materials Article Inclined Fiber Pullout from a Cementitious Matrix: A Numerical Study HuiZhang1andRenaC.Yu2,* 1 CollegeofCivilEngineering&Architecture,ZhejiangUniversity,Hangzhou310058,China; [email protected] 2 ETSIdeCaminos,C.yP.,UniversityofCastilla-LaMancha,CiudadReal13071,Spain * Correspondence:[email protected];Tel.:+34-926-295-300(ext.6313) AcademicEditors:TimonRabczukandPattabhiBudarapu Received:30August2016;Accepted:20September2016;Published:26September2016 Abstract: Itiswellknownthatfibersimprovetheperformanceofcementitiouscompositesbyacting asbridgingligamentsincracks. Suchbridgingbehaviorisoftenstudiedthroughfiberpullouttests. Therelationbetweenthepulloutforcevs. slipenddisplacementischaracteristicofthefiber-matrix interface. However,sucharelationvariessignificantlywiththefiberinclinationangle. Inthecurrent work,weestablishanumericalmodeltosimulatetheentirepulloutprocessbyexplicitlyrepresenting the fiber, matrix and the interface for arbitrary fiber orientations. Cohesive elements endorsed with mixed-mode fracture capacities are implemented to represent the bond-slip behavior at the interface. ContactelementswithCoulomb’sfrictionareplacedattheinterfacetosimulatefrictional contact. Thebond-slipbehaviorisfirstcalibratedthroughpull-outcurvesforfibersalignedwiththe loadingdirection,thenvalidatedagainstexperimentalresultsforsteelfibersorientedat30◦ and60◦. Parametricstudiesarethenperformedtoexploretheinfluencesofbothmaterialproperties(fiberyield strength,matrixtensilestrength,interfacialbond)andgeometricfactors(fiberdiameter,embedment lengthandinclinationangle)ontheoverallpulloutbehavior,inparticularonthemaximumpullout load.Theproposedmethodologyprovidesthenecessarypull-outcurvesforafiberorientedatagiven angleformulti-scalemodelstostudyfractureinfiber-reinforcedcementitiousmaterials. Thenovelty liesinitscapacitytocapturetheentirepulloutprocessforafiberwithanarbitraryinclinationangle. Keywords: fiber-reinforcedconcrete;pulloutresponse;internalfrictionresistance 1. Introduction Sinceconventionalconcretetendstofailinabrittlemannerunderexcessiveloading,fibersare often added to improve its ductility and durability. Typical examples of high-performance fiber-reinforced cement-based composites are slurry infiltrated fiber concrete (SIFCON) [1–3], engineered cement composites (ECC) [4–6], steel fiber-reinforced self-compacting concrete [7,8] or high performance concrete [9], as well as ultra-high toughness cementitious composites [10]. The effectiveness of the given type of fibers, steel fibers in particular, is often assessed through a pullout test, in which the force required to pull a fiber out of the hardened concrete is measured. Thetransmissionofthisforceisachievedthroughtheinterfacialbond,definedastheshearstressat theinterfacebetweenthefiberandthesurroundingmatrix[7,11–13]. Inordertocapturetheinterface failure, the stress criterion [14,15] or the energy criterion [16–18], as well as cohesive approaches wherebondstressisdeterminedbytherelativeslipbetweenthefiberandmatrix[12,16,19–21]have beenadopted. Naamanetal.[12]pointedoutthatalignedfibers(i.e.,loadisappliedatthefiberlongitudinal direction)exhibittwotypesofshearbondsattheinterface:elasticandfrictional.Whentheelasticshear stressattheinterfaceexceedsthebondstrengthoftheinterface,thebondbecomesfrictionalinnature. Materials2016,9,800;doi:10.3390/ma9100800 www.mdpi.com/journal/materials Materials2016,9,800 2of24 Thismeansthatthebond-brokenprocesswasconsideredabrupt,notgradual.Basedonthishypothesis, Naamanetal.[12]developedafundamentalstudyofthebondinfiber-reinforcedcementcomposites, as well as the relationship between pullout curves and bond shear stress vs. slip curves. In their analysis,acompletepulloutcurvewasanalyticallyderivedfromanassumedbond-sliprelationship, andthedualprobleminwhichthebond-sliprelationshipwasobtainedfromanexperimentalpullout curvewassolved. Furthermore,theyrelatedthefrictionalbehavioroftheinterfacebyshrink-fitand fiber-matrix misfit theory. Other examples of aligned fibers can be found in [22,23]. For instance, byfocusingontheinterfacialproperties,Chanvillard[22]developedamicro-mechanicalmodelto accountforthedifferentphenomenaobservedinanon-straightfiber. Ellisetal.[23]conductedthe simulationofasinglefibertakingintoaccountthefibermorphology. Eventhoughgoodagreement wasobtained,onlyalignedfiberswereconsideredinthesetwomodels. Whenfibersarerandomlydistributed,however,besidesbondstrengthandfrictionalongthe interface, additional phenomena, such as fiber bending, matrix spalling and local friction effects, areinvolved[24–27]. Furthermore,thecontributionsofthesemicro-mechanismsaredependenton thefiberinclinationangleandthefibermaterialproperties[13,18,24–26,28,29]. Thecontributionof fiberbendingincreaseswithinclinationangle. Thefibercurvaturealsoplaysanimportantroleinthe distributionofpressureagainstthesurroundingmatrix. Duetothelocalcurvatureofthefiberand residualstressattheinterface,thematrixtendstocrackandspall[24,26,29]. Thishasadirectimpact ontheeffectiveembedmentlengthanddeformationwithinthefiber. Moreover, snubbingfriction nearthefiberexitpointcanincreasethepull-outresistance[24]. Considerableeffortshavebeenput intomodelingthementionedphenomenainvolvedinthepulloutprocessofinclinedfibers. Some modelsconsideredthebendingmechanismofinclinedfiberswhileignoringthematrixspalling. For example,MortonsandGroves[30]employedanelementarybeamtheorytocalculatetheforceneeded toproduceaplastichingeinthefiberasitiswithdrawnfromthematrix. Inthisway,themagnitudeof theadditionalpull-outforceduetofiberinclinationwasaccountedfor. Themodelreproducedwellthe experimentalobservationsforlowerinclinationangles,butfailedtodosoforsteeperones. Lietal.[24] assumedanexponentialincreaseofthepulloutloadwithfiberorientationtocapturethemaximum pulloutload;however,detailedinformationoftheentirepulloutprocesswasomitted. Bytreating the fiber as a beam on an elastic foundation with variable stiffness and the possibility of spalling, LeungandLi[18]developedamicro-mechanicalmodeltoanalyzethecoupledfiberbending-matrix spallingmechanismandtodeterminecrackbridgingstressinrandomfiber-reinforcedbrittlematrix composites. Afterwards,themodelwasextendedtoductilefibers[31]. Nevertheless,frictionwasleft outofthepicture. Morecomprehensivemodels,likethatofCailleuxetal.[29]andFantillietal.[20], involveconsiderableparameters,whichcanonlybeestimatedthroughpullouttestsofaligned,aswell asinclinedfibers. Inaddition,tediousnumericaliterativeproceduresarerequired. In spite of the above models, detailed simulations to consider all of the aforementioned phenomena have been seldom conducted to explicitly model the entire pullout process for fibers atanarbitraryangleandconsideringbothfiberbendingandmatrixspalling. Inthecurrentwork, weendeavortodoso. Cohesivemodelscapableofrepresentingmixed-modefractureandCoulomb’s frictionareemployedtosimulatetheinterfacebetweenfiberandmatrix: boththede-bondingand frictionalphases.Inaddition,fiberbendingandmatrixspallingaretakenintoaccountnaturallythanks to the explicit representation of the fiber, the matrix and the interface in between. The rest of the paperisorganizedasfollows. Theinterfacebondcharacteristicsandmatrixspallingarepresentedin Section2. ModelcalibrationandvalidationaregiveninSection3. Numericalresultsandparametric studiesaredepictedinSections4and5. Finally,relevantconclusionsaredrawninSection6. 2. BondCharacterizationandMatrixSpalling Inthissection,twoessentialfeaturesthatdeterminethepulloutresponseofafiberwitharbitrary orientation are explained in detail; namely bond characterization and the quantification of matrix spalling. Theformerdealswiththeidentificationofthedistinctmechanismsbehindinterfacebond Materials2016,9,800 3of24 deteriorationandfrictionfrompullouttestsofbothalignedandinclinedfibers. Thelattertacklesthe matrixfailurenearthefiberexitpointwhenaninclinedfiberispulledout. 2.1. InterfaceBondCharacterization Theshearstressvs. sliprelationshipisconsideredtobeaconstitutivepropertyoftheinterface. Itscharacterizationisofprimaryimportanceforpredictingboththemechanicalandfractureproperties offiber-reinforcedcomposites. Naamanetal.[11]attributedthepresenceandcombinationofdistinct componentstothecomplexnatureofthebond: physicalandchemicaladhesion,themechanicaleffect ofdeformedorhookedfibers,theentanglementoffibersandfriction,whichisgreatlyinfluencedby confinement. Inthecurrentwork,weconcentrateonthecaseofasinglesmoothstraightfiberbeing pulledoutfromacementitiousmatrix. Consequently,onlytheinterfaceadhesionandfrictionaredealt with. ByfittingwiththeexperimentaldataofLeungandShapiro[26],thecontributionofinternal frictiontointerfacestrengthwillbeidentifiedandquantified. Itneedstobeemphasizedthatthesame methodologycanbeappliedforhookedordeformedsteelfiberswithadditionaleffortstorepresent thedetailedfibergeometry. Either for an aligned fiber or an inclined one, there exists certain frictional resistance after debonding when being pulled out. This friction is mainly dominated by the surface roughness, anditisoftenassumedtobeconstantregardlessofthefiberorientation. Thiscomponentisdefinedas internalfriction,τ (s),whichisafunctionoftheslipdisplacement,s. Asforinclinedfibers,however, f the mechanisms are quite different. Pullout load can be decomposed into a parallel force and a perpendicularone. Theformerpullsthefiberout, whilethelatterbendsthefiberandchangesits directionduringthepulloutprocess. Inaddition,duetothenon-uniformcompressionattheinterface, thebrittlematrixmayspall,andthefiberembedmentlengthisreduced. Inordertotakeintoconsiderationtheabovephenomena,weproposeagenericconstitutivelaw thathasthreeconstituentstogoverntheinterfacedeteriorationprocessasfollows: τ(θ,s) = τ (s)+τ (s)+µp(θ) (1) b f whereµisCoulomb’sfrictioncoefficient,θisthefiberinclinationanglewithrespecttotheexternalload direction,whereas p(θ)isthecompressivestressasafunctionofθ. Thefirstterm,τ (s),illustratesthe b interfacialbondrelationduetointernalphysicalandchemicalcohesion;itisoftenadecayingfunction oftheslipdisplacement,s. Inaddition,τ (s)iscohesiveinnature;thus,itcanbemodeledthrough b cohesiveelements[32,33]withMode-IIfracturecapacity. Thesecondterm, τ (s),isacontribution f frominternalfriction,whichresiststhemotionbetweenthefiberandthematrix;itcanbeconstantor decreasing;seeFigure1. Thethirdtermgivestheshearstressduetodryfriction,whichplaysarole onlywhenthefiberisorientedatanon-zeroanglewithrespecttotheloaddirection. Inthecurrentwork,thebondstressisassumedtobelinear-decreasingwithrespecttos,whereas internalfrictionisassumedtobeconstant;namely: (cid:18) (cid:19) s τ (s) = (τ −τ ) 1− , 0≤ s ≤ s (2) b max fc s bc bc τ (s) = τ (3) f fc whereτ isthemaximumshearstressresistedattheinterface;itcoverstheeffectofboththeinternal max bondandinternalfriction. s isthecriticalslipdisplacement,whenthebondiscompletelybroken. bc τ istheinternalfrictionalresistance,whichisapropertyoftheinterface. fc TheconstitutivelawencompassedinEquations(2)and(3)highlightsagradualfailureatthe interface; see Figure 1. This, on the one hand, differs from the abrupt bond failure assumed by Naanmanetal.[12];ontheotherhand,itappearsparticularlyimportant,sinceinmostpracticalfiber applications,theslipdisplacementislessthan1mm;seeYuetal.[34]. Whenworkinginacorrosive environment, the maximum allowed crack opening in steel fiber-reinforced composites is around Materials2016,9,800 4of24 0.3mm. Thismakesitespeciallyimportanttobeabletocapturethedetailedfailureprocessatsmall slipvalues. τ max sser τ f Constant friction ts rae Decaying friction h s d n o B Slip displacement Figure1.Bondstressvs.relativeslipattheinterface:thecontributionoffriction. 2.2. MatrixSpalling Duringthepulloutprocessofinclinedfibers,duetothelocalcurvatureandstretchingofthefiber segment at the free end, matrixspalling is inevitable [24,26,29]. Detailed modeling of the spalling process is not an easy task. Since the deterioration process occurs within a narrow band near the interface, excessive mesh distortion often leads to convergence problems and, thus, impedes the furthermodelingoftheentirepulloutprocess.Consequently,simplificationsareoftenassumed,sothat thespallingpartistakenofffromthenumericalrepresentation,oncethematrixtensilestrengthis reached[27,29,35,36]. Thelengthoftheerodedmatrixalongthefiberdirectionistheso-calledspalling length, denoted as L by Laranjeira et al. [35]. A simplified failure criterion was adopted in [35], sp i.e.,if thespallingforceimposedbyfibercurvatureislargerthantheresistanceprovidedbythematrix atthecrackedsurface,thematrixwillspall. Accordingly,anestimatedlengthofthespalledmatrixcan beobtainedasfollows: aL2 +bL +c =0 (4) sp sp where: √ a = 2 + cosθ , b = df , c = −Pmax sinθ. (5) sinθ sin2θ sinθ ft Intheaboveexpressions,d standsforthefiberdiameter,θ istheinclinationangle,P isthe f max peakpulloutloadofanalignedfiber,whereas f isthetensilestrengthofthematrix. Theestimated t values from Equation (4) closely match the ones measured through scanning electron microscopy (SEM)byLeungandShapiro[26]. Inthecurrentwork,Equation(4)isadoptedasafirstapproximationtorepresentthematrixwedge, whichistobespalledofflateron. Alineofcohesiveelementsconnectsthewedgetothemainpartof thematrix. Trialrunsareperformedtodeterminethemomentatwhichthematrixwedgeshouldbe deactivated. Fromthenon,theelementswithinthematrixwedgeceasetocontributetotheoverall stiffness. Itbearsemphasisthatsuchatreatmentisonlytosavecomputationaltimewithoutdetriment tothemodeledphenomenon,sincethefirstprincipalstresseswithinthematrixarechecked,andthe spalledlengthisadjustedifnecessary,toensurethatthematrixwouldnotpresenthyper-strength. 3. FiniteElementMethodology: ModelCalibrationandValidation Asmentionedbefore,theobjectiveistoexplicitlymodelthematrix,thefiberandtheinterfacein between.Inthissection,a2Dsetting,asshowninFigure2a,ischosen.Boththefiberandthematrixare representedwithfour-nodeiso-parametricelements(K-L-M-NandG-H-I-J),whereastheinterfaceis VersionAugust17,2016submittedtoMaterials 6of29 VersionAugust17,2016submittedtoMaterials 6of30 bythematrixatthecrackedsurface,thematrixwillspall. Anestimatedlengthofthespalledmatrix canbeboybtthaeinmeadtriaxccaottrhdeincrgactoketdhesuwrfaocrek,tohfeLmaaratrnixjewiriallestpaalll..[A34n]eastsimfoaltleodwlesn:gthofthespalledmatrix canbeobtainedaccordingtotheworkofLaranjeiraetal.[34]asfollows: aL2 +bL +c = 0 (5) aLsp2sp+bLsspp+c=0 VersionAugust19,2016submitted(to5)Materials 6of30 VerswionhAeruegust19,2016submittedtoMaterials 6of30 bythemawtrhixeVraeertstiohneAcuraguckste1d9,s2u01r6fasacueb=,matiht=stepeindms2ptiqona2tM+qriax+tescrwiiosnaciilsosnl2lsq2qsqqp,,ablbl.==Anssiiddnenffsqqti,m,cca=t=ed��lPemnPgamxtbcfhaatsyxnifonttsfhbqitneehemoqbsapttaarilinlxeedadtmathcacteroicrxrdaicnkgedto(s6tuh)6refoawfc3(e6o0,)rkthoefmLaartrainxjewiriallestpaall.l.[3A4n]aesstfiomlloatweds:lengthofthespalledmatrix canbeobtainedaccordingtotheworkofLaranjeiraetal.[34]asfollows: 129 in1w29hiicnhw,bdhyifctihhs,etdmhfeaistfirtihbxereafitdbtrhieaemdciraeamtceker,teedqr,isqsuitrshfatehceein,intchlcielniVnmearastaitioitonorAnnixuaagwunnstgig1ll9lle,es,20,pP1Pa6mslmaulx.bamxiAsititntsehdetethosptMeiemaptaerkaeiatlapsekdulplloeunulgtlotlohuaotdfloothfatedhseopafaltlihlgenedeadmliagtnriexd aL2 +bL6o+f30c =0 (5) 130 fithbe1r30eo,nwfitehbshermeceoar,neenweaasbhssemeurforeetebVaaiedtsssrasuitfitornhtnheieeAdrsduottgtuheahusnecgrVtcoe1shtro9ueis,lirn2gsoed0nsch1iiAs6anlstusengurcgbsneuamattsnniotriLn1tnegt9te2sngi,htdpn2ghet0eg+ot1h6lowMeesbfaluocotebLetftrrcmhirsktatpiolhrtestooe+nedmnfmtmcLomaMaa=ititracrcrtaeir0irrnxxooia..jlssescTcTiorohhapepeyeyete(sSa(stiSlEtm.iEMm[a3M)t4aeb])tdeyabdvsLyafevolLuuallenelosuugwfnearssgon:mdfarSonEhmdqa.pS(Ei5hrq)oa.cp[l((2oi55r6s))oe]6.cloy[lf2o3m60se]a.ltychm6oaft3c0h sp sp Mater11111ia23333l90123s11111111333333332123456780wifitw1nhb6hhew,rwmttiheie9sooicrhym,,Ihnhea11111111c8niwtp33333333ec0thihi12345678ecrshes0hteeiIhhwr111,tmexcn233o-wmttihdeor901ksisoiieewybmsfvtthtcaecaathprehiutethihdsesewifitseocreonsherrueedibnIhtwrpfrahxauecnhbr-wtregogcakleisenieetwenoislvutetldttrehs,dlhrtnhtfihetsesdeeriewhtiootteercbpdw.drhsnhtiaeauhsebrhhfegagcrbcwdlooneft,nemeldoaueelytnftrdhdetnldrhsutfesrkeheiteeeesatfp.rnihlsbgtrt,iedwaaapasechefeierashdsmwsftssntdiaielameonoouelim.lttsleebrfeveeesafh=rralctIttdwfptsoeecaktseatareaeirstdltindiastnni,obcworndnsim.arfixel,avp.yneiferttlotIwthenlbndfqaheTdaknehteieteptet2rlndhtbne.,ihqrnogrreanaetedtseeegohtcFtewteltdog+dtchtesEeemuoeatnerehho.notrenbniqddcgotlarohaetFterseo.gdos.tctrhsamaofamirrchiiniioatiTinc(nidnonltnatpthbxss5ek.esoher2ghe=mlouccte)etoaTtqdinaelrshqapdbtesetaminouahtduEpnnat,nemtretsrs=ashhn,ectpmmaneijuqoenhdEbpcuennqetastnariroei.sr2jqoeinfitncp=sonuaiiirqgtoacirwnrrs(i.fidcrtgarcirnasonttn2i5ei11aixe+eqo(rchotectlan23snt,)5e,hdse90rk.alasepd+ilgrdkt,tl)todenelncTrhdusaerehctdtfiafooreabcwifiuaieoagsochhisfrqcoinnneaefoinayppbtsfss=tfonlmnuheeLtsn,nshLurwoe2sruuLhscanypt2eesueoa2staqr,ehaeerbe2lsecqqsrtha,eqlprlfipraptnmleel(Psieatctfieiwonrwatctfin,e,mr=Scrt++hscimhsmoe2nemexmhixmaerehErbeqo,b,mbjaaassa,iss,tbadeerw�pMspb=stxm+sidetstitektrttit=aLioa,rcirharee,ntiafeiniLnainsaloP)aianrtossnearssrxlispcrtrxecsofspsiiutaeytfedmcbsospsumtnnypf+daed.iosadLt,stphiLpfsecfdooya2t,hwnpqtcencraT+atat2hasxqwaecrntvqefrotmilphrot,ttfhlLhgcorhs.iqroalmet,=hafipsa+ctpe.ecoic[ielexntterexh,oi3lbbaetheeAoynn=eucujmxtifi0d4r=ebrhei,ewemarr=cdennn]snteiifiradeqL(Prs11111kirtit�miruiadssc=S23333enegnasnaasotle0rmtessktl90123pniirtpspgEhuttPfiseaedmeaaesodaantfspim+trmmtuter�ioMdptofxriathonttmeolerqtaalahedalepnimwifitwceemlhxmis=itdllse,onoltP)ahtfstn.eueonsleh=erbtaetestw.c[mthhtnabrreecmSuehtretiinsmt3rwtdoErfA,nmph=ntdieiseynaei0h4atiewtnatqpro:cqnxscn]tqeoarrhhvc2rai,ltliftIihLeqagon�ot.eexaomensmttiopeaneipswh,trinlst(perep+cahtsekiinsltPwi5heeghsmrihnutefushsidrrhamtiolxo)tttoaeeneoonsemehyehncer,htmallfqmefaikacpoiloxsoeetdmnnswndegtoea[LftrsmoltLesfhs2tara2ropsctgwoeelfattafbf2snmqseetieliaqtyetc6rrhsprtaeaniutxahdesreristnaonhs,muewe]d+:sssiioesltqean.cateexwllmx5ssdbtlrurageomytejvhotwhbnpmeasfriswtin=oharooewrteipSiuxeeelLmgrfasetEeicinsiiueaxahnisoltsttgcna2chsleedlqpwsmlhh.atlalioa4edltfilmnedvtsdnwhenT+e.otittttppofmt(aaandooebhggcdhwe(hqaeah6faneci5tditlhserleeu,mldrepe)cttrt.rcnoo)low=eehho,mehi.oc[oluoaxtf3tPescortdeAdn=thiuftet0[4tmklmpfraiasno((2aotn]wmnmiil65iagpn,rrtc�taxtat6xas))heaspecitrihahesomwtae]wiboslhisPitaosee.dlulttflextuteenmsioytererendehhgmad=htncapitlatlaxoxleeetewsmvmiatoalfameirrctttnapsgtwnrdesieriihlaeaea,p.nbnuodneisstoatdnq:tr((e((Teunqtecnki65li65prs2hngedxhnih))qgitap))nftsxgeeeruttelgo+htElntmehlhoqloetusoeE.crftficiqion(lnattt.o5hshr2(lca)e5oqedlrq)isnuacnop,mslnfaomabtlsashtaleeiite=aldocryfiarirnmlxemroisgs.aaspaidnttnnctTr((eecf65ioadghhxrq))ppfle,oeyp,ercrm(Pso=StmxieEmaid�MxmatiP)atosetmbtddihoyaexenvtfLetapsetrileonuumaneqrkisegnppfearurtonehlmdlseoeSunmEhttqoalt.omph(ai5eedr)onmcot[lfaa2ottt6shrwe]ie.lxyhawilmcigheandtt(ehgc6dhee) discr1e3t4izemdaitnrti1xo39wp1ae33i2dr.gseFoiifnstidwte1eI2ona9e-cnltteihionmvedwaeetchneuilcdtirh1n.2mr,9eeFdenrsfitotenihsmgwwotmhdhotehioercfieknhlbon,,trdgsewofyd(niIei:sa-,mJtmtahhadeeonetfiodederbpe,lrlqtKeem1cidE3s-a1Liqtaelh)im.ne.tbht(eTirs5entaeh)cwortle,niianiqoestcasnihostamiinotanhenfinseattardshiinusntetugvrcellmatiaednil,pvaiatPhdptetmirroaraobinoxtxueixigaoshwnihntmaghesmvlecdeaai,ptgaonPieentormarinkacnoixxegpfitausetowshlltelehoreeceeuttdriopptongelnrcotaeeoeakmsdrinpesifctoanurrdfolcitltbeseohtcuauehotctpaeeltlyoiigmav(ndSaaEeotdMtefrdti)hxb.eyFwaLlrieegoudnmneggdetahnednShoanp,irtoh[e26e].lementswithinthematrixwedgeceasetocontribute itshegon1vu3e5m1r3n9etteoirmdict3heab.elyw1i4oFan0ivtishc1net3oora3iahubtleetillwmstsiehitAtvhalyieefest,ifcrdmnw11lihm33eaxe01htewiserwsnsiinfit,cm.thetbthoaIediretsmoebocgnn,nsneaewetheeenstt11sediho33pohsd01mebwardotsbeeehlnfitedeaalthceeossabfoeiauodrcnnfbeurlorttueo,oeeiniFsdvwsfm,egeipfatsthgdhywhloetmeaueerr:irebotneidertemcueaaeyt.rnaagsse2uFsliohnodfmibrrrtlndeseeeooi.cda.sessamuTtrTtutntlorh-thhnehlzectrttniehoeeehsant11guex,33nregailt23nongsphnitetsihb,ilrnlioswtoieslisrcfielccauncaihaittesaplthrcil,ttlcnortehrtiyaIhhundnehnomsniiaeniemnscmngtsahsgtetfitpeitorheocrnaarelelirbedslxocnradoaeeumt.efsecctidscrTpmtntlepprhorehermogavpeetneeninlhyrnlnmattpeeefesmc(sltdwonaaStiiwiitriprmEotodcrmsms11tfrirMaif33xakooaati45ldl.eh,ss)tttansecTridewtbiladoteoihnryyrxrpetiteinvemoo,Loyvttaasehnoedelds(stteuu.eShtheodsdeiTnEepmseametshgMftevawaefrofiaarErt)tenoonemvitqbbettmdmrcd.ryehrlioiiie(vxSraniL5Emmnmalah)eeqwralaluuiuap.tltnapnhsene(nhuis5cdsadgresae)thtoftaigaacmrifimitfr[olntnenhfe2orimdnas6gooseepcte]tenSmee.rElarhisyaiapqnfxsaeoslm.ptp.nre(ermi5aIotrrt)ttoxefaocciadnht[mlc2cotew6oeasoee]tnhd.ildioyetninsrctmeihttbroamoutthcritbenheepeertephseoenmitnottmheeednmtoaauttrwtixhthwicahedtt,hgseeuchatreatmentisonlytosavecomputational weeiτncrlhe,rteomiiscrr111111fh.e333344aa678901,nCtc11111tot44444eoas01234nih3bniisln(.esysyIctepe-bfsFuwFhJdfoqeeeinireAergau;nug1111itcd-4444ecnww.ieksmsr1234tnett-nd2eierhAr.enmo111111edbte333333bfsFeeenlKco456789nnso.eyIealrenioadngetg,nu-gentmls.Lmmwtt.etamrttih3d.ahhifsoi-2)s.opyomenee.Ieeibtcs2ntpeTnrstrnhonnFh.huehcDzeneoedethtite1111111eesedpes.wran3333333-imecess2345678s-.ropsoeikcpsioieIbite2neovrattocTensae-twmttihhrxpetDsenreoioodtdmlhehymfoiileharaocda-,ontnnspaeeoathpiauhlempstncredrsmggesdele2niaIhetwercllexabocmtn,t-Doeerodlo,dtkaiihssttieweas1111111havttttlttnptetge3333333.hwrnheutotmfrte2345678siidaeesesonhheoefoneriggdentttfedacaudnsebeetriintggytgciwmttihlnhtttvtheastleoiseeumeteu:syahmir,edithhsoamstct,enrnhpitipsisimtltrper.trhsihceetwmasieseicrtgeeeiahafaweevadbiteIhm.wfsrnomsdtax,eellcnnthn-egerlolteIakisieddleifeetsweaasfeotvostetettedhowoempsahcirjbedhrstnehmddneunsnetiaonrocaolerioaeim.dntleoeossevalsauefrbhletvIcaisgegcfFttleehnxaketltsw.melnaruheoealtlndiotnd,idpntosa,hsoeesolAdrgtvhiotggtwtempintl.sdrsslwatcieewe.uitbheeihuftd,yai.toodreccnatfdnhdfen2alerornFol:iioehwdgulhtttsaaedten,nlreshaintimnltedrliodwottpbeiohsscheeyr.tebonisumdootsiareifcnooTooFeoiinm.axopobllsvemcefr111111lmhrfInuiddFpittffpett333333eaknectaaspeahge456789homhlditjnet,oedEpunsaalonaaessugeh.rtiealrwjteqdoeinlsdnldrtu.ctesmttih3eneitetrlri..hrtts2coi.oicres.nontdyiieyhmdyith2ihts(caateFcteaa,onihgttnple5t,sea,aepFthlhenellerdehivnl,t)rdedetlydoitbidtmerhefitibelttw.orornabriuaexcmchohaei-ioieeonTboooiinitsflksfnrpibrrenpswreecntmsvisttuhturentutieatsfeftnuhradenaeeulhththtedeteeaeametaoetlelemdEripemeodansentctfireilccracaulmrhsjqtocetauneortgtmfegeuredlttna,fhesatrhaiselei.afsnremthnraspsonido,stletiethtaesasn(ceeictihad,iancretnt5eseinesn.nassslattcealeiseritres,)nihdttf,lcaplfixdudyrf,etnsnfthgtdeietorufiats,nehrep,ceihibspgewocedhaorsfmtuysnthesaedlri0sbomehtruepotntseo,vcssiureac,deeeahtesvdtrteiaextmtieavhtehlltim.mwentoctlfisheeitivahfih1111ddirirlahsmIrmseesm3333enseraeotlreane,eeaanahts6789iepcusdsirtanfipdasnaosstnetteetdtrnmadrtnefiiht,tltaepneobnlrdcneeddrpimaatesatsntereroilrete.rrctsaodepatih3nuryftoxrdcusttsnieemeshoeFiiadt,,bhigptigci.sttensytemnwrrrratrxhottthhtayesrtycaercomtmoethtpmhaiptiooeimo:,notdiobrhFhxemasteietprnexrteeseihmnmahrfeibeiyesieenhtiaifidwtxAdbtenwiurionmertennndnolschcahnrrhpacea-emnowtusmsddiepocmokassaattooerittttealtttttnr,iehjpetotettyenrourhnhieuhiaeedtppitmhrslreidniesmscdoaerhtdsltoentxieeefierstcarcpwgodceonoteemahttintnmosteisaen,anleenseesbxroeaaulacs,itahlidnltarndchbetontsigseminvatctoitrnwrmrtbttirxhelrmtneiiv-owtempheerpteeteotyfesrrdshteartoieasehsiitteayunaxeenaennhiaosueouearitelrltettctn.ppoeeasoertnmavhrwfilleidoglesmnorttctntehosdgrafirrnltwintthspehmeeetmyxeaanoernheedscas,eetahnsstwedddttr,seesdsteaptcstwreettwaseoemlrwrgi,oh,seaioonnmvsaunnaiwixtestesrxpeetnnoihtsttocfstrdebeupwyehnpossaachtwemiiw-tia,tuncrrcmeetttvwvmnwshtcrtetih,ilehhehaoaltowfbeahhooelesoeiddeisotuleaiutteaneetoceomnrseidnhhdgmhinlodridtoanntsfitnddewnxieeetireetlmnaspaan-otretnowountl,tshnsttnatuilepctretttrotwlhhotiheiooioewunpmentorxtpentienaohtrdmfthnpdgegetamrhtiwmeitawnrrhcnetetiyaeiaicaheochatsbtowes:atidtnetienutteplnrrrsihhgimniinnitaaiiamxsnoxeeeextiitllutlnwhnnoasemmltddyertaedotjetesrugosilrexesesicsacctwxaevewapaoeldlisuiltcerbihloicedtifmrnoisnatnupctlothoeyuiltenctotpastmemnrrt,eisiabosssoatuenirannnditaxertlcdeyel,vtttoahhleeeidnfimasrutsaitroteprnirtxhin,acttihtpheaelfismbtrraeetsrsaixenswdwotiuhthledininntotheterpfmarecaseterniinxt As mentioned before, we aim to explicitly model the matrix, the fibre and the interface in 142 four-node iso-paraAmsemtriecnetil1oe39mnee3dn.tFbsi,enfwioterheee,lreemwaesenttahmiemetihntotodeoreflaoxgcpyel:icitmsitolddyieslmccraeoltidibserealdtitohinneatonmdbpaevattariwlriixsde,aoettinfoh.ntewIfionb-nraeod2aeDnldisnetethteinign,tearsfascheoiwnn in Fig. 2, both the fibre and the matrix are represented with N 114434 sFeigg.m2ebn.ts111444.012ThbfoeeutcwrNo-1enn39eosntdi3b.te.NeutIwtFinisivAenoeeMisa-nt11pe44.mb012aeeDeIrlhnenabfomatemasiutvoeewre2nin-tAoDentettreidousmnindscr.emgbeeteto,eteIhifinslfnonaoeortgdstam-ieh,opo,2snaaelewDohresnadgioesnmtyshswebt:ae,oeteimttnwmrfrwionifoncargidhtenco,eie,enlebfslaeoreewFescmeuFgxitiaewsamirspgelg-hsilnen.ag.ebioecttoin2ort2swmnicdtaht,,,vs.ltneyew.bietboIoioirhTnsmnointnonehhetao-areFehtxpendtedip2haacgderDlrtsoe.lifahbcnvat2mfitisyheasth,cebtlleeeeiytbirfitattdeuoirimninmbaittccsahtitgraveioon,eeotdredthdlrfnaheiiaefsbaesxmesotlcees,nhcesheufigtierhdthvnaibhemrosetvmere-tswteidin,omehaslfiniwuaotaneseabrncrwiddihttrnrxdrsmeoeee,i.rxftiFateainaa,hristiangehsTesttetsd.rodehorhsimt2eex-ihhti,epnppnhaefiobtratteaaecebrooiwirrnisrortrixfeenpehtaasnnentacamrearttesiorfhierrenaetnfsfdeeipdciastretoctfirewurgwetfeipbhiosticstrrtievioweehnedve-seniioraenensnl-ntcntenoeeredbtmoeddedrtedfdtieabhsheewceyewneladliiimaitvnnttisihnhenicea,oottrohwuixeprshaaivoierreersfelrotaeafhwpstre,wetasoihsen-nenstthoeeioddrnweftwanelicinrtiehnfeaicsegiosvdeirsnceredtibseydaincotohepsaiviresloafwt,waos-nshoodwenlinine N M M 114434 KsFeigg.m2ebn.tfssoe.ugmrT-nehonNe111Ldt444s234e.coiTssFnoehi-ggsMep.tmaic2troebuaMnn.mttssitev.itteurTitchibveeeelchebomaenvhesnatiiotvstsuiuc,otrwiuvrhoeFoefibrfgeet.thhah2saebev.tihiinoneutteirernfrotaeffcaretfchaieceseiignsiostvegdreofirsanvccereeedFrtiinsibsgeeygd.doa2vinebcborty.onheepadsaivcibreoyshloaaefwcsto,iwshva0oeses-nsilvhoaeodwwela,nwlian,isneasshshoowwnniinn s0 n Fnig.2b.s w �sc �s0 KJ n KJ n IL IL J KJ KJ�s0 I sL IsLI ww �tc �ss0cscsc �scsc s�s0 �scsc scs c N G N H �sct �tc �tc � M � c M G G H H N (Ga) G H H N M (b) �tc �tc N M N K n L Figure2M. (a)A2DKinterfaceelemsLentI-J-Kw-LfoMrmedbetweentwofour-nodesolidelementsG-H-I-J K L J I andK-L-M-NF,KiwguhnreerFJei2gs.uar(nead)2.wAL(aa2)rDeAtih2nIeDtetairnnfatgecerefnatecielaelemalenemdnetnnIot-rJIm--JK-aK-lL-dLsifsfooprrlmmaceeewddmbbeenetttwwjueeemennptwst,woanofodufonr-unisro-tdnheoedsnoeolirdsmoelaliedlmeelnetmsGen-Hts-IG-J-H-I-J directionofthaenJdtwKo-alLnin-dMeKs--eNLg-,mMIwe-NhnKte,srw;e(hbse)raetnhsdeabnwodnawdre-LasrtlehJipethlteaawtnagn(seghneontiwtaialnIlaafnondrdannoloirnrmmeaaarl-ldddiesipcsrlpealacaescmineemgncteanjustem)ju.pms.ps. K n L s w G HJ Th14e5abI3o.v11e4.5cCooGn3n.fi1sg.tiuCGtruoanttisivtoHietnurtieisHlvaietmiroeplnJalsteimofonersnmfoteradtmriainxtr,tihxfiG,Iebfircbeor,ema,namHndedtrhtcheieailinnsttoeerfrtffawacciaiaarleltrtAraanNnsiSstYiiotSino1nzo2nz.0oe,nuesingitsAPDL In order to explicitly model the physical phenomena involved in the pullout process, the programming14l6anguage. Regardingtheconstitutivelaws,linearelasticityforthematrixandbilinear In order to explicitly model the physical phenomena involved in the pullout process, the 146 commercial software ANSYS 12.0 is employed. Both the matrix and the fibre are represented plasticitywith14i7sotropichardeningforsteelfiberareadopted,respectively. G 3.1. Exp11H44e78rimcaeosnFa11mtni44a2g89dlmDuKSraceee-osL4tr2unc--.M2npsiDa(to-aiolNt)dfu4,AsLet-woienv2ufhsoeDtnetdwrrlgeieaunawasctsrentatesrudrnfuGaadrSAccraeewhtlNuaerarplseSraeiosemrYlpoltFaiSehs,enidHnogec1dutlt19tiKiraIedv92e--nlLJe9.2e-g0-le.KMymel(n-e-aiLNet)mesim,Aanfweoletp2nrhasmDmlentosrdiee(pyndps(tnelepaolodrbnaflryaeadnmcftneeowweadereaell.ree1td1emhni88tseeh22tpBnew))tmlt,oa,aIoc-ntaJweh-wgftKmoerhn-uihLexittrilnhia-felonalteeranojmeunddldmmeeaedlnstpaasohtbsoirsetec.mltrtiwiidafiacxelbendenriladaseetpnmwn.lbadodecTienlfmhoitbntuseehiren-Glaneitino-nrjuHdtefimeek-arpbIisf-nrsoJar.leeicdkmiaeiaallnertmteeircmeannrptasesltGpiaits-icrHotei-ncspI-eJlnastetidc constitutive laws are respectively employed for the matrix and the fibre. The interfacial transition 1I4n514o93r.d1.eCrotnostaitsusteivsesrtehlaetioenfsfefocrt1mo45aftr3fii.1xb.,eCfirobnryseti,ietaulndtidvestrhtereleaitnniogtnestrhffoarcomianalttrrriexa,innfisbfirtoei,roacnnedzmothneeenintterefafficiacliternancsyitioinnzotneerms of zone(ITZ)betFwigeueren2t.h(ea)cAem2DenintitteirofaucsemeleamtreinxtaI-nJ-dK-tLhfeorfimbeedrbiestwreepenrotdwuocfeoudr-ansodceohsoelsidiveeleemleenmtseGn-tHs-cIa-Jpable 150 In order to explicitly model the physical phenomena involved in the pullout process, the maxi1m46um crIanckorbdreidrgtoingeaxnfpdolriKcc-ieLtl-yaMn1m4-d6No,tdwoethlaeltrheeesnaepnrhgdyywsiaacbarelstophrehpettaninoognme,neLtniaealuainnngdvonalonvredmdaSlihndaisptphilreaocep[mu2le6lno]tucjutamrprprieos.dcesosu,tthe commercial software ANSYS 12.0 is employed. Both the matrix and the fibre are represented pullo14u7t tceosmtsmfeorrcisatleesolffitwbearres oAfNdSiY1f4f7Ser1e2n.0t yisieeldmpstloreynedg.thsBaonthdtihneclminaattriioxnanadngtlhees fiatbr0e◦,ar3e0◦reoprre6se0n◦.ted All of the fibers are 03..51.mComnsitnitudtiivaemreeltaetrionasndfor2m2amtrimx,fiinbrlee,nangdtht.heTinhteerpfaucilalolturtansspiteicoinmzeonnes are blocks 145 of25.4mm×12.7mm×9.5mminsize,withaneffectivefiberlength(equaltotheembedmentlength In order to explicitly model the physical phenomena involved in the pullout process, the 146 in this case), L , of 10 mm. The material parameters for the matrix, the fiber and the interface are f commercial software ANSYS 12.0 is employed. Both the matrix and the fibre are represented 147 giveninTable1,whereastheyieldandtensilestrengthsofthefourtypesoffibersarelistedinTable2. AdditionallylistedinTable2isthecriticalfiberlength,i.e.,themaximumembeddedlengthforafiber tobepulledoutfromamatrixwithoutrupture[24]. Itisrelatedtothemaximumshearstress,τ , max fibertensilestrength, f ,fibercross-section, A ,andperimeter, p ,asfollows r f f Af fr (πd2f/4) fr df fr L = = = . (6) c p τ πd τ 4τ f max f max max Itneedstobepointedoutthatthisestimationisforalignedfibersonly;inthecaseofinclined ones,thislengthisconsiderablysmallerduetothecontributionoffiberbending. Materials2016,9,800 6of24 Table1.Materialparametersforthematrixandthefibergivenin[26]. ρ E ν fc ft (kg/m3) (GPa) - (MPa) (MPa) Matrix 2100 30 0.20 36.5±2.5 fc/12(estimated) Steelfiber 7800 200 0.33 - - Table2. Yieldandtensilestrengthofthefourtypesoffiberstestedin[26];thecorrespondingLc is listedforadiameterof0.5mm,where(1)and(2)arecalculatedusingthetensilestrength, fr,andthe yieldstrength, fy,respectively. FiberType 1 2 3 4 fy(MPa) 275 469 635 954 fr(MPa) - 783 847 1023 (1)Lc(mm) 12.7 21.7 29.4 44.2 (2)Lc(mm) - 36.3 39.2 47.4 3.2. IdentificationoftheFiber-MatrixInterfaceProperties Inordertoextracttheinterfacepropertiesfromexperimentalpulloutcurves,wefirstintroduce theconceptofapparentinterfacialshearstress,whichisdefinedas: τ∗ = 1 (cid:90) Leτ(s)ds (7) Le 0 whereτ(s)istheactualbondstressdistributionattheinterfaceandL istheinitialembedmentlength, e thevalueofwhichisequaltoL . f Assumingthefiber-matrixinterfacepropertyisuniform,themaximumpulloutloadandpeak frictionalloadarerespectivelycalculatedas: P = πd L τ , P = πd L τ . (8) max f e max f f e fc ThevaluesforP andP aredeterminedfromthepulloutresponseofalignedfibers,asshown max f inFigure3. Notethatthevaluesfor P and P areaveragedforthefourtypesoffiberslistedin max f Table2toobtainthoseofτ andτ ,aswellastheirstandarddeviationsinTable3. Thecriticalslip max fc forinterfacialbond,s ,0.3mm,isdeterminedthroughtrialanderror,sothatthefirstdecayingbranch bc ofthenumericalpulloutresponses,asdemonstratedinFigure3,shouldfallwithintheexperimental range. AsregardsthefrictioncoefficientgiveninTable3,itisestimatedaccordingtotheexperimental resultsofChanvillard[22],whichwasalsoadoptedbyLaranjeiraetal.[27]. 60 Experiment 50 Pmax Numerical N) 40 simulation d( a o ut l30 Lower and upper experimental range o ull20 P Numerical approximation Pf 10 0 0 2 4 6 8 10 Displacement(mm) Figure3.Experimentalrange(lightbluelines)forpulloutcurvesforalignedfiberType2(yieldstrength 469MPa)[26]anditsbi-linearnumericalapproximation(reddottedline). Pmax andPf arethepeak andthetransitionalpulloutforces. Materials2016,9,800 7of24 Table3.Extractedparametersofthefiber-matrixinterfacefromtheexperimentaldataofLeungand Shapiro[26]. τmax τfc sbc µ (MPa) (MPa) (mm) - 2.7±0.1 0.5±0.1 0.3 0.60 3.3. NumericalModel Thein-planedimensionsandboundaryconditionstosimulatethepullouttestsperformedby LeungandShapiro[26]areillustratedinFigure3. Notethatwithinatwo-dimensionalplainstress framework,thefiberthickness,T ,iscalculatedthroughEquation(9)sothatthecontactareaatthe f interfaceisthesameasthatoftheoriginalone. Inthesameway,thefiberheight,H ,isdetermined f viaEquation(10)sothatthemomentofinertiaoftheoriginalfiberisthesame. Forthecaseofafiber diameterof0.5mm,T andH arecomputedas0.785and0.36mm,respectively. f f πd L f f T = (9) f 2L f (cid:32)πd4/64(cid:33)1/3 f H = (10) f T /12 f AdditionaldescribedinFigure4aretheboundaryconditionsimposed. Verticaldisplacements arepreventedonthetopandbottomsides,whereashorizontalmovementsareimpededontheleft. Therightendofthefiberisfixedintheverticaldirectionsothatonlyhorizontalmovementispermitted. Notethatthesameboundaryconditionsareimposedforinclinedfibers. Thepullingprocessiscarried outwithintervalsof0.001mminthehorizontaldirectionuntil0.3mm,followedwithincrementsof 0.01mmuntiltheend. 25.4mm 0.36mm 30º 60º 10mm 12.7mm Figure4.In-planedimensionsandboundaryconditions(thesameforallcases,shownonlyforaligned fibers)forthepullouttestsperformedbyLeungandShapiro[26],withfiberinclinationanglesof0◦, 30◦and60◦. 3.4. MeshDescription Atypicalmeshanddetailedelementdistributionaroundthefiberfortheinclinationangleof 30◦ aredemonstratedinFigure5. Notethattherightendofthefiberleansonamatrixwedge,which willspalllateron. Forthisparticularcase,thematrixandthefiberconsistof2198and154four-node solidelements,respectively,whereas289two-nodecontactpairsareplacedattheinterface. Themesh worth noting that this numerical model is mesh sensitive. To specify, contact is a Materials2016,9,800 highly nonlinear problem so the mesh density will influence the efficiency of 8of24 calculation. Moreover, a coarse mesh will lead to higher stiffness of elements thus sensitivityanalysiscpauesrinfgo rlamrgeedr ptuolliancgh fioercvees. aAbftaerl atrniacle anbde tewrroere (ndistchuesscedo mlatperu),t tahtiiso mneaslh eifsfi thcei encyandaccuracy isgoingtobepreseonvetreadll bienstS oence ttioo cnom4p.romise between the computational efficiency and accuracy. Figure5. Typicalmesh(left),zoomedinaroundthefiber(topright)anddiscretisationofthefiber Figure 3. Meshing (bottomright). On the other hand, the effect of matrix spalling should be investigated during the 4. NumericalResultsandDiscussion simulation of inclined fibre pullout. As crack grows, increasing bending of the In this section, mesh sensitivity analysis is first conducted along the fiber transverse and debonded segments of the fibre occurs and the most superficial pieces of matrix longitudinaldirectionsinordertodeterminetheparticularmeshtobeemployedforfurtherstudies. wedge tend to spall off. Some literatures provided methods to calculate the spalled Second, the entire pullout load vs. slip displacement curves are extracted to compare with those obtainedexperimenletnaglthly (BbryanLdte (u1n98g5)a, nLdaraSnhjeairpa i(r2o01[02)6. ]A.fTtehr igredom,tehtrey vanodn dMimeisnesisonsst roef ssspaallnedd thefirstprincipal stressevolutionsarweedegxep isl odreteedrmbinoetdh, thfoisr wtehdegefi cbane brea enstdabtlihsheedm aas tar cixom.pFoinneanlt lbye,fothree caplcuulllaotiuont. workisobtained. Furthermore, ANSYS can deactivate specific elements. After being killed, these 4.1. MeshSensitivityAnalysis elements contribute near-zero stiffnesses to the overall stiffness matrix and the Themeshsensitivityanalysisiscarriedoutfortheinclinationangleof30◦ andtheyieldstrength solution-dependent state variables (such as stress, plastic strain, creep strain, etc.) are of 635MPa (Type 3in Table 2). Two kinds ofmesh sensitivities are studied: therefinementin the 10 transversedirectio nandalongtheaxialdirectionofthefiber. Theformeristocheckthecapacityof themeshinthefibertobearbendingmoments,whereasthelatteristoassessifthediscretisationis fineenoughtoresolvethesliplength. Inthetransversedirection,thefiberissplitintoone,twoor fourdivisions(seeFigure6a);thecorrespondingload-displacementcurvesareplottedinFigure6b. Ontheonehand,convergenceisachievedasthemeshisrefined. Ontheotherhand,slightdifferences among the three curves are perceivable. This means that the mesh sensitivity in the transversal directionisrathermodest. Meshesoftwodivisionsacrossthetransversedirectionareemployedfor furtherstudies. Alongthelongitudinaldirectionofthefiber,fourdifferentelementsizesareconsidered,0.303mm, 0.222 mm, 0.135 mm and 0.068 mm, which lead to 33, 45, 74 and 148 divisions along the 10-mm length(seeFigure7a);thecorrespondingpulloutloadvs. slipenddisplacementcurvesaredepictedin Figure7b. Notethatasthemeshgetsfiner,theresponseissmoother,andconvergenceisachieved. Specifically, the same peak load is obtained for the two finer meshes. In order to keep a balance betweenthecomputationalefficiencyandaccuracyoftheresultssought,themeshsizeof0.135mmis selectedforfurtherstudies. Itneedstobeemphasizedthatthemeshsensitivityinthelongitudinal directionismorepronouncedthanthatinthetransversedirection. Inaddition,fromFigure7b,itis observed that the maximum pullout load was achieved at a slip displacement of 0.07 mm, which agreeswiththestatementofMortonandGroves[30],whoclaimedthatthisvalueshouldbeofthe orderof,butlessthanhalf,afiberdiameter. Materials2016,9,800 9of24 80 1 division 2 divisions 60 4 divisions )N ( d a ol tu40 o llu P 20 0 0 2 4 6 8 10 Displacement (mm) (a) (b) Figure6.(a)Differentnumbersofdivisionsinthefibertransversedirection(one,twoandfour);and (b)thecorrespondingpulloutloadvs.displacementresponses. Coarse Fine Finer Finest (a) 80 )N 70 60 ( d ao 40 l tu 50 o llu 20 P 30 0 0 0.1 0.2 0.3 0 2 4 6 8 Displacement (mm) Coarse Fine Finer Finest (b) Figure7.(a)Differentelementsizes(numberofdivisions)alongthefiber;and(b)thecorresponding pulloutload-displacementresponses. Materials2016,9,800 10of24 4.2. ValidationagainstExperimentalPulloutLoadvs. DisplacementResponse Inordertoverifythepreviouslydevelopedmethodology,wecomparetheentirepulloutcurves withtheirexperimentalcounterpartsgivenbyLeungandShapiro[26].Thiscomparisonisdisplayedin Figure8forfibersinclinedat30◦ and60◦ withfourdifferentyieldstrengthsgiveninTable2. Notethat boththepeakloadsandthegeneraltendencyarewellcaptured;thenumericalcurvesfallwithinthe experimentalrange;inparticular,therisingtailattheendofeachpulloutprocessisalsoreproduced. 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 2 4 6 8 0 2 4 6 8 275MPa-30° 275MPa-60° 70 70 60 60 50 50 40 40 30 30 20 20 10 10 ) N 0 0 ( d 0 2 4 6 8 0 2 4 6 8 a 469MPa-30° 469MPa-60° o l tu 70 70 o 60 60 llu 50 50 P 40 40 30 30 20 20 10 10 0 0 0 2 4 6 8 0 2 4 6 8 635MPa-30° 635MPa-60° 70 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 0 2 4 6 8 0 2 4 6 8 954MPa-30° 954MPa-60° Displacement (mm) Experiment Numerical simulations Figure8.Numerical-experimental[26]comparison:completepulloutcurvesforthefouryieldstrengths giveninTable2;thefiberisinclinedeitherat30◦(leftcolumn)or60◦(rightcolumn). Itneedstobepointedoutthatasthefiberyieldstrengthincreases,thenumericalpulloutcurves exhibitmoreoscillations. Thismeansthattherelativeslipbetweenfiberandmatrixismoreunstable; thus,finermeshesareneededtoreducethenoiseobservedinthosecurvesforfibersofhigherstrength. 4.3. StressEvolutionwithintheFiber Taking Type 2 fiber (yield strength 469 MPa) with an inclination angle of 30◦ as an example, thevonMisesstressevolutionsforseveralcharacteristicpointswithinthefiberareexamined. These
Description: