ebook img

incorporating nonproteinogenic amino acids into azurin and - Ideals PDF

217 Pages·2010·10.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview incorporating nonproteinogenic amino acids into azurin and - Ideals

! ! ! ! ! "#$%&'(!)*+!#$,+-!$.!/+)0,!%&'1&'(!,&(0'1-!&'!23"#+1$4&'-5! 0 &'2$#"$#0)&'(!'$'"#$)+&'$(+'&2!0/&'$!02&1-!&')$!063#&'!0'1!23 !063#&'! ! ! ! ! ! ! %7! ! 8+9&'!/:!2,0#8! ! ! ! ! ! ! ! 1&--+#)0)&$'! ! -;<=>??@A!>B!CDE?>DF!G;FG>FF=@B?!HG!?I@!E@J;>E@=@B?K! GHE!?I@!1HL?HE!HG!"I>FHKHCIM!>B!%>HLI@=>K?EM! >B!?I@!(EDA;D?@!2HFF@N@!HG!?I@! 3B>O@EK>?M!HG!&FF>BH>K!D?!3E<DBDP2ID=CD>NBQ!RSTS! ! ! ! 3E<DBDQ!&FF>BH>K! ! ! ! 1HL?HEDF!2H==>??@@5! ! ! "EHG@KKHE!7>!,;Q!2ID>E!DBA!2HP1>E@L?HE!HG!#@K@DELI! ! ! "EHG@KKHE!U>FGE@A!ODB!A@E!1HBVQ!2HP1>E@L?HE!HG!#@K@DELI! ! "EHG@KKHE!0B?HBM!2EHG?K! ! "EHG@KKHE!+E>V!WDVH<KKHB! ABSTRACT Metalloproteins play important roles in biological systems since metal-binding sites are found in ~ 1/3 of structurally characterized proteins and in ~ 1/2 of all proteins. Despite progress, the role of many metal-binding sites remains poorly understood. Furthermore, their detailed geometric and electronic structure has yet to be fully elucidated. Site-directed mutagenesis using natural amino acids has continued to be the primary method of probing of metal-binding sites. However, it has become increasingly evident that site-directed mutagenesis, though powerful, cannot address the precise role of the metal ligands without changing multiple factors because of limited number of natural amino acids that allows isostructural substitutions. The relative paucity of functional group availability within the proteinogenic amino acids also limits ability to fine tune and expand protein’s activity. To address the need to precisely determine specific metal binding ligand functionalities, and further efforts to engineer new function into proteins, expressed protein ligation (EPL) has been used to introduce non-proteinogenic amino acids to metalloproteins, such as the Type 1 (T1) copper site of azurin and the Cu site found in A engineered Cu Azurin to aid the understanding of the roles of each ligand in this electron A transfer protein. This thesis covers the replacement of two copper-binding ligands in azurin, Cys112 and Met121, with nonproteinogenic amino acid analogues. Investigating the Cys112(S)-Cu Ligand- to-Metal Charge Transfer (LMCT) that gives azurin its intense blue color and its signature absorbance at 625 nm in the visible spectrum using two different analogues has been performed. Incorporating selenocysteine for Cys112 resulted in a new variant that maintained type 1 geometry , making it possible to elucidate the electron density of the site with more precision in the future. To further expand this concept, EPL was used to incorporate homocysteine (Hcy) to ! ""! investigate the rack hypothesis for the type 1 copper center. Insertion of a Cys derivative with an additional methylene group demonstrated that the type 1 site in azurin was capable of adjusting sufficiently through protein folding to maintain type 1 geometry and function. Together, these mutations provide insight into the unique relationship between the site’s geometric features and its electronic features by minimally perturbing the site and selectively altering each feature individually. Secondly, while conversion of blue copper sites with a weak axial ligand to green copper sites containing a medium strength axial ligand has been demonstrated in cupredoxins, converting blue copper sites to a red copper site with a strong axial ligand has not been reported. By replacing the weak Met121 thioether from azurin with a strong thiolate ligand from Hcy, a variant was created which had spectra (R = 1.5, and A = 180 x 10-4 cm-1) and a Cu-S(Cys) L || distance (2.22 Å) very similar to that of the red copper protein nitrosocyanin. The results strongly support the “coupled distortion” model, which helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions. Lastly, the unique Cu coordination of a backbone carbonyl in Cu azurin site was A investigated using backbone carbonyl analogues of Glu. By replacing the carbonyl of the natural peptide linkage with an ester moiety, we have shown that the basicity of the coordinating carbonyl seems not to play a major role in either the spectroscopic or reduction potential features of the Cu site. These studies have provided a unique methodology for investigating metal ligand A interactions beyond the standard side chain interactions. In summary, a means to investigate the specific function of individual metal ligand residues in azurin and Cu azurin by using EPL to incorporate nonproteinogenic amino acid A ! """! analogues has been demonstrated. This work has resulted in new insights into the role of the metal ligands and has shaped future metalloprotein engineering efforts. ! "#! To my wife Eve whose support and love got me through this research. I love you. ! #! ACKNOWLEDGEMENTS First I wish to thank my advisors, Wilfred van der Donk and Yi Lu. Thank you Wilfred for being a phenomenal advisor, mentor, and friend. Without your guidance, patience and willingness to help, I could not have completed the work described in this thesis. I will always be grateful for our conversations both about science and the nuances of life outside the lab that helped shape my journey through graduate school. Thank you Yi for being an exceptional mentor. Thank you for all of your guidance, understanding and teaching me how to be professional. Also, thanks to my committee members, Eric Jakobsson and Antony Crofts, who provided much support and guidance. Thank you to all of the past and current members of the Lu group and van der Donk group whom I have had the honor working with for insightful conversations and helpful discussions. Thank you to Cyril Jacquot for being a wealth of knowledge and an immutable friend. Also, thanks to Noah Bindman, Patrick Knerr, and Lindsey Johnstone whose interesting chats always led to fun times in the lab. I will miss all the laughs and singing while in the lab. Thank you also to Lu group members Natasha Yeung, Yang Yu, Nicholas Marshall, Nathan Sieracki, and Kyle Miner for great discussions. Thank you Martha Freeland, for being a lifeline during my tenure at UIUC. Thanks for being there for everything from supporting lab experiments to emotional support and medical aid. You will remain a great friend forever. Thanks to my wife, Eve, and my dog, Einstein, who endured this long process with me, always providing laughs and love. Lastly, thanks to my family, especially my mother, Mary, and my extended family, my father-in-law, Albert, and mother-in-law, Tessie for all their support. ! #"! TABLE OF CONTENTS LIST OF ABBREVIATIONS..................................................................................................................ix LIST OF FIGURES.................................................................................................................................xii LIST OF SCHEMES...............................................................................................................................xiv LIST OF TABLES...................................................................................................................................xv CHAPTER 1: INTRODUCTION............................................................................................................1 1.1 Transition metals in biology.................................................................................................1 1.2 Copper proteins.....................................................................................................................3 1.3 Type I copper proteins..........................................................................................................5 1.4 Azurin from Pseudomonas aeruginosa................................................................................7 1.5 Cu azurin.............................................................................................................................11 A 1.6 Methods of nonproteinogenic amino acid incorporation......................................................17 1.7 Biosynthetic routes for nonproteinogenic amino acid incorporation....................................18 1.8 Synthetic and semi-synthetic routes for nonproteinogenic amino acid incorporation..........24 1.9 Incorporating nonproteinogenic amino acids into azurin and Cu azurin............................33 A 1.10 Summary.............................................................................................................................35 1.11 References...........................................................................................................................36 CHAPTER 2: INVESTIGATING THE RACK HYPOTHESIS: CYS112HCY AZURIN....................50 2.1 Introduction...........................................................................................................................50 2.2 Construction of Cys112Hcy azurin using EPL.....................................................................52 2.3 Spectroscopic characterization of Cys112Hcy azurin..........................................................54 2.4 Electrochemical analysis.......................................................................................................56 2.5 Molecular modeling..............................................................................................................57 2.6 Conclusions...........................................................................................................................59 2.7 Future directions...................................................................................................................60 2.8 Experimental.........................................................................................................................61 2.9 References.............................................................................................................................65 CHAPTER 3: INCORPORATING 77SE-SEC INTO AZURIN: C112U AZURIN................................69 3.1 Introduction...........................................................................................................................69 3.2 Incorporating Sec into azurin: background...........................................................................70 3.3 Optimization of the synthesis of Sec(PMB).........................................................................72 3.4 Solid phase peptide synthesis of C112U azurin 17-mer.......................................................74 3.5 Optimization and semi-synthesis of C112U azurin..............................................................82 3.6 Characterization of selenocysteine azurin............................................................................87 3.7 Synthesis of 77Se-Sec(PMB) and SPPS of 77Se-C112U 17-mer...........................................87 3.8 Semi-synthesis of 77Se-C112U azurin..................................................................................90 3.9 77Se C112U Azurin ENDOR analysis...................................................................................92 3.10 Conclusions.........................................................................................................................94 3.11 Future directions.................................................................................................................94 3.12 Experimental.......................................................................................................................94 3.13 References...........................................................................................................................109 ! #""! CHAPTER 4: TRANSFORMING BLUE COPPER TO RED COPPER: MET121HCY AZURIN......114 4.1 Introduction...........................................................................................................................114 4.2 Interconverting Blue and Green Copper Sites by Site Directed Mutagenesis......................116 4.3 Preparation of Met121Cys Azurin........................................................................................117 4.4 UV-Vis Spectral Characterization of Met121Cys Azurin....................................................119 4.5 X-Band EPR Characterization of Met121Cys Azurin..........................................................122 4.6 Preparation of Met121Hcy Azurin.......................................................................................125 4.7 UV-Vis Spectral Characterization of Met121Hcy Azurin....................................................127 4.8 X-Band EPR Characterization of Met121Hcy Azurin.........................................................129 4.9 EXAFS Characterization of Met121Cys and Met121Hcy Azurins......................................131 4.10 Electrochemical Studies......................................................................................................135 4.11 Conclusions.........................................................................................................................138 4.12 Future Directions................................................................................................................138 4.13 Experimental.......................................................................................................................138 4.14 References...........................................................................................................................145 CHAPTER 5: PROBING BACKBONE CARBONYL INTERACTIONS OF CU AZURIN..............153 A 5.1 Introduction...........................................................................................................................153 5.2 EPL of WT Cu Azurin........................................................................................................155 A 5.3 Synthesis of Backbone Analogue Peptides...........................................................................160 5.4 Installing an Ester Into Cu Azurin......................................................................................161 A 5.5 SPPS of Peptide 5.3 By Fmoc Chemistry.............................................................................162 5.6 SPPS of Peptide 5.3 By Boc Chemistry...............................................................................166 5.7 Semi-synthesis of Ester-Cu Az By EPL.............................................................................169 A 5.8 Installing a Thioamide Into Cu Azurin...............................................................................174 A 5.9 Semi-synthesis of Thioamide-Cu Azurin By EPL..............................................................177 A 5.10 Conclusions.........................................................................................................................179 5.11 Future Directions................................................................................................................180 5.12 Experimental.......................................................................................................................181 5.13 References...........................................................................................................................195 AUTHOR’S BIOGRAPHY.....................................................................................................................202 ! #"""! LIST OF ABBREVIATIONS ACN...........................acetonitrile AcOH.........................acetic acid Asn.............................asparagine Asp.............................aspartic Acid ATP............................adenosine triphosphate Az...............................azurin Boc.............................tert-butyloxycarbonyl CBD...........................chitin binding domain CcO............................Cytochrome c Oxidase CV..............................cyclic voltammetry Cys.............................cysteine DBU...........................1,8-diazabicyclo[5.4.0]undec-7-ene DCM..........................dichloromethane DDAB........................dididecldimethylammonium bromide DFT............................density functional theory DIC............................N,N'-diisopropylcarbodiimide DIPEA.......................diisopropylethyl amine DKP...........................diketopiperazine DMAP........................4-dimethylaminopyridine DMF...........................dimethylformamide DNP...........................dinitrophenyl DTNP.........................2,2’dithiobis(5-nitropyridine) DTT...........................dithiothreitol EDCI..........................1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride EDT...........................ethanedithiol EDTA.........................ethylenediaminetetraacetic acid ENDOR.....................electron-nuclear double resonance EPL............................expressed protein ligation EPR............................electron paramagnetic resonance ESEEM......................electron spin echo envelope modulation ESI-MS......................electrospray ionization mass spectrometry ET..............................electron transfer EtOAc........................ethyl acetate EtOH..........................ethanol EXAFS.......................extended x-ray absorption fine structure FL...............................full length Fmoc..........................fluorenylmethyloxycarbonyl Gln.............................glutamine Glu.............................glutamate Gly.............................glycine HBTU........................O-benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate HCTU........................O-(1H-6-chlorobenzotriazol-1-yl)-N,N,N’,N’-tetramethyluronium hexafluorophosphate Hcy.............................homocysteine ! "$! HEPES.......................4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid His..............................histidine HOBt..........................1-hydroxybenzotriazole hydrate IMPACT....................intein mediated purification with an affinity chitin-binding tag LB..............................luria broth Leu.............................leucine LMCT........................ligand to metal charge transfer Lys.............................lysine MALDI-MS...............matrix-assisted laser desorption ionization mass spectrometry MeCN........................acetonitrile MES...........................2-(N-morpholino)ethanesulfonic acid MESNa......................sodium 2-mercaptoethanethiosulfonate Met.............................methionine MOPS........................3-(N-morpholino)propanesulfonic acid MPAA........................mercaptophenyl acetic acid mRNA........................messenger RNA MWCO......................molecular weight cutoff NCL...........................native chemical ligation NEB...........................New England Biolabs NMA..........................N-methylmercaptoacetamide NMM.........................N-methylmorpholine NMR..........................nuclear magnetic resonance NOR...........................nitrous oxide reductase NpsCl.........................2-nitrophenyl sulfenyl chloride PAM...........................4-hydroxymethyl-phenylacetamidomethyl PEG............................polyethylene glycol PGE............................pyrolytic graphite edge PMB...........................p-methoxybenzyl PNBP.........................4-(4-nitrobenzyl) pyridine PMSF.........................phenylmethanesulfonylfluoride PS...............................polystyrene RNA...........................ribonucleic acid RP-HPLC...................reverse phase high performance liquid chromatography rR...............................resonance raman RT..............................room temperature SDM...........................site directed mutagenesis SECIS........................selenocysteine insertion sequence Sec.............................selenocysteine Ser..............................serine SPPS..........................solid phase peptide synthesis TCEP.........................tris-(2-carboxyethyl)phosphine TFA............................trifluoroacetic acid TFE............................trifluoroethane TFMSA......................trifluoromethanesulfonic acid THF............................tetrahydrofuran Thr.............................threonine ! $!

Description:
3.7 Synthesis of 77Se-Sec(PMB) and SPPS of 77Se-C112U 17-mer .. .. 87 .. 1.5 Pseudomonas aeruginosa azurin spectroscopic
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.