ebook img

Incremental Virtual Prototyping of Electromechanical Actuators for Position Synchronization PDF

242 Pages·2017·13.17 MB·English
by  Jian Fu
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Incremental Virtual Prototyping of Electromechanical Actuators for Position Synchronization

Incremental Virtual Prototyping of Electromechanical Actuators for Position Synchronization Jian Fu To cite this version: Jian Fu. Incremental Virtual Prototyping of Electromechanical Actuators for Position Synchro- nization. Mechanical engineering [physics.class-ph]. INSA de Toulouse, 2016. English. ￿NNT: 2016ISAT0008￿. ￿tel-01511290￿ HAL Id: tel-01511290 https://theses.hal.science/tel-01511290 Submitted on 20 Apr 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l'obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Institut National des Sciences Appliquées de Toulouse (INSA de Toulouse) Discipline ou spécialité : Génie Mécanique, Mécanique des Matérieux Présentée et soutenue par : Jian FU Le mercredi 6 Juillet 2016 Titre : Prototypage Virtuel Incrémental des Actionneurs Electromécanique pour la Synchronisation en Position JURY Geneviève DAUPHIN-TANGUY, Professeur, Ecole Centrale de Lille, Rapporteur Jesús FELEZ, Professeur, Universidad Politécnica de Madrid, Rapporteur Jean-Charles MARE, Professeur, INSA de Toulouse, Examinateur Ion HAZYUK, Maître de Conférences, INSA deToulouse, Examinateur Yongling FU, Professeur, Beihang University, Invité Ecole doctorale : Mécanique, Energétique, Génie civil, Procédés (MEGEP) Unité de recherche : Institut Clément Ader (ICA, CNRS UMR 5312) Directeur(s) de Thèse : Jean-Charles MARE Université fédérale de Toulouse Midi-Pyrénées Institut National des Sciences Applique e de Toulouse Institut Cle ment Ader (CNRS UMR 5312) Incremental Virtual Prototyping of Electromechanical Actuators for Position Synchronization Doctoral Thesis Prepared by: Jian FU Supervisor: Prof. Jean-Charles MARE Reviewers: Prof. Genevie ve DAUPHIN-TANGUY Prof. Jesu s FELEZ Examiner: Mcf. Ion HAZYUK Inviter: Prof. Yongling FU Toulouse July 2016 Abstract In the aerospace field, the concepts based on extended use of electricity in “More Electric Aircraft” (MEA) and even “All Electric Aircraft” (AEA), electromechanical actuators (EMAs) are increasingly being implemented in place of conventional hydraulic servo actuators (HSAs). When EMAs are used for safety-critical actuation applications like flight controls, some specific issues related to thermal balance, reflected inertia, parasitic motion due to compliance, response to failure (jamming and free-run) and synchronization of EMAs driving independent loads cannot be ignored. The simulation-aided design process can efficiently support the assessment and validation of the concepts fixing these issues. For that, virtual prototypes of EMAs at system-level have to be developed in a structured way that meets the engineers’ needs. Unfortunately, the physical effects governing the EMAs behavior are multidisciplinary, coupled and highly nonlinear. Although numerous multi-domain and system-level simulation packages are now available in the market of simulation software, the modelling process and the engineers’ needs are rarely addressed as a whole because of lack of scientific approaches for model-based architecting, multi-purpose incremental modelling and model implementation for efficient numerical simulation. In this thesis, the virtual prototyping of EMAs is addressed using the Bond-Graph formalism. New approaches are proposed to enable incremental modelling of EMAs that provides models supporting control design, energy consumption and thermal analysis, calculation of reaction forces, power network pollution simulation, prediction of response to faults and influence of temperature. The case of preliminary design of EMAs position synchronization is used to highlight the interests and advantages of the proposed process and models of EMAs. Keywords: Bond-Graph, More Electric Aircraft, Power-by-Wire, EMA, Energy Losses, Response to Faults, Synchronization Acknowledgements First of all, I am grateful to China Scholarship Council (CSC) for providing me with 40 months of financial grant and support for my doctoral studies in France. I would like to express my sincere gratitude to my supervisor, Mr. Jean-Charles MARE, at INSA-Toulouse, Institut Cle ment Ader (ICA). I am indebted to him for his guidance and help during my PhD thesis. His rigorous research attitude and good work ethics will have an everlasting impact on my life. I would also like to specially thank Mr. FU Yongling, in Beihang University, for his instructive advice during my M.S and first year of PhD in Beihang. I am deeply grateful for his recommendation, which gave me the opportunity to pursue my PhD degree in France. I would also like to express my thanks to Mr. Ion HAZYUK, in INSA-Toulouse, ICA, for his discussion and contribution towards my thesis. I would like to thank Mr. Nicolas LAURIEN and Mr. Ste phane ORIEUX, for their assistance and suggestions during the experimental tests in my PhD. I am also deeply indebted to all my Chinese and international friends in the laboratory of ICA, for their help, encouragement and friendship during my Ph.D studies. Finally, the last words are for my family. In the most difficult time, during the mid of my Ph.D study, my father was no more. I would especially like to thank my mother for her continued support and encouragement during these tough moments of my overseas study, and she is indeed a great mother. I dedicate this thesis to my father in heaven, thank you very much! Contents Nomenclature .................................................................................................................................. I Introduction .................................................................................................................................... 1 Chapter 1 State of the Art ............................................................................................................................. 7 1.1 Flight Control Actuators ........................................................................................................................... 7 1.2 Safety Cirtical Requirments and Position Synchronization ................................................. 13 1.3 Virtual Prototyping Methodology ....................................................................................................... 21 1.4 Performance Requirements ................................................................................................................... 26 1.5 Conclution of Chapter 1 ............................................................................................................................ 27 References ........................................................................................................................................................................ 27 Chapter 2 Individual EMA Controller Design ....................................................... 31 2.1 Individual EMA System Description ................................................................................................... 31 2.2 Linear Virtual Prototype .......................................................................................................................... 35 2.3 Power Limitation and Saturation Effects ........................................................................................ 42 2.4 Motor Current Loop Effects ..................................................................................................................... 45 2.5 Imperfections due to Mechanical Compliances .......................................................................... 53 2.6 Force Feedback Compensation for Position Control ................................................................ 62 2.7 Conclusion of Chapter 2 ............................................................................................................................ 71 References ........................................................................................................................................................................ 72 Chapter 3 Power Drive Electronics and Motor .................................................... 73 3.1 Physical Effects in Power Drive Electronics (PDE) .................................................................... 73 3.2 Physical Effects at Electric Motor (EM) ........................................................................................ 85 3.3 Incremental Virtual Prototyping ......................................................................................................... 95 3.4 Numerical Simulation and Analysis ................................................................................................ 104 3.5 Conclusion of Chapter 3 ......................................................................................................................... 111 References ..................................................................................................................................................................... 112 Chapter 4 Mechanical Power Transmission ........................................................ 115 4.1 Power Screw Mechanism ...................................................................................................................... 116 4.2 1-DoF Integrated Model ......................................................................................................................... 119 4.3 2-DoF Decomposition Model .............................................................................................................. 131 4.4 Model Implementation .......................................................................................................................... 148 4.5 Numerical Simulation and Analysis ............................................................................................... 156 4.5 Conclusion of Chapter 4 ......................................................................................................................... 167 References .................................................................................................................................................................... 168 Chapter 5 Test Bench and Preliminary Study of Position Synchronization ........................................................................................................................ 171 5.1 Description of the Test Bench ............................................................................................................ 171 5.2 Preliminary Study of Position Synchronization ...................................................................... 181 5.3 Validation of Overall Twin-Parallel EMAs Virtual Prototype ........................................... 191 5.4 Conclusion of Chapter 5 ......................................................................................................................... 201 References .................................................................................................................................................................... 202 Conclusion ..................................................................................................................................... 205 List of Publications ................................................................................................................. 209 Appendix ........................................................................................................................................ 211 Appendix A BLDC vs.PMSM Used for EMAs ..................................................................................................... 21 Appendix B SKF Bearing Loss Model .................................................................................................................. 21 1 7 Résumé ........................................................................................................................................... 221

Description:
prototyping of EMAs is addressed using the Bond-Graph formalism. (MPT) of EMA is also addressed with an incremental approach, the physical
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.