ebook img

In Vivo Two-Photon Calcium Imaging of Hippocampal Neurons in a Mouse Model of Alzheimer´s ... PDF

103 Pages·2013·26.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview In Vivo Two-Photon Calcium Imaging of Hippocampal Neurons in a Mouse Model of Alzheimer´s ...

! Fakultät für Medizin Institut für Neurowissenschaften In Vivo Two-Photon Calcium Imaging of Hippocampal Neurons in a Mouse Model of Alzheimer´s Disease Marc Aurel Busche Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doctor of Philosophy (Ph.D.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Roland M. Schmid Prüfer der Dissertation: 1. apl. Prof. Dr. Helmuth K. H. Adelsberger 2. Univ.-Prof. Dr. Thomas Misgeld 3. Univ.-Prof. Dr. Martin Kerschensteiner, Ludwig-Maximilians-Universität München Betreuer: Univ.-Prof. Dr. Arthur Konnerth Die Dissertation wurde am 17.04.2013 bei der Fakultät für Medizin der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 21.08.2013 angenommen. ThehippocampusisaprimetargetofAlzheimer´sdisease(AD),yetlittleisknownabouthow the disease affects neuronal activity patterns in the hippocampus in vivo. This information hasbeendifficulttoobtainbecauseoftheinaccessibilityofthehippocampusforcellular-level functionalimaging. Here,weadvancedtwo-photonmicroscopytowardscalciumimagingof neuronsintheCA1regionofthehippocampusinvivo. Byusingthismethod,westudiedthe functionalalterationsofhippocampalneuronsinADtransgenicmice. Wefoundthatplaque- laden transgenic mice exhibited greater proportions of silent and hyperactive neurons in the hippocampusthanwildtypemice,consistentwithpreviousfindingsfromcortex. Surprisingly, already before the deposition of amyloid-ß (Aß) into plaques, there was a massive increase of hippocampal neuronal activity with many neurons being abnormally hyperactive. Our findingthatneuronalhyperactivityoccurredindependentofplaqueformationsuggestedthat soluble species of Aß, and not plaques themselves, might underlie this dysfunction. To test this hypothesis, we treated plaque-free transgenic mice with the g-secretase inhibitor LY- 411575andfoundthatasingleoraldosereducedsolubleAßlevelsandrestoredhippocampal neuronalfunctionwithinfewhours. Furthermore,wedemonstratedthatthedirectapplicationof solubleAßinducedhippocampalhyperactivity. Takentogether,thisthesisadvancestwo-photon microscopytoenableopticalstudiesofhippocampalneuronalactivityinvivo. Byusingthis method,werevealedthatneuronalfunctionwasprofoundlyimpairedinthehippocampusof AD transgenic mice already before plaque formation. Remarkably, the early hippocampal dysfunction was fully reversed by a single dose of a g-secretase inhibitor indicating that it was causally related to the action of soluble Aß. This work has resulted in a publication in theProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmericain2012. The title of this publication was “Critical role of soluble amyloid-b for early hippocampal hyperactivityinamousemodelofAlzheimer’sdisease”. Contents 1 Introduction 7 1.1 Thehippocampus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.1 Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1.2 Functionalorganization . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2 Invivotwo-photoncalciumimaging . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 Two-photonmicroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Two-photonmicroscopesetup . . . . . . . . . . . . . . . . . . . . . . 13 1.2.3 Fluorescencelabeling. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3 Alzheimer´sdisease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.1 Invivoimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.2 Neuronaldysfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 Material&Methods 30 2.1 Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Surgeryandlabelingprocedureforhippocampalimaging . . . . . . . . . . . . 30 2.3 Two-photonimaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Imageanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 Cell-attachedrecordings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Treatmentwithg-secretaseinhibitor . . . . . . . . . . . . . . . . . . . . . . . 33 2.7 Dimerapplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8 QuantificationofAß . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Contents 3 2.9 DetectionofAßplaques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.10 Statisticalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Results 36 3.1 Imagingneuronalactivityinthehippocampus . . . . . . . . . . . . . . . . . . 36 3.2 Patternsofneuronalactivityinhippocampusandcortex . . . . . . . . . . . . . 41 3.3 ImagingneuronalactivityinthehippocampusofAlzheimertransgenicmice . . 44 3.3.1 AlteredactivityofCA1neuronsinplaque-bearingmice . . . . . . . . 46 3.3.2 EarlyhyperactivityofCA1neuronsinplaque-freemice . . . . . . . . 46 3.3.3 Rescueofneuronalhyperactivitybyacuteg-secretaseinhibition . . . . 56 3.3.4 SolubleAßinducesneuronalhyperactivity . . . . . . . . . . . . . . . 57 4 Discussion 66 4.1 Invivoimagingofhippocampalneurons . . . . . . . . . . . . . . . . . . . . . 67 4.2 Neuronalhyperactivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3 Regionalfunctionalvulnerability . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4 Clinicalimplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 PublicationsinPeerReviewedJournals 75 Acronyms Aß amyloid-ß AAV adeno-associatedvirus ACSF artificialcerebrospinalfluid AD Alzheimer´sdisease AM acetoxymethyl AP actionpotential APD avalanchephotodiode APO apolipoprotein APP amyloidprecursorprotein APV D,L-2-amino-5-phosphonovalericacid CAA cerebralamyloidangiopathy CA cornuammonis CNQX 6-cyano-7-nitroquinoxaline-2,3-dione CT computedtomography DAB diaminobenzidine 4 Contents 5 DMSO dimethylsulfoxide EEG electroencephalogram FDG fluorodeoxyglucose fMRI functionalmagneticresonanceimaging GFP greenfluorescentprotein LIA largeirregularamplitude LTP long-termpotentiation MRI magneticresonanceimaging NA numericalaperture NPY neuropeptideY CA cornuammonis OGB-1 OregonGreenBAPTA-1 PBS phosphate-bufferedsulfate PET positronemissiontomography PFA paraformaldehyde PiB PittsburghcompoundB PMT photomultipliertube PS presenilin ROI regionofinterest SDS sodiumdodecylsulfate Contents 6 SIA smallirregularamplitude SNR signal-to-noise-ratio SPECT single-photonemissioncomputedtomography TBS Tris-bufferedsaline TGA transientglobalamnesia Tg transgenic TTX tetrodotoxin Wt wildtype 1 Introduction Astheaimofthisthesiswastoadvancetwo-photonmicroscopytowardshighresolutionimaging ofneuronalactivitypatternsinthehippocampusinvivo,andinparalleltoapplythismethod to a transgenic mouse model of Alzheimer´s disease (AD), this chapter is subdivided into threeintroductorysectionswhichprovidethephysicalandbiologicalfundamentalsrequired to comprehend the results presented in chapter 3. Section 1.1 introduces the basic anatomy andfunctionalorganizationofthehippocampus. Section1.2givesashortoverviewofbasic principles underlying two-photon microscopy, followed by a brief review on state of the art fluorescence labeling techniques used to visualize biological structure and function in vivo. Finally, section 1.3 describes imaging techniques used in the study of AD. In particular, it focusesonownpreviouslypublishedresearchinvestigatingtheeffectsofthediseaseatthelevel ofneuronsandtheirnetworksinvivo. 1.1 The hippocampus 1.1.1 Anatomy Thehippocampusproper issubdivided inthreeparts: CA3, CA2andCA1(CA comesfrom cornuammonis). Theotherregionsofthehippocampalformationincludethedentategyrus, subiculum,presubiculum,parasubiculum,andenthorinalcortex. Dentategyrus,hippocampus properandsubiculumhaveasinglecelllayerwithless-cellularoracellularlayersaboveand belowit,whereastheotherregionshaveseveralcellularlayers[Shepherd2004;Andersen2007]. Basiccircuits. Muchoftheneocorticalinputreachesthehippocampusthroughtheenthorinal 7 Introduction 8 cortex,whichcanbeconsideredasthestartingpointoftheintrinsichippocampalcircuit. The enthorinal cortex receives most of the sensory information via the adjacent perirhinal and postrhinalcortices(alsotermedparahippocampalcortex). NeuronsinlayerIIoftheenthorinal cortexprojecttothedentategyrusandtheCA3regionviatheperforantpath. Thegranulecells ofthedentategyrusprojecttotheCA3regionviathemossyfiberprojections. Thepyramidal cellsofCA3arethesourceofmajorinputtotheCA1region(viaaxonsthatformtheSchaffer collaterals). Inaddition,CA3pyramidalcellsarehighlyinterconnected. CA1pyramidalcells projecttothesubiculum. BothCA1andthesubiculumprojectbacktothedeeplayersofthe enthorinalcortex. Thebasichippocampalcircuitryseemstobesimilarinhumans, monkeys and rodents, however some species differences, such as the commissural connections of the dentategyrus,areespeciallyrelevantforthisthesis. Inrodents,thereisamassivecommissural systemthatprovidesnearlyone-sixthoftheexcitatoryinputtothedentategyrus[Gottlieband Cowan 1973], whereas those connections are absent in humans and monkeys [Amaral et al. 1984]. Furthermore,theCA1pyramidalcelllayerbecomesthickerandmoreheterogeneousin humansandmonkeysascomparedtorats. Inrats,thepyramidalcelllayerisabout5cellsthick, whereasitcanbemorethan30cellsthickinhumans. Cellularelements. Theprincipalcelllayerinthehippocampusisthepyramidalcelllayer, whichistightlypackedinCA1butlooselypackedinCA2andCA3. Deeptothepyramidalcell layerliesthestratumoriens,whichmainlycontainsthebasaldendritesofthepyramidalcells andseveralclassesofinterneurons. WithinstratumorienssomeoftheCA3toCA3associational connections and the CA3 to CA1 Schaffer collaterals are located. Below the stratum oriens thefibercontaining alveusislocated. Itcontainsaxonsfrom pyramidalneuronsthatproject to the fimbria/fornix, one of the major outputs of the hippocampus. In CA3, but not in CA2 and CA1, there is a narrow acellular zone, the stratum lucidum, which is located above the pyramidalcelllayerandwhichcontainsthemossyfibers. Thestratumradiatumislocatedabove thestratumluciduminCA3andimmediatelyabovethepyramidalcelllayerinCA2andCA1. It containsCA3toCA3associationalconnectionsaswellastheCA3toCA1Schaffercollaterals. Introduction 9 Finally,thestratumlacunosum-moleculareisthemostsuperficiallayercontainingfibersfrom theenthorinalcortex. Theprincipalneuronsinthedentategyrusarethegranulecells,whereas inthehippocampustheyarethepyramidalcells. Pyramidalcellsexhibitabasaldendritictree thatextendsintothestratumoriensandanapicaldendritictreethatextendstothehippocampal fissure. ThelengthandorganizationofCA3pyramidalcellsarevariable,whereasCA1cells exhibitaremarkablehomogeneityoftheirdendritictree. Additionally, CA1pyramidalcells areonaveragesmallerthanCA3cells(CA1: around15mmindiameter,CA3: around20–30 mmindiameter). Thedendritesofpyramidalneuronsarecoveredwithspinesontowhichmost excitatory synapses terminate. Although pyramidal neurons are the most abundant cell type inthehippocampus,thereisaheterogeneousgroupofinterneuronsscatteredthroughallcell layers[FreundandBuzsáki1996]. Mostinterneuronsinthehippocampushavelocallyrestricted targetregions,lackspines,andareGABAergic. Hippocampalinterneuronsareclassifiedonthe basisoftheirsynaptictargetsasaxo-axoniccells,basketcells,andbistratifiedcells. Axo-axonic cellssynapseontotheinitialsegmentsofpyramidalneuronsandregulateactionpotential(AP) initiation. Basketcellssynapseontothesomaofpyramidalneuronsandbistratifiedcellscontact theapicalorbasaldendritesofpyramidalneurons. 1.1.2 Functionalorganization Thehippocampalformationplaysakeyroleinlearningandmemory. Damagetothehippocam- palformationproducesanenduringimpairmentintheabilitytoencodenewinformationinto long-term-memory. Thisanterogradeamnesticsyndromewasinitiallyobservedinthepatient H.M.,whounderwentbilateralhippocampalremovalforthetreatmentofintractableepilepsy [ScovilleandMilner1957;Corkinetal.1997]. Inrecentyearsanumberofreportsaboutother patientswith bilateraldamageto thehippocampushave been published[Andersen 2007]. It is important to note that damage to the hippocampal formation also leads to severe memory impairmentsinrodents,measuredforexamplebyperformanceintheMorriswatermaze,con- textualfearconditioning,delaynon-matchtosampletestorspatialalternationT-maze. Studies

Description:
Marc Aurel Busche. Vollständiger Abdruck der Here, we advanced two-photon microscopy towards calcium imaging of neurons in the CA1 region of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.