. Bergstro¨mL.,UllioP.&BuckleyJ.,1998,AstroparticlePhysics9,137-162. Bergstro¨mL.,2000,Rept.Prog.Phys.63,793. BertoneG.,ZentnerA.R.,SilkJ.,2005,Phys.Rev.D72,103517. BlomJ.J.etal.,1999,ApJ516,744. BlumenthalG.R.,FaberS.M.,PrimackJ.R.&ReesM.J.,1984,Nature311,517. BraunR.,1991,ApJ372,54. CaldwellR.R.,DaveR.&SteinhardtP.J.,1998,Phys.Rev.Lett.80,1582-1585. DiemandJ.,MooreB.&StadelJ.,2005,Nature433,389-391. DjouadiA.,KneurJ.-L.&MoultakaG.,2002,arXiv:hep-ph/0211331. FalvardA.etal.,2004,AstroparticlePhysics20,467-484. FujiiM.&IbeM.,2004,Phys.Rev.D69,035006. Gnedin,O.Yetal.,2004,Astrophys.J.616,16-26. GoldbergH.,1983,Phys.Rev.Lett.50,1419. GondoloP.&SilkJ.,1999,Phys.Rev.Lett.83,1719-1722. GondoloP.etal.,2004,JCAP0407,008. HawkinsE.etal.,2003,MNRAS346,78. HeckD.etal.,1998,ReportFZKA6019,http://www-ik.fzk.de/corsika/usersguide/corsika tech.html. KleynaJ.,WilkinsonM.I.,EvansN.W.&Gilmore,G.,2001,ApJ563,115-118. LeeB.W.&WeinbergS.,1977,Phys.Rev.Lett.39,165. LovedayJ.etal.,2002,ContemporaryPhysics43,437. Manseri H.etal.,2004, International SymposiumonHighEnergyGamma-RayAstronomy, Heidelberg. Seealsoher doctoral thesis,Ecole Polytechnique(Palaiseau,March2004),athttp://doc.in2p3.fr/themis/CELESTE/PUB/papers.html MooreB.etal.,1999,MNRAS,310,1147. deNauroisM.etal.,2002,ApJ566,343. NavarroJ.F.,FrenkC.S.&WhiteS.D.M.,1996,ApJ462,563-575. NillesH.P.,1984,Phys.Rept.110,1. OstrikerJ.P.,PeeblesP.J.E.&YahilA.,1974,ApJ193,1. 10 J.Lavalleetal.:IndirectSearchforDarkMatterinM31withtheCELESTEExperiment -9 10 ) 1 - s 2 -10 -m 10 c ( tan(β) < 30 x 30 < tan(β) < 60 u -11 l 10 WMAP compatible F kination η =0.1 d φ e t -12 a r 10 g e t n I -13 10 -14 10 -15 10 -16 10 -17 10 0 100 200 300 400 500 600 700 Neutralino Mass (GeV) Fig.7. Integratedflux above50 GeV as a functionof the neutralinomass, for SUSY modelswith Ωh2 [0.05,0.14](boxes), ∈ limitedto[0.086,0.14](fullcircles)forWMAPcompatiblemodels.Theη-parameterisequivalenttotheη -parameterdiscussed 0 in 2.3.Thedashedregioncorrespondstothe2σCLupperlimitfromM31observationswithCELESTE. § Pare´E´.etal.,2002,NIMA490,71. PironF.etal.,2003,28thICRC,Tsukuba,vol.5,UniversalAcademyPress,2607. SalatiP.,2003,Phys.Lett.B571,121-131. ServantG.&TaitT.M.P.,2003,Nucl.Phys.B650,391-419. SmithD.&BrionE.,2004,CELESTEcollaborationinternalnote. SpergelD.N.etal.,2003,ApJS148,175S. StoehrF.etal.,2003,MNRAS,345,1313. TasitsiomiA.&OlintoA.V.,2002,Phys.Rev.D66,083006. deVaucouleursG.,1958,ApJ128,465. WeekesT.C.,1988,Phys.Rept.160,1-121. YahiroM.etal.,2002,Phys.Rev.D65,063502.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.