ebook img

Inactivation, Aggregation and Conformational Changes of Polyphenol Oxidase from Quince PDF

15 Pages·2017·2.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inactivation, Aggregation and Conformational Changes of Polyphenol Oxidase from Quince

molecules Article Inactivation, Aggregation and Conformational Changes of Polyphenol Oxidase from Quince (Cydonia oblonga Miller) Juice Subjected to Thermal and High-Pressure Carbon Dioxide Treatment AamirIqbal1,AyeshaMurtaza1,ZafarullahMuhammad1,AbdeenE.Elkhedir1,MingfangTao1 andXiaoyunXu1,2,* 1 KeyLaboratoryofEnvironmentCorrelativeDietology,HuazhongAgriculturalUniversity, MinistryofEducation,Wuhan430070,China;[email protected](A.I.); [email protected](A.M.);[email protected](Z.M.); [email protected](A.E.E.);[email protected](M.T.) 2 CollegeofFoodScienceandTechnology,HuazhongAgriculturalUniversity,No.1,ShizishanRoad, Wuhan430070,China * Correspondence:[email protected];Tel.:+86-27-8767-1056 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:19June2018;Accepted:12July2018;Published:17July2018 Abstract: Polyphenol oxidase (PPO) causes the browning reaction in fruits and vegetables and deterioratesthequality. Thermaltreatmentforenzymeinactivationmayresultindefectsasopposed to high pressure CO (HPCD) processing. In this study, the changes in activity, dissociation, 2 aggregation and conformation of purified PPO from thermal and HPCD treated juice were investigated. HPCDexhibitedinactivationofPPOat55–65◦Cwhereasthermalprocessingalone atthesametemperatureresultedinPPOstillshowingactivity. Underthermaltreatmentat25and 65◦C,thebrowningdegreewashigher(0.39and0.24)thanforHPCD-treatedjuice(0.23and0.12). FluorescenceandcirculardichroismspectralresultsindicatedthatHPCDinducedlargedecreases inintensities,revealingarearrangementofthesecondarystructureanddestructionofthenative configurationofthePPOmolecule. Theparticlesizedistribution(PSD)patternrevealedstructural modificationleadingtoinitialdissociationandsubsequentaggregationofPPOafterHPCDtreatment. Polyacrylamide gel electrophoresis (PAGE) analysis exhibited that molecular size of protein was 40kDa. Inconclusion,theHPCDmethodwasfoundtobemoreeffectivethanthermaltreatmentto inactivatePPO.Structuralmodificationsprovidedbetterinsightsintothephenomenaofactivation andinactivationofPPO. Keywords: polyphenoloxidase;highpressurecarbondioxide;aggregation;λmax;conformation 1. Introduction Quince(CydoniaoblongaMiller)isthefruitoftheMaloideae,asub-familyoftheRosaceaefamily[1]. Commerciallysignificantfruitsincludingapplesandpearsalsobelongtothisfamily[2]. Quinceis consideredafunctionalfruitduetoitsmedicinalandnutritionalvaluesandismostlyusedinthe productionofjam,marmalades,jelly,liquorandcakes. Quincefruithasgainedmuchattentioninthe lastdecadeduetoitshighantioxidantcapacityresultingfromphytochemicalsincludingphenolic compounds such as hydroxycinnamic acid and proanthocyanidins [1–3]. Storage conditions and further processing cause enzymatic browning of fruit, leading to physical and chemical damages resultinginundesirablequalitydepletion[4]. Thebrowningphenomenonismainlyduetothehigh activityofenzymesfromtheoxidoreductasegroupsuchaspolyphenoloxidase(PPO,EC1.14.18.1) Molecules2018,23,1743;doi:10.3390/molecules23071743 www.mdpi.com/journal/molecules Molecules2018,23,1743 2of15 andperoxidase(POD,EC1.11.1.7)[5]. Withintheoxidoreductasegroup,PPOismainlyresponsible fortheformationofbrownpigmentbyoxidationofpolyphenol. ThePPOisconsideredasacopper protein. The active site of the PPO enzyme contains two copper ions, which are surrounded by 6 histidine residues and a single cysteine residue. It also serves as structural support for enzyme molecule, thereby affecting the activity of protein. Copper ions present in the active site of PPO are responsible for oxidation-reduction processes that lead to the transition of active sites among met-,oxy-,anddeoxy-forms. Thus,copperplaysasignificantroleinthestructureandactivityofthe PPOenzyme[6]. ThePPOisanenzymecomprisedoftwosubunits(HandL).ThesubunitHhasa binuclearcopper-bindingsiteinthedeoxy-statewhileLsubunitscoordinateeachcopperiontocatalyze twodifferentreactionsinvolvingmolecularoxygen;oxidationofmonophenols(O-hydroxylation)to O-diphenolsandO-diphenolstoO-quinones,whicharefurtherresponsibleforthepolymerizationof brownpigments[7,8]. Thermal treatment has been the traditional technology for the inactivation of enzymes. Heat alsocausesdetrimentalchangesinthefoodproperties,i.e.,lossofflavor,color,nutrientsandtexture. Variousinnovativetechnologiesincludinghighpressurecarbondioxide(HPCD),high-hydrostatic pressure(HHP),ultra-sonication,andirradiationhavebeenusedtoreducethedetrimentalchanges in various fruit and vegetables caused by thermal technology [4,9]. HPCD is considered an innovative and emerging non-thermal technology, which is an alternate to traditional heating or high-pressureprocessingoffruitjuicesandisdeemedcomparativelysafeforthosecompoundswhich areheat-liable[10,11]. TheliteraturesuggeststhatHPCDisefficientintheinactivationofPPO[12,13]. HPCDutilizesCO propertieswhichcaninactivateenzymesbypHlowering, celldisruption, cell 2 membranemodificationandcellularcomponentextraction[14]. TheinactivationofPPOinprocessed fruitsandvegetablesisthemainindexofquality. NumerousstudiesonthePPOenzymefromseveral sources,i.e.,apple,banana,pear,carrot,celeryandloquat,havereportedenzymecharacterization, therebycontrollingtheiractions[15,16]. TheenzymaticinactivationofPPO,qualityparametersandstructuralanalysisofpurifiedPPO from quince juice treated with thermal and non-thermal technology (HPCD) are addressed in the present paper. To our knowledge, no work has been done on fruit quality attributes, enzymatic inactivationandstructuralmodificationofPPOpurifiedfromjuiceafterthermalandHPCDtreatments. QuincejuicewasexposedtovaryingheatandHPCDtreatmentsofvaryingtemperaturesandpressure. StructuralanalysiswasconductedtoexplorethemechanismofthermalandHPCDtechnologyon theaggregationanddeformationoftheproteinafterpurificationwiththeactivityofthepolyphenol oxidaseenzyme. 2. MaterialsandMethods 2.1. ExtractionofQuinceJuice Freshquince(CydoniaoblongaMiller)atoptimummaturitywasboughtfromanativemarketin Xinjiang,China. Freshquincewaswashed,peeledandcutintoslices. Sliceswerecrushedwithajuice extractorwith0.1%(w/w)ascorbicacidaddedtoinhibitundesirableenzymaticbrowning. Thejuice wasfilteredthroughacheeseclothtoremovecoarseparticlesandthencentrifugedat4000rpmfor 5min. TheresultingjuicewassubjectedtothermalandHPCDtreatments. 2.2. ThermalandHPCDTreatments 2.2.1. UntreatedQuinceJuice Foreachexperiment,30mLoffreshlysqueezedjuicewithoutheatorHPCDtreatmentwasused asthecontrol. Molecules2018,23,1743 3of15 2.2.2. ThermalProcessingofJuice Thermaltreatmentwascarriedoutinawaterbathatvaryingtemperatures(25–65◦C)witha 10◦Cincreasefor20min. Quincejuice(30mL)waspouredinto50mLplastictubes. Thetreatment timewasstartedwhenthedesiredtemperatureofthequincejuiceasmeasuredbydigitalthermometer (Wuhan,China)wasreached. Afterthethermaltreatment,thesampleswereimmediatelyplacedina refrigeratorforfurtheranalysis. Enzymeactivityandotherqualityparameterswerethendetermined. 2.2.3. HPCDProcessingofJuice HPCD treatment followed the method of Liao et al. [17] in which 99.5% pure CO obtained 2 fromWuhanCo. (Wuhan,China)wasintroducedintothepressurevessel. Quincejuice(30mL)was transferredintoa50mLsterileplasticbottle. Foreachexperiment,theHPCDpressurevesselwas sanitized with ethanol and preheated to the experimental temperature before juice samples were placedinside. Afterthedesiredtemperaturesof25,35,45,55and65◦Cwerereached,thechamber vesselwaspressurizedto20MPawithaplungerpump. Thequincejuiceinthechambervesselwas heldatconstanttemperatureandpressurefor20min.Thepressurerampusedwas20MPa/30s,andat theendofthetreatment,thechambervesselwasgraduallydepressurizedfor1.5–2min. Pressurization anddepressurizationtimewasnotincludedintreatmenttime. FollowingtheHPCDtreatment,quality parametersofthequincejuiceswereevaluated. 2.3. QualityAttributesofQuinceJuice 2.3.1. ColorimetricMeasurement Colorimetric measurement of quince juice was performed at ambient temperature with a chromometer(CR-410;KonicaMinoltaCorporation,Osaka,Japan). ThecolorimetricvaluesofL*,a*, andb*weremeasured,whereL*indicatedlightness,a*indicatedredness,andb*indicatedyellowness. 2.3.2. BrowningDetermination ThebrowningdegreeofquincejuicewasevaluatedusingaMultiskanspectrophotometer(Thermo Scientific,Waltham,MA,USA)[14]. Thesamplesolutionwascentrifuged(10,000rpm)for20min, andtheBDwasmeasuredafteradding100µLofsampletotheenzyme-linkedimmunosorbentassay (ELISA)plateandtestedimmediatelyatλ=420nmbyusingasimplekineticmethod. 2.3.3. Physico-ChemicalAnalysis ThejuicepHwasdeterminedusingadigitalThermopHmeter(ThermoFisher,Waltham,MA, USA).Totalsolublesolid(TSS)contentsweremeasuredbyadigitalAbberefractionmeter(Shanghai PrecisionandScientificInstrumentCo.,Shanghai,China). 2.4. PPOExtractionandPurification Quince juice was collected after treatments (thermal and HPCD) and PPO extraction and purificationmethodsfollowedourformerstudy[9]inwhich25%(NH4) SO saturationwasused 2 4 tofractionatethejuicetoremoveimpurities,followedby80%saturatedsolutionfor1hforprotein precipitation. Juicewasthensubjectedtocentrifugationat15,000rpmfor20min. Proteinprecipitates wereresuspendedin0.5mol/LTris-HClbuffer(pH7.0)andweredialyzedagainstTris-HClbufferfor 24handconcentratedbyultra-filtrationandpurifiedbyusingDEAEsepharosefastflowcolumns (1.0×10cm).FractionscontaininghigherPPOactivitywereselectedforfurtheranalysis.Thefractions withthehighestPPOactivitywereconcentratedandstoredforfurtheranalysis. Molecules2018,23,1743 4of15 2.5. PPOActivity The relative activity of crude and purified enzyme was measured by following the method presented by Liu et al. [11] with slight modifications Crude enzyme was made by adding 0.1% polyvinylpolypyrrolidone(PVPP)and(0.1%)TritonX-100to2mLquincejuice. Afterastoragetime of1hat4◦C,thejuicewascentrifugedat10,000rpmfor20min. Thiscrudeenzymewasusedfor PPO activity. An aliquot of 50 µL supernatant was mixed with 0.1 M catechol substrate solution (200µL)andwith0.05Mphosphatebuffer(pH7.2). Absorbanceofthesolutionwasdeterminedata wavelengthof420nmat30sintervalsfor3min(30◦Cincubation)inaspectrophotometer(Multiskan FC-ThermoScientific,Waltham,MA,USA).ThePPOspecificactivity(Abs/min)wastakenasthefirst linearpartoftheslopefromthereactioncurve. Therelativeactivity(RA)wasdeterminedusingthe followingequation: ActivityofjuiceafterthermalorHPCDtreatment Relativeactivity= − × 100 Activityofuntreatedjuice 2.6. ProteinDetermination ProteincontentswereanalyzedaccordingtotheBradfordmethodatawavelengthof595nm. Bovineserumalbumin(BSA)wasusedasthestandardforprotein[18]. 2.7. ElectrophoreticAnalysisofThermalandHPCD-TreatedPPOEnzymes Sodium dodecyl sulphate (SDS) and non-denaturing polyacrylamide gel electrophoresis (Native-PAGE)wasusedtoidentifiedthepurificationprocessbyusingtheMini-proten4cellsystem (Bio-Rad,Hercules,CA,USA)todeterminethemolecularmassofpurifiedPPO[15]. Gelswereused toevaluatethepurityandmolecularweightofpurifiedPPOprotein. 2.8. StructuralAnalysisofUntreatedandTreated(ThermalandHPCD)PPO 2.8.1. CircularDichroismSpectralMeasurement Circular dichroism analysis was conducted according to earlier studies [19,20] with a JASCO spectropolarimeter (JASCO, Tokyo, Japan). CD measurements were recorded by using optical path-length 0.009 cm quartz: 0.2 mg/mL protein sample was dissolved in 50 mmol/L Tris-HCl buffer(pH7.0),usingTrisbufferasablanksample. CDparameterswereobservedintheultraviolet rangeof190–240nmfor2sand1nmbandwidthat100nm/min. TheCDdatawereexpressedas mdeg(molarextinctioncoefficientdifference)andtheproteinsecondarystructurewasestimatedfrom Yang’sequation. 2.8.2. FluorescenceSpectralMeasurement Intrinsicfluorescencespectralanalysiswasconductedusingafluorescencespectrophotometer (F-4600,Hitachi,Tokyo,Japan). Proteinsamples(0.2mg/mL)weresubjectedtospectrophotometer analysistodeterminethemaximumexcitationwavelength. Proteinsampleswerescannedforemission spectraatλem300–400nmofprotein.Theemissionandexcitationslitwidth(emandex)wereadjusted at5nm. Thespeedwassetas240nm/min,anda0.1sresponsetimewasused[15]. 2.8.3. PSDMeasurement Particle size distribution (PSD) was measured by a Zetasizer Nano-ZS device (Malvern Co., Malvern,UK)accordingtothedescriptionofHuetal.[21]. ThepurifiedproteinsamplesfromHPCD andthermaltreatedjuicewereadjustedto0.3mg/mLwithphosphatebuffer(50mM,pH7.0)for determinationofproteinPSD.Awavelengthlaserof532nmoflightscatteringwitha15◦ reflection anglewasappliedtothesamplesolution. ThesizemeasurementresultscontainingPSDanalysiswere takenasthemeanfromfourreadings. Molecules 2018, 23, x FOR PEER REVIEW 6 of 15 (mature, immature, latent and active forms) isoforms, and its increased activity at 25 °C (TP) may be due to the presence of latent PPO [15,26]. In comparison, the results of HPCD treated quince juice showed that the RA decreased to 78.26%, 69.55%, 59.45% and 34.18% with increased temperatures of 25, 35, 45 and 55 °C respectively. Nearly complete inactivation occurred at 65 °C (Figure 1A). HPCD- treated juice significantly lowered the PPO activity as compared to thermal-treated juice at same temperature. Research reports suggest that PPO inactivation of juice under HPCD treatment was improved with increased pressure, temperature and treatment time [22,27]. Enzymatic inactivation under HPCD conditions may be due to changes in the secondary structure of PPO, which might be Molecules2018,23,1743 5of15 the result of pH lowering after CO2 dissolved in solution. Li et al. also reported that enzymatic activity of apple PPO under HPCD treatment showed biphasic changes of initial activation and then sudden 2in.9a.cStitvataitsitoicna laAt n3a5l–y5si5s °C for 15 min [20]. Similar results were found in banana pulp, where PPO activity under HPCD gradually decreased from 40.7% to 11.6% with treatment at 45–60 °C for 30 min DatawereanalysedbyANOVA(analysisofvariance),andmeancomparisonsweremadeby at 20 MPa [22]. The results of relative activity of PPO after purification are shown in Table 2. Tukey’s test. The mean was taken at a significantly different 95% confidence interval (p ≤ 0.05). Compared to crude PPO activity (116.22%), the lower activity (46%) was observed for purified PPO ThegraphswereconstructedusingOrigin9.0software(OriginLab,Northampton,MA,USA). using 25 °C under thermal treatment. The lowest relative activity (7.40%) was observed for purified 3P.PROe ssuulbtjseactnedd Dtoi s6c5u °sCsi ounnder HPCD treatment. The activity of the crude PPO enzyme was found to be higher than purified enzyme in our study. This might be due to the reason of ammonium sulphate 3.1. ChangesinColor,pHandTSSofQuinceJuice saturation during enzyme extraction, which decreases the level of PPO activity. Dialysis of protein preciTphiteactoe ldourprianrga mpuetreifriscaotfijounic aelsaoft ecrauHsPeCs Dlosasn odft choeprmpearl itorenast,m wehnitc(h2 5a–ls6o5 d◦Cec)raeraesseh PoPwOn ainctFivigituyr e[218B].. TIth ies rgeednneersasllayn bdeylieelvloewd ntheasst lionsdsi coaft ePdPOby aac*tiavnitdy bm*avya lbuee sdoufet htoe PqPuOin cfoerjmuiicnega fstoemrteh ienramcatilvter epahtmeneonlts w[2e9r]e alnedss atlhsoan bethcaeucsoen otrfo al ,gaonodd gcroardreulaaltliyond ebcertewaeseend twheit hα-ihneclriexa csoinngtetnetm apnedr aretusirdeu. aTlh aectciovliotyr uvnaldueer (Ha*PaCnDd btr*e)aotfmHePnCt. DT-htere iartreedveqrusiinbclee djueiccoemwpaosssiitgionnifi ocfa nαt-lhyelloixw oecrccuormrepda raefdtetro HthPeCtDhe. rTmotaal-l tirneaactetidvajutiicoen. Aofn PinPcOre laesaedisn tbor sigtrhutcnteusrsailn mdiocdatifeidcabtyiotnh eanLd* vdaelnuaetuwraastioonbs oefr vthede pwriothteaint.e Tmhpeesrea ptuhreenionmcreenasae sdhuorwinegd bthoatht PHPPOC aDctaivnidtyt hcaenrm bea lirtrreevatemrseibnltys .inAacstiimvailtaerdfi bnyd HinPgCwDa [s2r4e]p. Iotr itse gdebnyerYaullye tbaell.ie[2v2e]d, it.hea.,t ibnrboawnnainnag jiusi cdeu,eb rtoow PnPiOng-mdeevdeialotepdm oexnitdwataisonsl oowf eprhiennHolPs.C IDn jouuicre satusdcyom, ipt awreads tdoettehremrminaelldy tthreaat tiendaactnidvactoionntr oolf jPuPicOe. iCn oqluorincchea jnugicees ionccquurirnecde ujunidceerc oHuPldCDre struelattfmroemntb, rsouwggneisntgincga uthsaetd HbyPCPDPO p,ewrfhoircmhsl ebaedttserto ththaen dtheeterrmioarla ttrieoantmofejnuti caeloqnuea. lity. FFiigguurree 11.. ((AA)) RReellaattiivvee aaccttiivviittyy ooff PPPPOO;; ((BB)) CCoolloorr ppaarraammeetteerrss ((LL**,, aa** aanndd bb**)) ooff qquuiinnccee jjuuiiccee ttrreeaatteedd wwiitthh tthheerrmmaall aanndd HHPPCCDD ttrreeaattmmeenntt aattd diiffffeerreennttt teemmppeerraattuurreess.. TheinfluenceofHPCDandthermaltreatmentonpHandTSSofquincejuiceispresentedin Table1. ThepHvalueofuntreatedjuicewas4.74,butafterHPCDtreatment,decreasedto4.23,4.20 and4.11at25,45and65◦Crespectively.ThermallytreatedjuiceshowedonlyaslightdecreaseinpHas comparedtothecontrol. ThepHdeclineafterHPCDtreatmentcouldbeattributedtoCO dissolving 2 i nthejuice,whichfurtherdistributescarbonate,H+ionsandbicarbonates,thusincreasingtheacidity andloweringthepHvalue. Thisfindingwasinaccordancewithstudiesofcarrot,watermelonand applejuiceinwhichpHwasreducedsignificantlyafterHPCDtreatment[16,23]. pHisimportantin thatitcanbeassociatedwithenzymeinactivation. AtlowerpH,CO maymoreeasilyinteractwith 2 theenzyme-boundarginine, resultinginaproteincomplexwhichcancausethelossofenzymatic activity[24]. Accordingtostructuralanalysis,ithasbeenprovedthatbasicaminoacidslikearginine, lysineandhistidinearethosemostcommonlyfoundinCO -proteinbindingsites. HPCDtreatment 2 couldcausetheformationofcomplexcovalentcarbamateswithfreeaminoacidgroupsontheenzyme Molecules2018,23,1743 6of15 surface that were potentially responsible for reducing enzyme activity [10,25]. Untreated quince juice showed a TSS value of 11.55 ◦Brix. After HPCD and thermal treatment, TSS values did not alter significantly (Table 1). During storage, TSS also did not change significantly, indicating that theprocessingtreatmentsdidnotimpactsolublecarbohydratessuchasglucoseandsucrosethatare consideredthemajorcontributorstoTSS. Table1.pHandbrixofquincejuicefromthermalandHPCDtreatments. Treatment Temp pH ◦Brix Control(Untreated) 4.74±0.23a 11.55±0.22a 25 4.75±0.18a 11.54±0.18a 35 4.73±0.24a 11.56±0.2a Thermal-treated(20min) 45 4.73±0.13a 11.54±0.2a 55 4.70±0.22a 11.51±0.19a 65 4.69±0.17a 11.49±0.19a 25 4.23±0.21ab 11.25±0.37a 35 4.23±0.23ab 11.19±0.16a HPCD-treated(20MPa,20min) 45 4.20±0.19ab 11.10±0.15a 55 4.18±0.14ab 10.98±0.17a 65 4.11±0.11b 10.92±0.21a Datapresentedasthemean±SD(standarddeviation). Differentlettersrepresentsignificantdifferenceamong means(p≤0.05). 3.2. Activation&InactivationofCrudePPOEnzymebyThermalandHPCDTreatments TheRAofquincecrudePPOduringthermalandHPCD(20MPa)treatmentsat25to65◦Cfor 20 min is shown in Figure 1A. PPO after thermal treatment showed the highest RA (116.22% and 98.09%)at25and35◦C.respectively. RAgraduallydecreasedto81.46%at45◦Candshowedamore rapid decrease to 61.64% and 45.14% at 55 and at 65 ◦C respectively. PPO is present in numerous (mature,immature,latentandactiveforms)isoforms,anditsincreasedactivityat25◦C(TP)maybe duetothepresenceoflatentPPO[15,26]. Incomparison,theresultsofHPCDtreatedquincejuice showedthattheRAdecreasedto78.26%,69.55%,59.45%and34.18%withincreasedtemperatures of 25, 35, 45 and 55 ◦C respectively. Nearly complete inactivation occurred at 65 ◦C (Figure 1A). HPCD-treatedjuicesignificantlyloweredthePPOactivityascomparedtothermal-treatedjuiceat sametemperature. ResearchreportssuggestthatPPOinactivationofjuiceunderHPCDtreatmentwas improvedwithincreasedpressure,temperatureandtreatmenttime[22,27]. Enzymaticinactivation under HPCD conditions may be due to changes in the secondary structure of PPO, which might betheresultofpHloweringafterCO dissolvedinsolution. Lietal. alsoreportedthatenzymatic 2 activityofapplePPOunderHPCDtreatmentshowedbiphasicchangesofinitialactivationandthen suddeninactivationat35–55◦Cfor15min[20]. Similarresultswerefoundinbananapulp,where PPOactivityunderHPCDgraduallydecreasedfrom40.7%to11.6%withtreatmentat45–60◦Cfor 30minat20MPa[22]. TheresultsofrelativeactivityofPPOafterpurificationareshowninTable2. ComparedtocrudePPOactivity(116.22%),theloweractivity(46%)wasobservedforpurifiedPPO using25◦Cunderthermaltreatment. Thelowestrelativeactivity(7.40%)wasobservedforpurified PPOsubjectedto65◦CunderHPCDtreatment. TheactivityofthecrudePPOenzymewasfoundto behigherthanpurifiedenzymeinourstudy. Thismightbeduetothereasonofammoniumsulphate saturationduringenzymeextraction,whichdecreasesthelevelofPPOactivity. Dialysisofprotein precipitateduringpurificationalsocauseslossofcopperions,whichalsodecreasePPOactivity[28]. ItisgenerallybelievedthatlossofPPOactivitymaybeduetoPPOformingsomeinactivephenols[29] andalsobecauseofagoodcorrelationbetweentheα-helixcontentandresidualactivityunderHPCD treatment. Theirreversibledecompositionofα-helixoccurredafterHPCD.TotalinactivationofPPO leadstostructuralmodificationanddenaturationoftheprotein. ThesephenomenashowedthatPPO activitycanbeirreversiblyinactivatedbyHPCD[24]. Itisgenerallybelievedthatbrowningisdue Molecules2018,23,1743 7of15 toPPO-mediatedoxidationofphenols. Inourstudy,itwasdeterminedthatinactivationofPPOin Molecules 2018, 23, x FOR PEER REVIEW 7 of 15 quincejuiceoccurredunderHPCDtreatment,suggestingthatHPCDperformsbetterthanthermal treatmentalone. Table 2. Secondary structure contents of thermal- and HPCD-treated PPO. Table2.Secondarystructurecontentsofthermal-andHPCD-treatedPPO. Secondary Structure Contents Treatments Random Coil PPO Activity Concentration Treatments α-Helix (%) β-Sheet (%) β-STeucornnd (a%ry) StructureC(%on)t ents (%) (%) Native α-3H9e.l3i4x (±% 1).42a β-S1h7e.e9t ±(% 1).13d β-T2u6rn.41(% ±) 0.59aR ando1m6.C35o i±l (0%.7)5d PPO24A.2ct3i v±i t0y.7(%6d) Con8c.e5n7t r±a 0ti.o6n7b(% ) 25 N°Ca ttihveermal 39.3348.±961 ±.4 02a.96b 17.918±.41 ±.1 03d.78cd 26.4214±.480. 5±9 0a.82ab 16.3158±.160 .7±5 1d.12cd 244.223.5±8 ±0 .716.0d2a 182.5.778± ±0 0.6.97b3a 2525◦ C°Cth HerPmCaDl 38.9365.±260 ±.9 60b.78b 18.42±0.05. 7±8 0cd.53b 24.482±3.80.58 2±a 0b.77b 18.162±0.319.1 2±c 0d.82c 423.658.8±8 ±1 .00.26a4b 142..0784 ±± 00..1953ac 6255 ◦°CC HthPeCrmDal 35.2360.±810 .±7 81b.77c 20.52±3.40 .±5 30b.35b 23.852±1.201.7 ±7 b1.11c 20.3924±.508. 8±2 c0.66b 36.2898.5±3 0±.6 14.b2c 43..0941± ± 00..1059cc 65◦Cthermal 30.81±1.77c 23.4±0.35b 21.21±1.11c 24.58±0.66b 29.53±1.2c 3.91±0.09c 6655◦ °CCH HPPCCDD 24.1214.±110 ±.9 70d.97d 27.72±7.70 .±7 70a.77a 18.41±8.14.1 ±5 d1.15d 29.7929±.709. 9±2 a0.92a 070.470.4±0 ±1 .133.3e3e 00..2277± ± 00..001155dd Data presented as the mean ± SD (standard deviation). Different letters represent significant Datapresentedasthemean±SD(standarddeviation). Differentlettersrepresentsignificantdifferenceamong mdiefafenrse(npc≤e 0a.m05o).ng means (P ≤ 0.05). 33..33.. EEffffeecctt ooff TThheerrmmaall aanndd HHPPCCDD PPrroocceessssiinngg oonn BBrroowwnniinngg DDeeggrreeee ooff QQuuiinnccee JJuuiiccee TThhee BBDD ooff qquuiinnccee jjuuiiccee dduurriinngg ssttoorraaggee aatt 44 ◦°CC aafftteerr HHPPCCDD aanndd tthheerrmmaall ttrreeaattmmeenntt iiss sshhoowwnn iinn FFiigguurree 22.. UUnnttrreeaatteedd jjuuiiccee iinniittiiaallllyy hhaadd aa bbrroowwnniinngg ddeeggrreeee ooff 00..4455 bbuutt iinnccrreeaasseedd ttoo 00..9988 aafftteerr 88 ddaayyss ooff ssttoorraaggee.. HHPPCCDD rreedduucceedd tthhee BBDD vvaalluuee ccoommppaarreedd ttoo tthheerrmmaallllyy ttrreeaatteedd jjuuiiccee ((FFiigguurree 22AA)).. BBDD ddeeccrreeaasseedd wwiitthh iinnccrreeaassiinngg tteemmppeerraattuurree aanndd wwitihth dadyasy osfo sftosrtaograeg. Te.heT BhDe BoDf thoefrtmhaerllmy atrlleyatterde aqtuedincqeu jiuniccee jauti 2ce5 a°Ct 2w5a◦sC 0w.39a san0.d3 9it adnedcrietadseedcr etoa s0e.d27t oan0d.2 07.2a4n das0 t.h2e4 taesmthpeertaetmurpee irnactrueraeseindc rtoea 5s5e dantod 5655 a°Cnd (F6i5gu◦rCe (2FAig).u Irne a2dAd).itIinona,d HdPitCioDn, tHrePaCtmDentrte watamse fnotuwnda stofo buen mdotoreb eeffmecotriveee finfe ccotinvteroinllicnogn tbrroolwlinnginbgr,o aws nHinPgC,Das- HtrePaCteDd- tqreuaintecde qjuuiicnec oenju dicaey o1n sdhoayw1eds hBoDw vedaluBeDs voaf l0u.e2s3 oafn0d. 203.1a2n adt 02.51 2anadt2 655a °nCd, r6e5s◦pCec,trievseplyec, twivheillye, wthheirlmetahl-etrrmeaatle-dtr ejuaitceed ejxuhiciebietexdh ivbaitleudesv oalfu 0e.s39o fan0.d3 90.a2n4d (F0i.g2u4r(eF i2gBu)r. e2B). FFiigguurree 22.. BBrroowwnniinngg ddeeggrreeee dduurriinngg ssttoorraaggee aatt 44 ◦°CC ((AA)) TThheerrmmaall ttrreeaattmmeenntt;; ((BB)) HHPPCCDD ttrreeaattmmeenntt ooff quince juice at different temperatures. quincejuiceatdifferenttemperatures. Similar results for the reduction of BD were reported for HPCD-treated apple and water melon SimilarresultsforthereductionofBDwerereportedforHPCD-treatedappleandwatermelon juice in comparison to thermally treated juice [27,30]. The BD of carrot juice was also reported to juice in comparison to thermally treated juice [27,30]. The BD of carrot juice was also reported to decrease from increased pressure and treatment time of HPCD. Under HPCD treatment at 20 MPa decreasefromincreasedpressureandtreatmenttimeofHPCD.UnderHPCDtreatmentat20MPa for 15 min (25 °C), the BD of carrot juice significantly decreased to 0.272, whereas untreated juice for 15 min (25 ◦C), the BD of carrot juice significantly decreased to 0.272, whereas untreated juice showed a higher value of 0.779 [31]. BD is closely related to enzyme actions, especially PPO. HPCD showedahighervalueof0.779[31]. BDiscloselyrelatedtoenzymeactions,especiallyPPO.HPCD treatment can inactivate enzymes more efficiently as compared to thermal treatment for prevention treatmentcaninactivateenzymesmoreefficientlyascomparedtothermaltreatmentforpreventionof of the browning of quince juice. thebrowningofquincejuice. 3.4. Particle Size Distribution of Thermal- and HPCD-Treated PPO 3.4. ParticleSizeDistributionofThermal-andHPCD-TreatedPPO Thermal and HPCD treatments affected the PSD pattern of purified PPO as shown in Figure 3. ThermalandHPCDtreatmentsaffectedthePSDpatternofpurifiedPPOasshowninFigure3. The native PPO exhibited a wider span with two Sections (I and II); Section (I) revealed that native ThenativePPOexhibitedawiderspanwithtwoSections(IandII);Section(I)revealedthatnative protein partially aggregated at 58.8 nm with the fraction containing 16.76%, while mostly PPO aggregates were distributed in section II, which exhibited a particle pattern ranging from 165 to 615 nm with the highest fraction (24.59%) at 342 nm. Peak diameter results suggest that the small sized proteins tend to aggregate to form large accumulates of PPO. For thermally treated PPO at 25 °C, Molecules2018,23,1743 8of15 protein partially aggregated at 58.8 nm with the fraction containing 16.76%, while mostly PPO aggregates were distributed in section II, which exhibited a particle pattern ranging from 165 to 6M15olencumlesw 20i1t8h, 2t3h, ex FhOigRh PeEsEtRf rRaEcVtIiEoWn ( 24.59%)at342nm. Peakdiameterresultssuggestthatthesm8 oaf l1l5 sizedproteinstendtoaggregatetoformlargeaccumulatesofPPO.ForthermallytreatedPPOat25◦C, lolowweerri nintetennssititiieessw witithht twwoos seeccttioionnssw weerreeo obbsseerrvveedd:: SSeeccttiioonn IIa att3 377.8.8n nmmw witihtht htheef rfaracctitoionno occccuuppyyiningg 1144.0.099%%,,a annddS Seecctitoionn( I(II)I)w witihths soommeep paartritaialllylya aggggrreeggaateteddp prrooteteinin( 2(29955n nmm))w witihthf rfaracctitoionnsso occccuuppyyiningg 2200.9.922%%..A Att6 655◦ °CC,,t thheeP PSSDDp paatttteerrnns shhoowweeddo onnees seeccttioionnw witihtha af rfraacctitoionnv vaalulueeo off2 299.6.6a att3 34422n nmm..H HPPCCDD aatt2 255◦ °CCe exxhhiibbiitteedda ah hiigghheerri inntteennssiittyyt thhaannt thheet thheerrmmaallt trreeaattmmeenntt( (2255◦ °CC)) wwiitthh ttwwoo sseeccttiioonnss;; SSeeccttiioonn ((II)):: 6688.1.1n nmmw witihtha a2 200.7.777%%n nuummbbeerrf rfraacctitoionna annddS Seecctitoionn( I(II)I:):2 266.1.199%%a att2 29955n nmm..A Att6 655◦ °CCw witihthH HPPCCDD,,t hthee ssppaanno offt htheep paarrtitcicleled diaiammeeteterrf ufurtrhtheerri ninccrereaasesedda annddP PPPOOw waasss tsrtoronngglylyi ninaactcitvivataetdeda nanddd denenatauturerded. . Figure 3. Particle size distributions of native PPO in comparison to thermal- and HPCD-treated PPO. Figure3.ParticlesizedistributionsofnativePPOincomparisontothermal-andHPCD-treatedPPO. Several studies have reported that HPCD treatment resulted in aggregation and dissociation of Several studies have reported that HPCD treatment resulted in aggregation and dissociation protein. HPCD at high temperature caused dissociation of large aggregates with high particle of protein. HPCD at high temperature caused dissociation of large aggregates with high particle diameter, indicating small aggregates with small particle diameters [20,32]. It has also been shown diameter,indicatingsmallaggregateswithsmallparticlediameters[20,32]. Ithasalsobeenshown that intermediates might exhibit size differences from the native structure, resulting in different that intermediates might exhibit size differences from the native structure, resulting in different properties [23]. High temperature and HPCD treatment induced small particle aggregation and properties [23]. High temperature and HPCD treatment induced small particle aggregation and larger particle dissociation [20]. The PSD pattern of purified PPO from quince after HPCD treatment largerparticledissociation[20]. ThePSDpatternofpurifiedPPOfromquinceafterHPCDtreatment showed dissociation and formation of aggregates. Enhanced interactions among protein molecules showeddissociationandformationofaggregates. Enhancedinteractionsamongproteinmolecules resulting from the catalytic site increased the inactivation rate by reduced particle size, resulting in resultingfromthecatalyticsiteincreasedtheinactivationratebyreducedparticlesize,resultingin dissociation and disintegration of the protein structure [15,33]. PPO with a small size may associate dissociationanddisintegrationoftheproteinstructure[15,33]. PPOwithasmallsizemayassociate to form aggregates at high temperature with further aggregation leading to significant accumulation, toformaggregatesathightemperaturewithfurtheraggregationleadingtosignificantaccumulation, thereby enhancing the distribution span [11]. High temperature under HPCD treatment enhanced the homogenization. The aggregation induced by HPCD was probably due to a reduction in pH. CO2 reacts with water to form carbonic acid, which reduces the environmental pH. Hence, reduced pH caused folding and unfolding of protein chains, which lead to aggregation. Furthermore, carbonic acid may react with copper atoms and the histidine residues present at the catalytic site, destroying the active catalytic centre and causing inactivation of PPO [21]. Molecules2018,23,1743 9of15 therebyenhancingthedistributionspan[11]. HightemperatureunderHPCDtreatmentenhancedthe homogenization. TheaggregationinducedbyHPCDwasprobablyduetoareductioninpH.CO 2 reactswithwatertoformcarbonicacid,whichreducestheenvironmentalpH.Hence,reducedpH causedfoldingandunfoldingofproteinchains,whichleadtoaggregation. Furthermore,carbonicacid mayreactwithcopperatomsandthehistidineresiduespresentatthecatalyticsite,destroyingthe activecatalyticcentreandcausinginactivationofPPO[21]. Additionally,depressurizationofCO afterHPCDtreatmentcausedtheformationofagasliquid 2 interface. Nonpolarresiduesoccurredinthegasphasewhilepolarparticlesorientedtotheliquid phase,causingunfoldingofproteinchains. Thus,unfoldedmoleculeswillundergoaggregationof particles. Meanwhile,depressurizationcausesrapidgasexpansionfromenzymes. Thisgasexpansion inducedanexplosiveeffectandahomogenizationeffectofaggregates[20,21]. Inthisstudy,comparedtothermaltreatment,thePSDpatternofHPCD-treatedpurifiedPPO showedsignificantvariationswithbroaderspansoflargerparticlediametersresultinginmassive changesinPPOconformation. Thesestructuralchangesincludingfragmentation,deformationand aggregationaffectedtheactivecatalyticsiteofPPOmoleculesandalteredthesecondarystructure, resultinginPPOactivationandinactivation. PSDpatternofHPCD-treatedPPOfromquinceshowed markedsignificantvariationswithbroaderspansoflargerparticlediametersresultinginmassive changesinPPOconformation. 3.5. EffectofThermalandHPCDTreatmentsontheSecondaryStructureofPPO CDspectraareavaluablespectroscopictechniquetoinvestigatechangesinsecondarystructure including the α-helix, β sheet and β-turn of PPO protein. The α-helix contents were calculated for negative elliptical peaks of 222 and 208 nm while the 214 nm peak is a characteristic of a β-sheet [15,34,35]. The CD spectra of native PPO in comparison to HPCD and thermally treated PPOareshowninFigure4.ThenativepurifiedPPOexhibitedanegativepeakat218nmandapositive peak at 194 nm (Figure 4). The data suggest thatnative PPO possesses an α-helix arrangement in secondaryconstellation. TheCDspectraofthermallytreatedPPOat25◦Cshowedminormodification from native PPO, indicating no structural changes. However, at 65 ◦C, considerable changes in PPOsecondarystructureresulted. ComparedtothenativePPO,thepositivepeakvalueat194nm changedslightlyat25◦Cbutgraduallyincreasedaspressurewasappliedfor20min. Thenegative ellipticityincreasedandthepositivepeakvaluedecreasedbyincreasingtemperatureunderHPCD, suggestingthelossintheα-helixcontentandenhancedstructuredisorder. Moreover,theCDspectra ofHPCD-treatedPPOproteinshowedmajorchangesinsecondarystructureascomparedtothermally treatedPPO. TheestimationofthesecondarystructureshowedthatthermalandHPCDtreatmentscauseda markedreductioninthecontentsoftheα-helixandβ-turnandenhancedthecontentsoftheβ-sheet andrandomcoil(Table2). NativePPOconsistedof39.34%α-helix,17.9%β-sheet,26.41%β-turnand 16.35%randomcoil. ThesecondarystructureofthermallytreatedpurifiedPPOshowedlittlechange at25◦C,butat65◦C,theα-helixdecreasedto38.1%whiletheβ-sheetandrandomcoilincreased to 23.40 and 24.58% respectively. Thus, loss of α-helix contents disorganized the native structure of PPO and eventually enhanced the negative ellipticity of CD spectra. Moreover, when pressure wasappliedincombinationwithtemperatureat65◦C,theα-helixandβ-turncontentdecreasedto 24.11%and18.40%whilethecontentsoftheβ-sheetandrandomcoilincreasedto27.70%and29.79%, respectively(Table2). Hightemperaturedamagedthenativestructureoftheprotein,leadingtothe reorganizationofsecondarystructure. Theβ-sheetcontentofPPOincreasedafterHPCDtreatment, facilitatingaggregation. ThismightbeduetoasuddenreleaseofCO causingrapidgasexpansion, 2 inducingexplosiveandhomogenizationimpactsontheproteinaggregates[20]. Molecules 2018, 23, x FOR PEER REVIEW 9 of 15 Additionally, depressurization of CO2 after HPCD treatment caused the formation of a gas liquid interface. Nonpolar residues occurred in the gas phase while polar particles oriented to the liquid phase, causing unfolding of protein chains. Thus, unfolded molecules will undergo aggregation of particles. Meanwhile, depressurization causes rapid gas expansion from enzymes. This gas expansion induced an explosive effect and a homogenization effect of aggregates [20,21]. In this study, compared to thermal treatment, the PSD pattern of HPCD-treated purified PPO showed significant variations with broader spans of larger particle diameters resulting in massive changes in PPO conformation. These structural changes including fragmentation, deformation and aggregation affected the active catalytic site of PPO molecules and altered the secondary structure, resulting in PPO activation and inactivation. PSD pattern of HPCD-treated PPO from quince showed marked significant variations with broader spans of larger particle diameters resulting in massive changes in PPO conformation. 3.5. Effect of Thermal and HPCD Treatments on the Secondary Structure of PPO CD spectra are a valuable spectroscopic technique to investigate changes in secondary structure including the α-helix, β sheet and β-turn of PPO protein. The α-helix contents were calculated for negative elliptical peaks of 222 and 208 nm while the 214 nm peak is a characteristic of a β-sheet [15,34,35]. The CD spectra of native PPO in comparison to HPCD and thermally treated PPO are shown in Figure 4. The native purified PPO exhibited a negative peak at 218 nm and a positive peak at 194 nm (Figure 4). The data suggest that native PPO possesses an α-helix arrangement in secondary constellation. The CD spectra of thermally treated PPO at 25 °C showed minor modification from native PPO, indicating no structural changes. However, at 65 °C, considerable changes in PPO secondary structure resulted. Compared to the native PPO, the positive peak value at 194 nm changed slightly at 25 °C but gradually increased as pressure was applied for 20 min. The negative ellipticity increased and the positive peak value decreased by increasing temperature under HPCD, suggesting the loss in the α-helix content and enhanced structure disorder. Moreover, the CD spectra of HPCD- treated PPO protein showed major changes in secondary structure as compared to thermally treated Molecules2018,23,1743 10of15 PPO. FFiigguurree 44.. CCDD ssppeeccttrraa ooff nnaattiivvee PPPPOO iinn ccoommppaarriissoonn ttoo tthheerrmmaall-- aanndd HHPPCCDD--ttrreeaatteedd( (2255& &6 655◦ °CC)) PPPPOO.. A previous study stated that thermal treatment resulted in a reduction of the α-helix content in mushroom PPO, while β-sheet and random coil contents increased. Temperature increase also influencedthestructuralchangesinPPO[35,36]. OurHPCDresultsareconsistentwithLietal.[20] in which a decline in α-helix contents followed by decrease in PPO activity was observed in amyloid-formingaggregates. CDspectrarevealedthatpurifiedPPOiscorrelatedwithPPOactivity. AccordingtoourresultsofCDandPPOactivity,theincreasesinβ-sheetandβ-turncontributedto thegreaterchangeinPPOconformation,indicatingthecollapseofthecatalyticcenter. TheHPCD treatmentcausedchangesintheα-helixcontent,whichalteredtheinteractionbetweenthecopper centreandtheα-helixsite,collapsingtheactivesite,andthusresultinginPPOinactivation[24]. HPCDmaychangehydrogenbondinginteractionswithinPPO,leadingtoconformationalchanges ofthesecondarystructureandultimatelyresultinginPPOinactivation. 3.6. FluorescenceSpectroscopyAnalysis Aspreviouslydescribed,variationsinenzymetertiarystructurerelatetothechangesinintrinsic fluorescenceemission. Thepolarityofproteinresiduesincludingtryptophanandtyrosineprovidesa valuabletechniquetocharacterizeproteinconformation[15]. Thermal-andHPCD-treatedpurified PPO was examined by fluorescence spectroscopy (Figure 5). Native PPO displayed the largest emission peaks at 331.2 nm (λmax) with fluorescence intensity of 990 a.u. The data indicate that tryptophan remnants were located in the nonpolar environment [20]. Under thermal treatment (25◦C),λmaxwasslightlyred-shiftedto332.6nmanditsintensitydecreasedto933.2a.u.,whilethe λmaxofHPCD-treatedPPOatthesametemperatureincreasedrapidlyto334.8nmanddisplayed 3.6 nm red shifts as compared with native PPO. However, when the temperature increased from 25–65◦Cat20MPa,theflorescencespectrumexhibitedblueshiftsatλmax314.2nmanditsintensity decreased from 761.6 to 255.7, indicating the loss of fluorescence intensity of PPO when 20 MPa pressure was applied [29]. Hence, high temperature showed enormous changes with blue shifts andreducedfluorescenceintensityinfluorescencespectra,causinginactivationofPPO.Apossible

Description:
(Cydonia oblonga Miller) Juice Subjected to Thermal Quince (Cydonia oblonga Miller) is the fruit of the Maloideae, a sub-family of the Rosaceae
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.