PHYSICALREVIEW D 75, 012003 (2007) p Inclusive (cid:1)(cid:1) production in e(cid:1)e(cid:2) annihilationsat (cid:1)s(cid:1)(cid:1) (cid:3) 10:54 GeV andin (cid:2)(cid:4)4S(cid:5) decays c B.Aubert,1 M.Bona,1 D.Boutigny,1 F. Couderc,1 Y. Karyotakis,1 J.P. Lees,1 V.Poireau,1V. Tisserand,1 A.Zghiche,1 E. Grauges,2 A.Palano,3 J.C.Chen,4 N.D.Qi,4G.Rong,4 P. Wang,4 Y.S.Zhu,4 G.Eigen,5 I. Ofte,5 B. Stugu,5 G.S.Abrams,6 M.Battaglia,6 D.N.Brown,6J. Button-Shafer,6R.N.Cahn,6 E. Charles,6 M.S.Gill,6Y.Groysman,6 R.G.Jacobsen,6 J.A.Kadyk,6 L.T. Kerth,6 Yu.G.Kolomensky,6 G.Kukartsev,6 G.Lynch,6 L.M.Mir,6 T.J.Orimoto,6 M.Pripstein,6N.A.Roe,6M.T.Ronan,6W.A.Wenzel,6P.del AmoSanchez,7M.Barrett,7K.E. Ford,7T.J.Harrison,7 A.J.Hart,7C.M.Hawkes,7A.T.Watson,7T.Held,8H.Koch,8B.Lewandowski,8M.Pelizaeus,8K.Peters,8T.Schroeder,8 M.Steinke,8 J.T.Boyd,9J.P.Burke,9W.N.Cottingham,9 D.Walker,9D.J.Asgeirsson,10 T. Cuhadar-Donszelmann,10 B.G.Fulsom,10 C. Hearty,10 N.S. Knecht,10T.S. Mattison,10 J.A.McKenna,10 A.Khan,11 P. Kyberd,11 M.Saleem,11 D.J. Sherwood,11 L. Teodorescu,11V.E. Blinov,12 A.D. Bukin,12 V.P.Druzhinin,12 V.B. Golubev,12 A.P.Onuchin,12 S.I. Serednyakov,12 Yu.I. Skovpen,12 E.P. Solodov,12 K.Yu Todyshev,12 M.Bondioli,13 M.Bruinsma,13M.Chao,13 S.Curry,13 I. Eschrich,13 D.Kirkby,13 A.J. Lankford,13 P. Lund,13 M.Mandelkern,13R.K.Mommsen,13 W.Roethel,13 D.P.Stoker,13S.Abachi,14C.Buchanan,14S.D.Foulkes,15J.W.Gary,15O.Long,15B.C.Shen,15K.Wang,15L.Zhang,15 H.K.Hadavand,16E.J.Hill,16H.P.Paar,16S.Rahatlou,16V.Sharma,16J.W.Berryhill,17C.Campagnari,17A.Cunha,17 B.Dahmes,17T.M.Hong,17D.Kovalskyi,17J.D.Richman,17T.W.Beck,18A.M.Eisner,18C.J.Flacco,18C.A.Heusch,18 J.Kroseberg,18W.S.Lockman,18G.Nesom,18T.Schalk,18B.A.Schumm,18A.Seiden,18P.Spradlin,18D.C.Williams,18 M.G.Wilson,18J.Albert,19E.Chen,19A.Dvoretskii,19F.Fang,19D.G.Hitlin,19I.Narsky,19T.Piatenko,19F.C.Porter,19 A.Ryd,19 G.Mancinelli,20 B.T. Meadows,20K. Mishra,20 M.D.Sokoloff,20 F. Blanc,21 P.C. Bloom,21 S.Chen,21 W.T. Ford,21 J.F.Hirschauer,21 A.Kreisel,21 M.Nagel,21 U.Nauenberg,21 A.Olivas,21 W.O.Ruddick,21 J.G.Smith,21 K.A.Ulmer,21 S.R.Wagner,21 J.Zhang,21 A.Chen,22 E.A.Eckhart,22 A.Soffer,22 W.H.Toki,22 R.J. Wilson,22 F.Winklmeier,22 Q.Zeng,22 D.D. Altenburg,23E. Feltresi,23 A.Hauke,23 H.Jasper,23 J. Merkel,23 A.Petzold,23 B.Spaan,23 T. Brandt,24 V. Klose,24 H.M.Lacker,24 W.F.Mader,24 R. Nogowski,24J. Schubert,24 K.R. Schubert,24 R.Schwierz,24J.E.Sundermann,24A.Volk,24D.Bernard,25G.R.Bonneaud,25E.Latour,25Ch.Thiebaux,25M.Verderi,25 P.J.Clark,26W.Gradl,26F.Muheim,26S.Playfer,26A.I.Robertson,26Y.Xie,26M.Andreotti,27D.Bettoni,27C.Bozzi,27 R.Calabrese,27 G.Cibinetto,27 E. Luppi,27 M.Negrini,27 A.Petrella,27 L. Piemontese,27 E. Prencipe,27 F. Anulli,28 R. Baldini-Ferroli,28 A.Calcaterra,28 R. de Sangro,28 G.Finocchiaro,28S. Pacetti,28 P. Patteri,28 I.M.Peruzzi,28,* M.Piccolo,28 M.Rama,28 A.Zallo,28A. Buzzo,29 R.Contri,29 M.Lo Vetere,29 M.M.Macri,29 M.R. Monge,29 S. Passaggio,29 C.Patrignani,29 E. Robutti,29 A.Santroni,29 S.Tosi,29 G.Brandenburg,30 K.S. Chaisanguanthum,30 M.Morii,30J.Wu,30R.S.Dubitzky,31J.Marks,31S.Schenk,31U.Uwer,31D.J.Bard,32W.Bhimji,32D.A.Bowerman,32 P.D.Dauncey,32 U.Egede,32R.L. Flack,32 J.A.Nash,32 M.B. Nikolich,32 W. Panduro Vazquez,32P.K.Behera,33 X.Chai,33M.J.Charles,33U.Mallik,33N.T.Meyer,33V.Ziegler,33J.Cochran,34H.B.Crawley,34L.Dong,34V.Eyges,34 W.T. Meyer,34 S. Prell,34 E.I. Rosenberg,34 A.E. Rubin,34 A.V. Gritsan,35 A.G.Denig,36 M.Fritsch,36 G.Schott,36 N.Arnaud,37M.Davier,37G.Grosdidier,37A.Ho¨cker,37F.LeDiberder,37V.Lepeltier,37A.M.Lutz,37A.Oyanguren,37 S.Pruvot,37 S.Rodier,37 P. Roudeau,37M.H. Schune,37 A.Stocchi,37 W.F. Wang,37 G.Wormser,37 C.H.Cheng,38 D.J. Lange,38 D.M.Wright,38 C.A.Chavez,39 I.J. Forster,39 J.R. Fry,39 E. Gabathuler,39 R. Gamet,39 K.A. George,39 D.E. Hutchcroft,39 D.J. Payne,39 K.C. Schofield,39 C.Touramanis,39 A.J. Bevan,40 F. Di Lodovico,40 W. Menges,40 R.Sacco,40 G.Cowan,41 H.U.Flaecher,41 D.A.Hopkins,41 P.S.Jackson,41 T.R.McMahon,41 S. Ricciardi,41 F. Salvatore,41 A.C. Wren,41 D.N.Brown,42 C.L. Davis,42 J.Allison,43 N.R. Barlow,43R.J. Barlow,43 Y.M.Chia,43 C.L.Edgar,43G.D.Lafferty,43M.T.Naisbit,43J.C.Williams,43J.I.Yi,43C.Chen,44W.D.Hulsbergen,44A.Jawahery,44 C.K.Lae,44 D.A. Roberts,44 G.Simi,44 G.Blaylock,45C. Dallapiccola,45 S.S. Hertzbach,45 X.Li,45 T.B.Moore,45 S.Saremi,45 H.Staengle,45 R.Cowan,46 G.Sciolla,46 S.J. Sekula,46 M.Spitznagel,46 F. Taylor,46 R.K.Yamamoto,46 H.Kim,47S.E.Mclachlin,47P.M.Patel,47S.H.Robertson,47A.Lazzaro,48V.Lombardo,48F.Palombo,48J.M.Bauer,49 L.Cremaldi,49V.Eschenburg,49R.Godang,49R.Kroeger,49D.A.Sanders,49D.J.Summers,49H.W.Zhao,49S.Brunet,50 D.Coˆte´,50M.Simard,50P.Taras,50F.B.Viaud,50H.Nicholson,51N.Cavallo,52,†G.DeNardo,52F.Fabozzi,52,†C.Gatto,52 L. Lista,52 D.Monorchio,52 P. Paolucci,52 D.Piccolo,52 C. Sciacca,52 M.A.Baak,53 G.Raven,53 H.L. Snoek,53 C.P. Jessop,54 J.M.LoSecco,54T. Allmendinger,55G. Benelli,55 L.A.Corwin,55 K.K.Gan,55 K.Honscheid,55 D.Hufnagel,55 P.D.Jackson,55H. Kagan,55R. Kass,55 A.M.Rahimi,55J.J. Regensburger,55 R.Ter-Antonyan,55 Q.K.Wong,55 N.L. Blount,56 J.Brau,56R. Frey,56O. Igonkina,56 J.A.Kolb,56 M.Lu,56 R. Rahmat,56 N.B.Sinev,56 D.Strom,56 J. Strube,56 E. Torrence,56A. Gaz,57 M.Margoni,57 M.Morandin,57 A.Pompili,57 M.Posocco,57 M.Rotondo,57 F. Simonetto,57 R.Stroili,57 C. Voci,57 M.Benayoun,58 H.Briand,58 J. Chauveau,58 P.David,58 1550-7998=2007=75(1)=012003(16) 012003-1 © 2007 The American Physical Society B. AUBERTet al. PHYSICALREVIEW D75, 012003 (2007) L. Del Buono,58 Ch. de la Vaissie`re,58 O.Hamon,58 B.L. Hartfiel,58 Ph.Leruste,58 J. Malcle`s,58J. Ocariz,58 L. Roos,58 G.Therin,58 L. Gladney,59 M.Biasini,60R. Covarelli,60C. Angelini,61 G.Batignani,61 S. Bettarini,61F.Bucci,61 G.Calderini,61 M.Carpinelli,61 R. Cenci,61 F. Forti,61 M.A.Giorgi,61 A.Lusiani,61 G.Marchiori,61 M.A.Mazur,61 M.Morganti,61N.Neri,61E.Paoloni,61G.Rizzo,61J.J.Walsh,61M.Haire,62D.Judd,62D.E.Wagoner,62J.Biesiada,63 N.Danielson,63P. Elmer,63 Y.P.Lau,63 C. Lu,63 J. Olsen,63 A.J.S. Smith,63 A.V.Telnov,63 F. Bellini,64G. Cavoto,64 A.D’Orazio,64 D.del Re,64 E. Di Marco,64 R.Faccini,64F.Ferrarotto,64F.Ferroni,64 M.Gaspero,64 L. Li Gioi,64 M.A.Mazzoni,64 S. Morganti,64 G.Piredda,64 F. Polci,64 F. Safai Tehrani,64 C.Voena,64 M.Ebert,65 H.Schro¨der,65 R.Waldi,65T.Adye,66N.DeGroot,66B.Franek,66E.O.Olaiya,66F.F.Wilson,66R.Aleksan,67S.Emery,67A.Gaidot,67 S.F. Ganzhur,67 G.Hamel de Monchenault,67 W. Kozanecki,67 M.Legendre,67 G.Vasseur,67Ch. Ye`che,67 M.Zito,67 X.R.Chen,68H.Liu,68W.Park,68M.V.Purohit,68J.R.Wilson,68M.T.Allen,69D.Aston,69R.Bartoldus,69P.Bechtle,69 N. Berger,69 R.Claus,69 J.P. Coleman,69 M.R.Convery,69 M.Cristinziani,69 J.C. Dingfelder,69 J.Dorfan,69 G.P. Dubois-Felsmann,69 D.Dujmic,69 W. Dunwoodie,69 R.C.Field,69 T. Glanzman,69 S.J.Gowdy,69 M.T. Graham,69 P. Grenier,69V. Halyo,69 C.Hast,69 T. Hryn’ova,69 W.R. Innes,69 M.H.Kelsey,69 P. Kim,69 D.W.G.S.Leith,69 S.Li,69 S. Luitz,69V. Luth,69 H.L. Lynch,69 D.B. MacFarlane,69 H.Marsiske,69 R.Messner,69D.R.Muller,69 C.P.O’Grady,69 V.E.Ozcan,69A.Perazzo,69M.Perl,69T.Pulliam,69B.N.Ratcliff,69A.Roodman,69A.A.Salnikov,69R.H.Schindler,69 J. Schwiening,69 A.Snyder,69 J. Stelzer,69D. Su,69M.K. Sullivan,69 K.Suzuki,69 S.K. Swain,69 J.M.Thompson,69 J. Va’vra,69 N.van Bakel,69M.Weaver,69 A.J.R. Weinstein,69 W.J. Wisniewski,69 M.Wittgen,69 D.H. Wright,69 A.K.Yarritu,69 K.Yi,69C.C. Young,69 P.R.Burchat,70 A.J. Edwards,70 S.A.Majewski,70 B.A.Petersen,70 C. Roat,70 L. Wilden,70 S.Ahmed,71 M.S.Alam,71 R.Bula,71 J.A.Ernst,71V.Jain,71 B. Pan,71 M.A.Saeed,71 F.R.Wappler,71 S.B. Zain,71 W. Bugg,72 M.Krishnamurthy,72 S.M.Spanier,72 R.Eckmann,73 J.L. Ritchie,73 A.Satpathy,73 C.J.Schilling,73R.F.Schwitters,73J.M.Izen,74X.C.Lou,74S.Ye,74F.Bianchi,75F.Gallo,75D.Gamba,75M.Bomben,76 L. Bosisio,76 C.Cartaro,76 F. Cossutti,76 G.Della Ricca,76 S.Dittongo,76 L. Lanceri,76 L. Vitale,76 V. Azzolini,77 N.Lopez-March,77 F. Martinez-Vidal,77 Sw. Banerjee,78 B.Bhuyan,78 C.M.Brown,78 D.Fortin,78 K.Hamano,78 R.Kowalewski,78 I.M.Nugent,78 J.M.Roney,78 R.J. Sobie,78J.J. Back,79 P.F.Harrison,79 T.E. Latham,79 G.B. Mohanty,79 M.Pappagallo,79 H.R. Band,80X. Chen,80 B. Cheng,80 S.Dasu,80 M.Datta,80K.T. Flood,80 J.J. Hollar,80P.E. Kutter,80 B. Mellado,80 A.Mihalyi,80 Y. Pan,80 M.Pierini,80 R.Prepost,80 S.L. Wu,80 Z. Yu,80and H.Neal81 (BABAR Collaboration) 1Laboratoire de Physique des Particules, IN2P3/CNRS et Universite´ de Savoie, F-74941 Annecy-Le-Vieux, France 2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain 3Universita` di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy 4Institute of High Energy Physics, Beijing 100039, China 5University of Bergen, Institute of Physics, N-5007 Bergen, Norway 6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA 7University of Birmingham, Birmingham,B15 2TT, United Kingdom 8Ruhr Universita¨t Bochum, Institut fu¨r Experimentalphysik 1,D-44780 Bochum, Germany 9University of Bristol, Bristol BS8 1TL,United Kingdom 10University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1 11Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom 12Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia 13University of California at Irvine, Irvine, California 92697,USA 14University of California at LosAngeles, LosAngeles, California 90024,USA 15University of California at Riverside, Riverside, California 92521,USA 16University of California at San Diego, LaJolla, California 92093, USA 17University of California at Santa Barbara, Santa Barbara,California 93106, USA 18University of California at Santa Cruz,Institute for Particle Physics, Santa Cruz,California 95064, USA 19California Institute of Technology, Pasadena, California 91125,USA 20University of Cincinnati, Cincinnati, Ohio 45221,USA 21University of Colorado, Boulder, Colorado 80309,USA 22Colorado State University, Fort Collins, Colorado 80523,USA 23Universita¨t Dortmund, Institut fu¨r Physik, D-44221Dortmund,Germany 24Technische Universita¨t Dresden, Institut fu¨rKern- und Teilchenphysik, D-01062 Dresden, Germany 25Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France 26University of Edinburgh, Edinburgh EH9 3JZ,United Kingdom 012003-2 INCLUSIVE(cid:1)(cid:1) PRODUCTIONINe(cid:1)e(cid:2) ... PHYSICALREVIEW D75, 012003 (2007) c 27Universita` di Ferrara,Dipartimento di Fisica and INFN, I-44100 Ferrara,Italy 28Laboratori Nazionali di Frascatidell’INFN, I-00044 Frascati, Italy 29Universita` di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy 30Harvard University, Cambridge, Massachusetts 02138, USA 31Universita¨t Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg,Germany 32Imperial College London, London,SW7 2AZ, United Kingdom 33University of Iowa, Iowa City, Iowa 52242, USA 34Iowa State University, Ames, Iowa 50011-3160, USA 35JohnsHopkins University, Baltimore, Maryland 21218, USA 36Universita¨t Karlsruhe, Institut fu¨r Experimentelle Kernphysik, D-76021Karlsruhe, Germany 37Laboratoire de l’Acce´le´rateur Line´aire, IN2P3/CNRS et Universite´ Paris-Sud 11, Centre Scientifique d’Orsay, B.P. 34, F-91898 ORSAY Cedex, France 38Lawrence Livermore National Laboratory, Livermore, California 94550, USA 39University of Liverpool, Liverpool L69 7ZE, United Kingdom 40Queen Mary, University of London, E1 4NS, United Kingdom 41University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom 42University of Louisville, Louisville, Kentucky 40292, USA 43University of Manchester, Manchester M13 9PL, United Kingdom 44University of Maryland, College Park, Maryland 20742, USA 45University of Massachusetts, Amherst, Massachusetts 01003,USA 46Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA 47McGill University, Montre´al, Que´bec, Canada H3A 2T8 48Universita` di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy 49University of Mississippi,University, Mississippi38677, USA 50Universite´ de Montre´al, Physique des Particules, Montre´al, Que´bec, Canada H3C3J7 51Mount Holyoke College, South Hadley, Massachusetts 01075, USA 52Universita` di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126,Napoli, Italy 53NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DBAmsterdam,The Netherlands 54University of Notre Dame, Notre Dame,Indiana 46556, USA 55Ohio State University, Columbus, Ohio 43210, USA 56University of Oregon,Eugene, Oregon 97403, USA 57Universita` di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy 58Laboratoire de Physique Nucle´aire et de Hautes Energies, IN2P3/CNRS, Universite´ Pierre et Marie Curie-Paris6, Universite´ Denis Diderot-Paris7,F-75252 Paris,France 59University of Pennsylvania, Philadelphia, Pennsylvania 19104,USA 60Universita` di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy 61Universita` di Pisa, Dipartimento di Fisica, Scuola NormaleSuperiore and INFN, I-56127 Pisa, Italy 62Prairie View A&M University, PrairieView, Texas 77446, USA 63Princeton University, Princeton, New Jersey 08544, USA 64Universita` di Roma LaSapienza, Dipartimento di Fisica andINFN, I-00185 Roma, Italy 65Universita¨t Rostock, D-18051Rostock, Germany 66Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom 67DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France 68University of South Carolina, Columbia, South Carolina 29208, USA 69Stanford Linear Accelerator Center, Stanford,California 94309,USA 70Stanford University, Stanford,California 94305-4060, USA 71State University of New York, Albany, New York 12222, USA 72University of Tennessee, Knoxville, Tennessee 37996, USA 73University of Texas at Austin, Austin, Texas 78712,USA 74University of Texas at Dallas, Richardson,Texas 75083,USA 75Universita` di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy 76Universita` di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy 77IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain 78University of Victoria, Victoria, British Columbia, Canada V8W 3P6 79Department of Physics, University of Warwick,Coventry CV4 7AL, United Kingdom 80University of Wisconsin, Madison, Wisconsin 53706, USA 81Yale University, New Haven, Connecticut 06511, USA *Alsowith Universita` di Perugia, Dipartimento di Fisica, Perugia, Italy †Alsowith Universita` della Basilicata, Potenza, Italy 012003-3 B. AUBERTet al. PHYSICALREVIEW D75, 012003 (2007) (Received 5 September 2006; published 9 January 2007) We present measurements of the total production rates and momentum distributions of the charmed baryon(cid:1)(cid:1)ine(cid:1)e(cid:2) !hadronsatacenter-of-massenergyof10.54GeVandin(cid:2)(cid:4)4S(cid:5)decays.Inhadronic c events at 10.54 GeV, charmed hadrons are almost exclusively leading particles in e(cid:1)e(cid:2) !cc(cid:1) events, allowingdirectstudiesofc-quarkfragmentation. Wemeasureamomentum distributionfor(cid:1)(cid:1) baryons c thatdifferssignificantlyfromthosemeasuredpreviouslyforcharmedmesons.Comparingwithanumber of models, we find none that can describe the distribution completely. We measure an average scaled momentumofhx i(cid:3)0:574(cid:6)0:009andatotalrateofNqq(cid:1) (cid:3)0:057(cid:6)0:002(cid:4)exp:(cid:5)(cid:6)0:015(cid:4)BF(cid:5) (cid:1)(cid:1) per p (cid:1)c c hadronicevent,wheretheexperimentalerrorismuchsmallerthanthatduetothebranchingfractioninto the reconstructed decay mode, pK(cid:2)(cid:3)(cid:1). In (cid:2)(cid:4)4S(cid:5) decays we measure a total rate of N(cid:2) (cid:3)0:091(cid:6) (cid:1)c 0:006(cid:4)exp:(cid:5)(cid:6)0:024(cid:4)BF(cid:5)per(cid:2)(cid:4)4S(cid:5)decay,andfindamuchsoftermomentumdistributionthanexpected from Bdecays into a (cid:1)(cid:1) plus an antinucleon and one to three pions. c DOI: 10.1103/PhysRevD.75.012003 PACS numbers: 13.66.Bc, 13.20.He, 13.60.Rj I. INTRODUCTION heavyquark,with P(cid:4)x (cid:5)being much harder forbhadrons p thanchadrons,andinsomecasesonthemassandquantum The production properties of charmed baryons in e(cid:1)e(cid:2) numbers of H. Hadrons containing the same heavy quark annihilations into cc(cid:1) and in decays of bottom (b) hadrons type are generally predicted to have quite similar P(cid:4)x (cid:5), probe different aspects of strong interaction physics. p although differences between mesons and baryons have Experiments running at and below the (cid:2)(cid:4)4S(cid:5) resonance been suggested [13,14]. Measurements of P(cid:4)x (cid:5) serve to areuniquelypositionedtoexploreeachoftheseprocesses p constrain perturbative QCD and these model predictions. in detail. The CLEO experiment has made precise studies Furthermore, measurements for a given c or b hadron at of charmed mesons in this way [1], and the larger data p different (cid:1)s(cid:1)(cid:1)cantestQCDevolution,andcomparisonsofc- samplesavailableattheBfactorieshaveallowedimproved andb-hadrondistributionscantestheavy-quarksymmetry studiesofcharmedmesons[2]andthefirstprecisestudies [15]. of charmed baryons[2,3]. Heavy hadrons (H) produced in e(cid:1)e(cid:2) annihilations Theinclusiveb-hadronscaledenergydistributionandits averagevalueof0.71havebeenmeasuredprecisely[16]by provide a laboratory for the study of heavy-quark (cid:4)Q(cid:3) experiments at the Z0, using partial reconstruction tech- c;b(cid:5) jet fragmentation, in terms of both the relative pro- niques. However, these techniques do not distinguish the duction rates of hadrons with different quantum numbers differenttypesofbhadrons.TherelativeproductionofB(cid:2), andtheirassociatedspectra.Thelattercanbecharacterized u B0, B0, excited b mesons, and b baryons have been mea- in terms of a scaled energy or momentum, such as x (cid:7) d s p sured [4,17], but with limited precision and no sensitivity p(cid:8)=p(cid:8) ,wherep(cid:8) isthehadronmomentuminthee(cid:1)e(cid:2) H max H q(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:1) to differences in their xp distributions. Several c mesons center-of-mass(c.m.)frameandp(cid:8)max (cid:3) s=4(cid:2)m2H isthe have been studied at the Z0 [18], but it is difficult to maximummomentumavailabletoaparticleofmassm at disentangle the leading charm and b-decay contributions p p H a c.m. energy of (cid:1)s(cid:1)(cid:1). For (cid:1)s(cid:1)(cid:1)(cid:9)2m it has been observed andneithercomponentismeasuredprecisely.Recentmea- H [4] that the x distributions P(cid:4)x (cid:5) for heavy hadrons peak surements below BB(cid:1) threshold [1,2] have good precision p p at relatively high values, and that very few b hadrons are over the full x range and show substantial differences p produced apart from those containing initial b quarks, so between the pseudoscalar D and vector D(cid:8) meson states. that one can probe leading b-hadron production directly. P(cid:4)x (cid:5) has been measured below BB(cid:1) threshold for two p p This is also the case for charmed (c) hadrons when (cid:1)s(cid:1)(cid:1)< charmed baryons, (cid:1)(cid:1) by CLEO [19] and Belle [2], and c 2mB, where mB is the mass of the lightest b meson, but (cid:4)0c byBABAR[3],butwithlimited statistics,especially at above BB(cid:1) threshold a large fraction of the c hadrons are low x . In this article we use the excellent particle identi- p b-hadron decay products. fication of the BABAR experiment to isolate (cid:1)(cid:1) baryons c Since the hadronization process is intrinsically nonper- (the inclusion of charge conjugate states is implied turbative, P(cid:4)xp(cid:5) cannot be calculated using perturbative throughout) inpa large data sample collected below BB(cid:1) quantum chromodynamics (QCD).However,ahighquark threshold, at (cid:1)s(cid:1)(cid:1)(cid:3)10:54 GeV. We measure P(cid:4)x (cid:5) pre- p mass provides a convenient cutoff point and the distribu- cisely, and compare our results with available predictions tion of the scaled momentupm of the heavy quark before and previous measurements of heavy hadrons. hadronization, xQ (cid:7)2p(cid:8)Q= (cid:1)s(cid:1)(cid:1), can be calculated [5–8]. The large b-hadron masses allow many hadronic decay The observable P(cid:4)x (cid:5) is thought to be related by a simple modes, a small fraction of which have been studied in p convolution or hadronization model. Several phenomeno- detail. The (cid:2)(cid:4)4S(cid:5)resonance providesaunique laboratory, logical models of heavy-quark fragmentation have been inwhichnobbaryonsareproducedanddecaysofmesons proposed [9–12]. Predictions depend on the mass of the intobaryonscanbestudieddirectly.Manycbaryonshave 012003-4 INCLUSIVE(cid:1)(cid:1) PRODUCTIONINe(cid:1)e(cid:2) ... PHYSICALREVIEW D75, 012003 (2007) c been observed in inclusive (cid:2)(cid:4)4S(cid:5) decays [4] and the low light(DIRC).TheDCHgasishelium:isobutane80:20and rate of associated leptons and high rate of ‘‘wrong-sign’’ a typical cell size is 18 mm. A truncated mean algorithm (cid:1)(cid:1)[20]suggestinterestingdynamics.Howeveronlyafew gives a dE=dx value for each track with an average reso- c exclusive decays with cbaryonshave been observed [21– lution of 7.5%, from which we calculate a set of five 23]. Again, momentum distributions have been measured relative likelihoods LDCH for the particle hypotheses i(cid:3) i only for the (cid:1)(cid:1) [2,24] and (cid:4)0 [3] with limited precision. e,(cid:6),(cid:3),K,andp.Differencesbetweenthelog-likelihoods c c p Hereweusedatacollectedonthe(cid:2)(cid:4)4S(cid:5)resonance( (cid:1)s(cid:1)(cid:1)(cid:3) lDCH (cid:3)ln(cid:4)LDCH(cid:5)(cid:2)ln(cid:4)LDCH(cid:5) are used as input to the par- ij i j 10:58 GeV) and subtract the e(cid:1)e(cid:2) !cc(cid:1) contribution ticle identification algorithm. p measured at (cid:1)s(cid:1)(cid:1)(cid:3)10:54 GeVtomakeaprecise measure- The DIRC comprises 144 fused silica bars that guide mentofthe(cid:1)(cid:1)momentumdistributioninBmesondecays, Cherenkov photons to an expansion volume filled with c which we comparewith a number of possible models. water and equipped with 10752 photomultiplier tubes. InSec.II,wedescribetheBABARdetector,inparticular, The fused silica refractive index is 1.473, corresponding the particle identification capabilities essential to these to Cherenkov thresholds of 128, 458, and 867 MeV=c for measurements.InSecs.IIIandIV,wediscusstheselection pions, kaons, and protons, respectively. A particle well of (cid:1)(cid:1) candidates and the measurement of their x distri- above threshold yields 20–75 measured photons, each c p butions,respectively. We interpret the results for e(cid:1)e(cid:2) ! with a Cherenkov angle resolution of about 10 mrad. A qq(cid:1) events and (cid:2)(cid:4)4S(cid:5) decays in Secs. V and VI, respec- globallikelihoodalgorithmconsidersallthereconstructed tively,and summarize in Sec. VII. charged tracks and detected photons in each event and assignseach track a set of likelihoods LDIRC. i The DCH provides excellent K-(cid:3) and p-K separation II.APPARATUSANDEVENTSELECTION for momenta in the laboratory frame below 0.5 and In this analysis, we use data samples corresponding to 0:9 GeV=c, respectively. The DIRC provides very good p 9:5 fb(cid:2)1 ofintegrated luminosity at (cid:1)s(cid:1)(cid:1)(cid:3)10:54 GeVand separationformomentaabove1.0and1:5 GeV=c,respec- p 81 fb(cid:2)1 on the (cid:2)(cid:4)4S(cid:5) resonance, (cid:1)s(cid:1)(cid:1)(cid:3)10:58 GeV. The tively. In both detectors the separation power is lower for BABAR detector is located at the PEP-II asymmetric- trackswithpolaranglesnear90(cid:12) inthelaboratorythanfor energy e(cid:1)e(cid:2) collider at the Stanford Linear Accelerator moreforwardorbackwardtracks.Tominimizethesystem- Center and is described in detail in Ref. [25]. We use atic errors in this analysis, the identification efficiencies charged tracks measured in the five-layer, double sided mustnotvaryrapidlyasafunctionofmomentumorpolar siliconvertextracker(SVT)andthe40-layerdriftchamber angle.Wehavethereforedevelopedanalgorithmthatuses (DCH). In a 1.5 T axial magnetic field, they provide a linearcombinations oflDCH andlDIRC chosentominimize ij ij combined resolution on the momentum p transverse to suchvariations.ItisdescribedindetailinRef.[26]andits T the beam axis of (cid:10)(cid:5)(cid:4)p (cid:5)=p (cid:11)2 (cid:3)(cid:10)0:0013p (cid:11)2(cid:1)0:00452, performance for tracks used in this analysis is shown as a T T T where p is measured in GeV=c. function of momentum in Fig. 1. The identification effi- T Chargedparticleidentificationusesacombinationofthe ciencies are better than 99% at low momenta and above energy loss (dE=dx) measured in the DCH, and informa- 90%forthemajorityof(cid:1)(cid:1) decayproducts.Theyareseen c tion from the detector of internally reflected Cherenkov to vary smoothly with momentum, and are almost inde- 1.0 0.10 y0.8 π → π 0.08 nc K → π M Efficie0.6 p → π Kπ →→ KK pπ →→ pp 0.06isiden on p → K K → p tific cati 0.4 0.04atio ntifi n R e a Id0.2 0.02te 0.0 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 Laboratory Momentum (GeV/c) FIG. 1. Efficiencies for identifying (solid symbols, left-hand vertical scale) or misidentifying (open symbols, right-hand scale) selectedpions(circles),kaons(squares),andprotons(triangles)withintheDIRCacceptanceaspions(left),kaons(center),orprotons (right). They are extracted from control samples in the data as smooth functions of momentum and polar angle, and shown in momentum bins averaged over the polar angle range used. The error bars indicate the average uncertainty due to control sample statistics. 012003-5 B. AUBERTet al. PHYSICALREVIEW D75, 012003 (2007) pendent of polar angle except near 0:8 GeV=c and calculate their combined four momentum from their (1:2 GeV=c) for pions and kaons (protons), where they momenta at their points of closest approach to the beam are as much as 10% lower for central tracks than for axis.Thedistributionsofinvariantmassforthecandidates forward/backward tracks. The misidentification rates de- in the on- and off-resonance data are shownin Fig.2; (cid:1)(cid:1) c pend strongly on polar angle in the momentum regions signals of about 137000 and 13000 decays, respectively, 0.6–0.8,1.1–1.3,and2:5–3:5 GeV=c.Theyarebelow5% arevisible over nearly uniform backgrounds. everywhere except that the rate for kaons (protons) to be The (cid:1)(cid:1) reconstruction efficiency depends primarily on c misidentified as pions reaches 11% at 0:7(cid:4)1:2(cid:5) GeV=c for themomentapandpolarangles(cid:8)ofthedaughtertracksin themostcentraltracks.Theserateshavenegligibleeffects thelaboratoryframe.Toreducesystematicuncertainty,we ontheresults.About16%oftheselectedtrackshavegood apply an efficiency correction to each candidate before DCHinformationbutareoutsidetheDIRCfiducialaccep- boosting it into the e(cid:1)e(cid:2) c.m. frame. The efficiencies for tance. These can be identified with essentially the same reconstructing and identifying tracks from pions, kaons, efficiencies as in Fig. 1 for pion and kaon (proton) mo- and protons are determined from large control samples in menta below0:6(cid:4)0:9(cid:5) GeV=c. the data as two-dimensional functions of (cid:4)p;(cid:8)(cid:5). We use The event selection requires three or more charged theseefficienciesindedicatedsimulationsofqq(cid:1)and(cid:2)(cid:4)4S(cid:5) tracks in the event, which retains any e(cid:1)e(cid:2) !qq(cid:1) event events containing a (cid:1)(cid:1) baryon that is decayed into c or (cid:2)(cid:4)4S(cid:5) decay containing a reconstructable (cid:1)(cid:1) ! pK(cid:2)(cid:3)(cid:1). From these we calculate the (cid:1)(cid:1) selection effi- c c pK(cid:2)(cid:3)(cid:1) decay andsuppressesbeam-related backgrounds. ciency"asasmoothtwo-dimensionalfunctionof(cid:4)p;(cid:8)(cid:5)of We evaluate its performance using a number of simula- the (cid:1)(cid:1). We check that the efficiency does not depend on c tions, each consisting of a generator for a certain type of other track or event variables, in particular, that it is the event combined with a detailed simulation of the BABAR sameinsimulatedqq(cid:1) and(cid:2)(cid:4)4S(cid:5)eventsforgivenvaluesof detector [27]. For e(cid:1)e(cid:2) !qq(cid:1) events we use the JETSET (cid:4)p;(cid:8)(cid:5). The resolutions on the (cid:1)(cid:1) momentum and polar c [28] generator and for (cid:2)(cid:4)4S(cid:5) events we use our own anglearemuchsmallerthanthebinsizesusedbelow,sowe generator, EVTGEN [29], in which the (cid:2)(cid:4)4S(cid:5) decays include resolution effects by defining the efficiencyas the intoaBB(cid:1) pair,thentheBandB(cid:1) decayusingacombination number of (cid:1)(cid:1) reconstructed within a given (cid:4)p;(cid:8)(cid:5) range c of measured exclusive and semiexclusive modes, and a divided by the number generated in that range, using b!cW(cid:2) model tuned to the world’s inclusive data. We ranges smaller than the relevant bin sizes. We test the study large samples of simulated two-photon, (cid:7)-pair, and efficiency using a number of simulations, and find biases radiativee-and(cid:6)-pairevents,andfindtheircontributions to be below 1%. to both signal and background to be negligible. The efficiency varies rapidly near the edges of the detector acceptance andat verylowmomenta inthe labo- III.(cid:1)(cid:1) !pK(cid:2)(cid:3)(cid:1) SELECTION ratory.Wemakethetightfiducialrequirement that (cid:8)(cid:8),the c polar angle of the (cid:1)(cid:1) candidate in the e(cid:1)e(cid:2) c.m. frame, c Weconstruct(cid:1)(cid:1)c candidatesfromchargedtracksthatare satisfy (cid:2)0:7<cos(cid:8)(cid:8)<0:2, which reduces model depen- consistent with originating at the e(cid:1)e(cid:2) interaction point dence and rejects all candidates in regions with efficiency and have good tracking and particle identification infor- mation. Each track must have: (i) at least 20 measured 3 3 coordinates in the DCH; (ii) at least 5 coordinates in the x10 x10 2 SVT,including at least three in the direction along the e(cid:2) ) O 2 15 bbeealomw;(1iiim)ma;diasntadnc(iev)ofaczlo-csoeostrdaipnpartoeaacthtthoisthpeobinetamwiathxiins eV/c ff-Re 10 cm of the nominal interaction point. These criteria (M so ensure good quality information from the DCH and a s / na e10 n wtraepllo-mlateeadsutrraejdecetonrtryainncteerasencgtlseaiDntIoRtChebaDrIthReCn.thIfetthraeckexis- Entri 1ce E accocmebpitnededifDitCisHidaenndtifiDeIdRaCsaalpgioorni,thkmao.nI,fornoptr,ottohnenbyitthies nce ntrie a s accepted ifitisidentifiedasaproton(pionorkaon)using on 5 / ( DCH information only and has a momentum below es Me 1:2(cid:4)0:6(cid:5) GeV=c. R V n- /c We considera combination ofthree charged tracks as a O 2 ) (cid:1)(cid:1)candidateifthetotalchargeis(cid:1)1,oneofthepositively 0 0 c 2.24 2.26 2.28 2.30 2.32 charged tracks is identified as a proton and the other as a pK−π+ Mass (GeV/c2) pion, and the negatively charged track is identified as a kaon. With the appropriate particle type assigned to each FIG. 2. Invariant mass distributions for (cid:1)(cid:1) candidates in the c track, we correct their measured momenta for energy loss on-(black) and off-resonance (gray) data. 012003-6 INCLUSIVE(cid:1)(cid:1) PRODUCTIONINe(cid:1)e(cid:2) ... PHYSICALREVIEW D75, 012003 (2007) c below about 5%, including those with a total laboratory IV. SIGNALEXTRACTION momentum below about 0:7 GeV=c. A feature of the boosted c.m. system is that true (cid:1)(cid:1) baryons with low To estimate the number of (cid:1)(cid:1) !pK(cid:2)(cid:3)(cid:1) decays in c c c.m. momentum p(cid:8) are boosted forward and often have each x bin in the data, we fit the weighted invariant p all three tracks in the detector acceptance, giving efficient mass distribution with a function comprising signal and access to the full p(cid:8) range. background components. Based on the simulated mass WedefineA asthefractionofthe(cid:1)(cid:1)ineventsoftypek distributions, we describe the signal with a sum of two k c producedwithinourfiducialrange(cid:2)0:7<cos(cid:8)(cid:8)<0:2.In Gaussian functions of common meanvalue, one of which (cid:2)(cid:4)4S(cid:5)!BB(cid:1) !(cid:1)(cid:1)Xdecays,thetruecos(cid:8)(cid:8)distributionis has 1.5 times the width and one quarter of the area of the c uniformandA (cid:3)0:45.Incc(cid:1) eventstheangulardistribu- other,andcorrectfora1.3%residualbiasinthefittedarea. (cid:2) tion of the initial c-quark follows 1(cid:1)cos2(cid:8)(cid:8), and we use We check the simulated bias by comparing with a single theJETSETsimulationtocalculatethedistributionfor(cid:1)(cid:1) Gaussiansignalfunction.Thechangeintheyieldsis1.2% c after QCD radiation and hadronization. Soft (cid:1)(cid:1)c are pro- in both data and simulation. duced predominantly in events with hard gluon radiation, The simulation predicts a nearly uniform background which flattens the distribution considerably. The resulting overthepK(cid:2)(cid:3)(cid:1)massrangeshowninFig.2.Wesearchfor valueofAcc(cid:1) is0.46atp(cid:8) (cid:3)0,andfallswithincreasingp(cid:8) reflectionsinthedatabychangingtheparticlemassassign- toward an asymptotic value of 0.38. ments. We observe signalsforD(cid:1) !K(cid:2)(cid:3)(cid:1)(cid:3)(cid:1) ((cid:3)(cid:1) mis- We bin candidates according to their reconstructed val- identifiedasp)andD(cid:1) !K(cid:2)K(cid:1)(cid:3)(cid:1)(K(cid:1)misidentifiedas s ues of xp (cid:3)p(cid:8)=p(cid:8)max, where p(cid:8)max is calculated for each p)atverylowlevelsconsistentwiththepredictionsofour event from its c.m. energy and the nominal (cid:1)(cid:1) mass [4]. detector simulation, but no unexpected structure. From c Figure 3 shows the average value in each x bin of the these studies we calculate that reflections known to give p productA (cid:4)p(cid:8)(cid:5)(cid:13)"(cid:4)p;(cid:8)(cid:5)forselectedcandidatesintheoff- broad structures in the vicinity of the (cid:1)(cid:1) peak, such as cc(cid:1) c resonancedata.Itrangesfrom8%atlowx to19%athigh D(cid:8)(cid:1) !K(cid:2)(cid:3)(cid:1)(cid:3)(cid:1) ((cid:3)(cid:1) misidentified as p) contribute a p x . The error bars represent the statistical uncertainty on number of entries in each bin much smaller than the p the efficiency calculation. The corresponding quantity for statistical fluctuations. We also study processes such as (cid:1)(cid:1)c from(cid:2)(cid:4)4S(cid:5)decays,hA(cid:2) (cid:13)"(cid:4)p;(cid:8)(cid:5)i,isslightlyhigherat (cid:9)(cid:1)c(cid:1) !(cid:1)(cid:1)c(cid:3)(cid:1), with the wrong (cid:3)(cid:1) included in the (cid:1)(cid:1)c lowx duetoasmalldependenceof"on(cid:8),andrisesfaster candidate, and find their contributions to be negligible. In p with increasing xp since A(cid:2) is constant, whereas Acc(cid:1) each xp bin, a linear function describes the mass distribu- decreases. We give each candidate a weight equal to the tioninthedataoverawiderangeawayfromthe(cid:1)(cid:1)c peak inverse of either A (cid:13)" orA (cid:13)",asspecified below.The region,soweusealinearbackgroundfunctionandperform cc(cid:1) (cid:2) RMSdeviation of theweights in each bin is alwaysmuch fitsover the range 2235–2335 MeV=c2. smaller than the averagevalue. Wefirstfitthefulldatasampleineachxpbininorderto study mass resolution and bias. These fits yield (cid:1)(cid:1) mass c values that vary slightly with x in a manner consistent p withthesimulationandourrecentmeasurementofthe(cid:1)(cid:1) c 0.20 mass [30]. The fitted mass resolutions (RMS width of the y signalfunction)areshownasafunctionofx inFig.4.The c p en simulation is consistent with the data at low xp, and is Effici0.15 slightlyoptimistic athighxp.The effect ofthisdifference on the efficiency estimate is negligible. × e Nextwefixthemeanandwidthofthesignalfunctionin c n each x bin to values from linear parametrizations, and a0.10 p pt perform fits to the on- and off-resonance data separately. e c Dividingthesignalyieldsbytheintegratedluminosity,bin c A width, and branching fraction BpK(cid:2)(cid:3)(cid:1) (cid:7)B(cid:4)(cid:1)(cid:1)c ! 0.05 pK(cid:2)(cid:3)(cid:1)(cid:5)(cid:3)5:0(cid:6)1:3% [4] gives the differential produc- tion cross sections shown in Fig. 5 with statistical errors only.Weusethee(cid:1)e(cid:2) !cc(cid:1) acceptancefactorA forthe cc(cid:1) 0 off-resonancedataand,forpurposesofthiscomparison,an 0 0.2 0.4 0.6 0.8 1 average value of A in each bin weighted by the relative x p production rates measured below (see Tables I and V) for FIG. 3. Average value of A (cid:13)", the (cid:1)(cid:1) !pK(cid:2)(cid:3)(cid:1) accep- theon-resonancedata.Therearetwobroadpeaksintheon- cc(cid:1) c tance times reconstruction efficiency, for candidates in the off- resonancecrosssection,correspondingtothecontributions resonance data in bins of scaled momentum xp. The error bars from(cid:2)(cid:4)4S(cid:5)decaysatlowxp andfrome(cid:1)e(cid:2) !cc(cid:1) events represent the average statistical uncertainty. athighx .Forx >0:47,thekinematiclimitforaBdecay p p 012003-7 B. AUBERTet al. PHYSICALREVIEW D75, 012003 (2007) production rates per event discussed in the following 6 sections. Data We consider several sources of systematic uncertainty. ) 2c Simulation We propagate the uncertainties on the measured track V/ e finding and particle identification efficiencies by recalcu- M lating "(cid:4)p;(cid:8)(cid:5) with all efficiencies of a given type varied ( n 5 simultaneously and repeating the fits. Tracking gives an o uti uncertainty of 2.5% and the particle identification contri- ol butions total 1.5%–2.1%, depending on x . We obtain a s p e 0.9% uncertainty due to the resonant substructure of the R s (cid:1)(cid:1)c !pK(cid:2)(cid:3)(cid:1) decay similarly. The uncertainty on our s a integrated luminosity is 1.0%. Simulation statistics con- M 4 tribute2%–4%wheretherateissignificantlynonzero.We checkthefittingprocedurebyfloatingthesignalmeanand/ or width, fixing them to nominal or fitted values, using a 0 0.2 0.4 0.6 0.8 1 single Gaussian signal function, using a quadratic back- x p ground function, and varying the bin size. All changes in thesignalyieldsarelessthanthecorrespondingstatistical FIG. 4. RMSwidthofthefitted(cid:1)(cid:1) signalfunctioninthedata c errors, and we take the largest change in each x bin as a (circles) and simulation (squares) as a function of x . The line p p systematic uncertainty. Each simulated bias is varied by represents a linear parametrization of the data. (cid:6)50%; together they contribute 0.7% to the systematic uncertainty. The imperfect x distribution used in the p including a (cid:1)(cid:1)c and an antiproton, the two cross sections efficiencycalculation canaffecttheresultiftheefficiency are consistent, indicating no visible contribution from varies over the width of an x bin. We recalculate the p (cid:2)(cid:4)4S(cid:5) events. efficiency with the input distribution shifted by plus and Weextractthecrosssectionfor(cid:2)(cid:4)4S(cid:5)decaysbyrepeat- minus our bin width to derive a conservative limit on any ingtheanalysisusingA(cid:2) forbothdatasets.Ineachxp bin sucheffectof0.5%–1.9%,dependingonxp,whichwetake we then subtract the off-resonance cross section, scaled as a systematic uncertainty. down by 0.8% to account for the dependence of the cross Wealsoperformseveralsystematicchecksoftheresults. section on the c.m. energy, from the on-resonance cross The cross sections measured separately for (cid:1)(cid:1) and (cid:1)(cid:1)(cid:2), c c section. We divide the off-resonance and (cid:2)(cid:4)4S(cid:5) cross which have very different efficiencies at low laboratory sections by the e(cid:1)e(cid:2) !hadrons and effective e(cid:1)e(cid:2) ! momentum,areconsistent.Crosssectionsmeasuredinsix (cid:2)(cid:4)4S(cid:5)crosssections,respectively,toyield the differential different regions of cos(cid:8)(cid:8) are consistent with each other. Because of the boosted c.m. system, these would be af- fected differently by any deficiency in the detector simu- lation, especially at low x . They also have very different nit) A values,andthesestudipesindicatethattheuncertainties u cc(cid:1) b / 500 duetoboththeproductionanglemodelincc(cid:1)eventsandthe p value of the boost are negligible. ( n 400 V.RESULTS FOR p(cid:1)s(cid:1)(cid:1)(cid:3)10:54 GeV o ecti300 A.(cid:1)(cid:1) Baryon production S c s The differential (cid:1)(cid:1) production rate per hadronic event s c Cro200 (cid:4)1=Nqq(cid:1)(cid:5)(cid:4)dN(cid:1)qqc(cid:1)=dxp(cid:5) is tabulated in Table I and compared al withpreviouscharmedbaryonmeasurementsinFig.6.We nti100 distinguishbetweensystematicuncertaintiesthataffectthe e r shape of the cross section and those that affect only its e Diff 0 normalization. The former include both uncertainties that are uncorrelated between bins and the parts of the corre- 0 0.2 0.4 0.6 0.8 1 lateduncertaintieswhosevaluesdependonx .Theuncer- x p p taintyfromthefittingprocedurehasnegligiblecorrelation FIG. 5. Differentialcrosssectionsfor(cid:1)(cid:1)(cid:1)(cid:1)(cid:1)(cid:2) productionin betweenbins,andthosefromtheparticleidentificationand c c the off-(circles) and on-resonance (open squares) data as func- theshiftofthesimulateddistributionhaveonlyveryshort- tions of x . The errors are statistical only. rangecorrelations, soweincludethemintheuncorrelated p 012003-8 INCLUSIVE(cid:1)(cid:1) PRODUCTIONINe(cid:1)e(cid:2) ... PHYSICALREVIEW D75, 012003 (2007) c TABLE I. (cid:1)(cid:1) differential production rate per hadronic event c p per unit xp at (cid:1)s(cid:1)(cid:1)(cid:3)10:54 GeV. The last column includes BaBar experimental errors that are correlated between xp values and 0.15 CLEO affect the shape of the distribution. Normalization uncertainties p x Belle are given only on the total. d q/c qΛ Systematic N xp Range N1qq(cid:1) ddNx(cid:1)qpqc(cid:1) Statistical Error Independent Correlated ) dq0.10 q N 0.000–0.025 0.0007 0.0009 0.0004 0.0001 1/ 0.025–0.050 0.0033 0.0016 0.0012 0.0002 ( 0.05 0.050–0.075 0.0008 0.0030 0.0011 0.0001 0.075–0.100 (cid:2)0:0023 0.0040 0.0013 0.0001 0.100–0.125 0.0105 0.0053 0.0020 0.0007 0.125–0.150 0.0065 0.0053 0.0041 0.0002 0 0.150–0.175 0.0172 0.0057 0.0024 0.0004 0.175–0.200 (cid:2)0:0006 0.0056 0.0036 0.0000 0 0.2 0.4 0.6 0.8 1 x 0.200–0.225 0.0197 0.0057 0.0038 0.0004 p 0.225–0.250 0.0180 0.0059 0.0039 0.0003 FIG. 6. Differential (cid:1)(cid:1) production ratepere(cid:1)e(cid:2) !qq(cid:1) event 0.250–0.275 0.0323 0.0061 0.0064 0.0006 c compared with previous measurements. The error bars include 0.275–0.300 0.0324 0.0056 0.0040 0.0006 statisticsandthosesystematic errorsthataffectthe shape.Each 0.300–0.325 0.0273 0.0054 0.0064 0.0006 experimenthasanormalizationuncertaintyofafewpercent,and 0.325–0.350 0.0517 0.0056 0.0053 0.0011 there is an overall 26% uncertainty due to the (cid:1)(cid:1) !pK(cid:2)(cid:3)(cid:1) c 0.350–0.375 0.0509 0.0053 0.0029 0.0010 branching fraction. 0.375–0.400 0.0617 0.0054 0.0045 0.0012 0.400–0.425 0.0759 0.0055 0.0040 0.0014 cient in the latter exceeds unity.The suminquadrature of 0.425–0.450 0.0667 0.0051 0.0032 0.0010 the uncorrelated uncertainties is listed in the ‘‘indepen- 0.450–0.475 0.0939 0.0055 0.0044 0.0014 dent’’ column of Table I. It is typically 3% in the peak 0.475–0.500 0.1051 0.0056 0.0041 0.0014 region, increasing to 10% where the cross section is one- 0.500–0.525 0.1126 0.0056 0.0048 0.0014 thirdofitspeakvalue,andbecomingrelativelylargeatthe 0.525–0.550 0.1220 0.0056 0.0043 0.0015 ends of the x range. The square roots of the diagonal 0.550–0.575 0.1403 0.0058 0.0041 0.0014 p elements of the remainder matrix are listed in the ‘‘corre- 0.575–0.600 0.1526 0.0058 0.0044 0.0015 lated’’ column of Table I, and included with the indepen- 0.600–0.625 0.1548 0.0058 0.0061 0.0014 dent and statistical components in the error bars in the 0.625–0.650 0.1394 0.0055 0.0038 0.0012 figures. 0.650–0.675 0.1409 0.0052 0.0045 0.0012 Allotheruncertaintiesarefullycorrelatedbetweenbins 0.675–0.700 0.1352 0.0052 0.0037 0.0011 0.700–0.725 0.1232 0.0049 0.0035 0.0010 and very nearly independent of xp, so are considered 0.725–0.750 0.0979 0.0043 0.0030 0.0009 experimental normalization uncertainties. They total 0.750–0.775 0.0803 0.0040 0.0026 0.0007 2.9%, dominated by the track-finding efficiency. There is 0.775–0.800 0.0673 0.0034 0.0035 0.0008 a26%uncertaintyonBpK(cid:2)(cid:3)(cid:1) thatalsoaffectsthenormal- 0.800–0.825 0.0464 0.0029 0.0026 0.0006 ization. The integral of the differential rate, taking the 0.825–0.850 0.0332 0.0025 0.0017 0.0004 correlation in the errors into account, gives the total rate, 0.850–0.875 0.0220 0.0020 0.0010 0.0005 listedatthebottomofTableIalongwiththenormalization 0.875–0.900 0.0161 0.0017 0.0017 0.0006 uncertainties. The product of the total rate per event and 00..990205––00..995205 00..00007499 00..00001132 00..00000076 00..00000038 branching fraction of N(cid:1)qqc(cid:1)(cid:13)BpK(cid:2)(cid:3)(cid:1)(cid:3)2:84(cid:6)0:04(cid:4)stat:(cid:5)(cid:6) 0:09(cid:4)syst:(cid:5)(cid:14)10(cid:2)3 is consistent with, and more precise 0.950–0.975 0.0018 0.0006 0.0003 0.0004 than, previous measurements. The normalization uncer- 0.975–1.000 0.0003 0.0001 0.0002 0.0001 taintiesarenotincludedinanyofthefigures,andallrates Total 0.0568 0.0007 0.0006 0.0008 shownassume the samevalue of BpK(cid:2)(cid:3)(cid:1). Norm. err. 0.0016 Assuming the (cid:1)(cid:1) are produced predominantly in c BFerror 0.0148 e(cid:1)e(cid:2) !cc(cid:1) events, the total rate corresponds to a rate of Nc (cid:3)0:071(cid:6)0:003(cid:4)exp:(cid:5)(cid:6)0:018 (BF)(cid:1)(cid:1) per c-quark (cid:1)c c jet. Roughly10%oftheparticles inhigh-energyjets have category. We express the error matrix for the efficiency generally been observed to be baryons [4], and our mea- calculationasthesumofadiagonal‘‘uncorrelated’’matrix surement is consistent with 10% of c jets producing a c and a remainder matrix, in which the elements of the baryon, with a large fraction of these decaying via a (cid:1)(cid:1). c former are as large as possible but no correlation coeffi- All known nonstrange charmed baryons decay predomi- 012003-9 B. AUBERTet al. PHYSICALREVIEW D75, 012003 (2007) nantly through a (cid:1)(cid:1), whereas no (cid:10) states and only the ofthedistributionareoftheoreticalinterest.InTableIIwe c c heaviest observed (cid:4) states [31] are known to decay list values of the first six moments of the x distribution, c p through a (cid:1)(cid:1), so that 70%–85% of inclusive charmed calculatedbysummingoverbins.Theyareconsistentwith c baryons would be expected to decay through a (cid:1)(cid:1) in previous measurements from Belle [2]; all are 1–2 stan- c current hadronization models. darddeviationslower,butthemomentsarestronglycorre- Theshapeofthedifferentialproductionrateisconsistent lated with each other. The hx i value of 0:574(cid:6)0:009 is p with previous results and measured more precisely. It is consistentwiththosemeasured[2]forD0andD(cid:1)mesons, quite hard, as expected, peaking near xp (cid:3)0:6. We nor- and about 5% lower than those for D(cid:8)0 and D(cid:8)(cid:1) mesons. malizetheratetounitareatoobtainP(cid:4)x (cid:5),andcompareit p withpreviouslymeasureddistributionsfor(cid:4)0c baryonsand B. Tests of c-quarkfragmentation models DandD(cid:8) mesonsinFig.7.The(cid:4)0 distributionisnormal- c Testing models of heavy-quark fragmentation can be ized to have the same peak height as the (cid:1)(cid:1) distribution, c problematic since the predictions are usually functions of and, since it was measured on the (cid:2)(cid:4)4S(cid:5) resonance, is a variable z that is not accessible experimentally, such as shownonlyabovethekinematiclimitforB-mesondecays. z (cid:3)(cid:4)E(cid:1)p (cid:5) =(cid:4)E(cid:1)p (cid:5) , z (cid:3)p =p , or z (cid:3) The two charmed baryons have similar distributions, with 1 k H k Q 2 kH kQ 3 p =p (cid:4)p (cid:5),wherep representsamomentumprojec- thatfortheheavierbaryonshiftedupinx byroughly0.05. H Hmax Q k p tion on the flight direction of the heavy quark before it Although qualitatively similar, the D meson distributions hadronizes. Monte Carlo event generators use similar in- showbroaderpeaksthanthebaryondistributionsanddiffer ternalvariables,andinsomecasescanbemadetoproduce greatly in the way they fall toward zero at high x . The p eventsaccordingtoagiveninputfunctionf(cid:4)z;(cid:11)(cid:5),where(cid:11) charmed baryon and meson distributions are all much representsthesetofmodelparameters.Inthiswayonecan softer than the inclusive B-hadron distribution at c.m. energies well above bb(cid:1) threshold, which peaks around test the large-scale features of any model, although the detailed structure may not be reproduced exactly. x (cid:3)0:75 [16]. p We consider the perturbative QCD calculations of The average x value is often used in comparisons p Collins and Spiller (CS) [5] and Braaten et al. (BCFY) between differentheavyhadrons,andthehighermoments [7], as well as the phenomenological models of Kartvelishvili et al. for mesons (KLP-M) [9] and baryons 3 (KLP-B) [13], Bowler [10], Peterson et al. [11], the Lund group[12],theUCLAgroup[14],andtheHERWIGgroup (a) Λ [32]. The latter two include heavy-quark fragmentation c within their own generators, and the other seven predict Ξ 2 c thefunctionalformslistedinTableIII.Weimplementeach of these functions f(cid:4)z;(cid:11)(cid:5) within the JETSET generator. ) p JETSETuses z as its internal variable, but z and z are x 1 2 3 P( very similar at high x whereweare mostsensitive to the 1 p n, shape. All distributions are affected by JETSET’s simula- o tion of hard and soft gluon radiation. cti WetesteachmodelagainstourmeasuredP(cid:4)x (cid:5)usinga e p S0 binned (cid:12)2 s 3 s o Cr Λc (b) (cid:12)2 (cid:3) Xn (cid:4)Pdata(cid:2)PMC(cid:5)V(cid:2)1(cid:4)Pdata(cid:2)PMC(cid:5); (1) ed D0,D+ avg. i;j(cid:3)1 i i i;j j j z ali2 D*0,D*+ avg. m or TABLE II. Thefiprstsixmomentsofthe(cid:1)(cid:1)c xp distributionin N hadronic eventsat (cid:1)s(cid:1)(cid:1)(cid:3)10:54 GeV. 1 Systematic Moment Value Stat. Error Indep. Correl. Belle hx i 0.5738 0.0061 0.0049 0.0032 0:5824(cid:6)0:0025 0 p hx2i 0.3544 0.0038 0.0030 0.0021 0:3649(cid:6)0:0034 0 0.2 0.4 0.6 0.8 1 p x hx3i 0.2305 0.0026 0.0021 0.0015 0:2396(cid:6)0:0023 p p hx4i 0.1560 0.0020 0.0015 0.0011 0:1630(cid:6)0:0051 p FIG. 7. xpdistributionfor(cid:1)(cid:1)c ine(cid:1)e(cid:2) !qq(cid:1)eventscompared hx5pi 0.1090 0.0015 0.0012 0.0009 0:1151(cid:6)0:0020 withthosemeasured for(a)(cid:4)0c byBABAR [3]and(b)charmed hx6i 0.0783 0.0012 0.0010 0.0008 0:0851(cid:6)0:0023 p mesons by Belle [2]. 012003-10
Description: