ebook img

In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag PDF

19 Pages·2017·4.89 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag

RESEARCHARTICLE In vivo and in vitro protein imaging in thermophilic archaea by exploiting a novel protein tag ValeriaVisone1,WenyuanHan2,GiuseppePerugino1,GiovannidelMonaco1, QunxinShe2,MosèRossi1,AnnaValenti1*,MariaCiaramella1* 1 InstituteofBiosciencesandBioresources,NationalResearchCouncilofItaly,Napoli,Italy,2 Department ofBiology,UniversityofCopenhagen,Copenhagen,Denmark a1111111111 a1111111111 *[email protected](MC);[email protected](AV) a1111111111 a1111111111 a1111111111 Abstract Proteinimaging,allowingawidevarietyofbiologicalstudiesbothinvitroandinvivo,isof greatimportanceinmodernbiology.Proteinandpeptidetagsfusedtoproteinsofinterest providetheopportunitytoelucidateproteinlocationandfunctions,detectprotein-protein OPENACCESS interactions,andmeasureproteinactivityandkineticsinlivingcells.Whereasseveraltags Citation:VisoneV,HanW,PeruginoG,del aresuitableforproteinimaginginmesophilicorganisms,theapplicationofthisapproachto MonacoG,SheQ,RossiM,etal.(2017)Invivo andinvitroproteinimaginginthermophilic microorganismslivingathightemperaturehaslaggedbehind.Archaeaprovideanexcellent archaeabyexploitinganovelproteintag.PLoS anduniquemodelforunderstandingbasiccellbiologymechanisms.Here,wepresentthe ONE12(10):e0185791.https://doi.org/10.1371/ developmentofatoolkitforproteinimaginginthehyperthermophilicarchaeonSulfolobus journal.pone.0185791 islandicus.Thesystemreliesonathermostableproteintag(H5)constructedbyengineering Editor:GiovanniMaga,IstitutodiGenetica thealkylguanine-DNA-alkyl-transferaseproteinofSulfolobussolfataricus,whichcanbe Molecolare,ITALY covalentlylabeledusingawiderangeofsmallmolecules.Asasuitablehost,wecon- Received:June16,2017 structed,byCRISPR-basedgenome-editingtechnology,aS.islandicusmutantstrain Accepted:September19,2017 deletedforthealkylguanine-DNA-alkyl-transferasegene(Δogt).Introductionofaplasmid- Published:October3,2017 borneH5geneinthisstrainledtoproductionofafunctionalH5protein,whichwassuccess- fullylabeledwithappropriatefluorescentmoleculesandvisualizedincellextractsaswellas Copyright:©2017Visoneetal.Thisisanopen accessarticledistributedunderthetermsofthe inΔogtlivecells.H5wasfusedtoreversegyrase,apeculiarthermophile-specificDNAtopo- CreativeCommonsAttributionLicense,which isomeraseendowedwithpositivesupercoilingactivity,andallowedvisualizationofthe permitsunrestricteduse,distribution,and enzymeinlivingcells.Tothebestofourknowledge,thisisthefirstreportofinvivoimaging reproductioninanymedium,providedtheoriginal ofanyproteinofathermophilicarchaeon,fillinganimportantgapinavailabletoolsforcell authorandsourcearecredited. biologystudiesintheseorganisms. DataAvailabilityStatement:Allrelevantdataare withinthepaper. Funding:Thisworkwassupportedbya)Italian MinistryofEducationandResearch,Firb-Futuroin Ricerca,NematictoAV;b)ResearchFund Denmark,DFF-0602-02196toQS.Thefundershad noroleinstudydesign,datacollectionand Introduction analysis,decisiontopublish,orpreparationofthe manuscript. Detectionandanalysisofproteinsintheircellularcontextandundertheirphysiologicalcondi- tionsiscrucialforunderstandingtheirfunction.Overthelastfewdecades,greatprogresshas Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. beenobtainedtowardthistaskbyexploitingfluorescentproteintags,suchastheGreen PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 1/19 Proteinimaginginthermophilicarchaea FluorescentProtein(GFP)anditsderivatives,andtheseproteinscanbefusedtoproteinsof interestenablingawidevarietyofbiologicalstudies[1,2,3]. AsanalternativetoGFP-basedsystems,otherproteinandpeptidetagshavebeenrecently introduced[2].Oneofthemostpromisingistheso-calledSNAP-tag,proposedbyK.Johnsson andcolleagues[4,5].Thisapproachexploitstheuniquepropertiesofaproteininvolvedinrepair ofalkylationdamageinDNA,theO6-alkylguanine-DNAalkyl-transferase(AGTorOGT). UponreactionofthisproteinwithO6-benzylguanine(BG),asmallmoleculeactingasirrevers- ibleinhibitoroftheenzyme,acovalentbondbetweenthebenzylgroupandaspecificcysteine residueintheproteinactivesiteisformed.IfBGisconjugatedwithasuitablechemicalgroup (suchasafluorophore,biotin,andsoon),thislatteristransferredtotheproteinmolecule,thus resultingincovalentlabelingofAGTandAGT-containingchimericproteins(Fig1A)[6]. Fig1.H5labeling.A.SchemeofthereactionleadingtoirreversiblelabelingofH5withafluorescent derivativeofbenzyl-guanine.B.SDS-PAGEofpurifiedH5labeledwithtwodifferentbenzyl-guanine derivatives. https://doi.org/10.1371/journal.pone.0185791.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 2/19 Proteinimaginginthermophilicarchaea Althoughthisapproachreliesontheadditionofanexternalsubstrate,whichcellsmaynotbe permeableto,itholdsseveraladvantagesascomparedwithGFPs:itisextremelyspecific,highly versatile,andoffersthepossibilitytolabelproteinswithvirtuallyunlimitedchemicalgroups[6]. BecausebothGFPandSNAP-tagaremesophilicproteins,invitrotheycanonlyfunction undermildreactionconditions,andtheiruseforinvivoimaginghasbeenessentiallyrestricted toorganismslivingintherangeofmesophilictemperatures.AlthoughthermotolerantGFPs variantshavebeenrecentlyproduced[7,8],theapplicationofproteintagstothermophilicand hyperthermophilicmicroorganisms(bothbacteriaandarchaea)haslaggedbehind. WehavepreviouslyobtainedanengineeredversionoftheOGTproteinfromthehyper- thermophilicandacidophilicarchaeonSulfolobussolfataricus[9,10].Thismodifiedprotein, namedH5,wasobtainedbymutationoffiveaminoacidresiduesintheproteinhelix-turn- helixdomain,thusimpairingtheDNAbindingactivity;likethewild-typeOGT,H5canbe effectivelylabeledwithfluorophoresorotherchemicalgroupsconjugatedwithabenzyl-gua- nine(Fig1B),andisthussuitableasacandidateproteintagforthermophilicorganisms. AsatypicalS.solfataricusprotein,H5displayedastrongstabilityunderharshconditions, includinghightemperature,extremesofpH,ionicstrength,presenceoforganicsolventsand digestionwithproteases[10].TheH5proteinwasfusedtotheS.solfataricusβ-glycosidase,giv- ingrisetoachimericproteinwhichwascorrectlyexpressed,folded,functionalandstablein bothEscherichiacoliandthethermophilicbacteriumThermusthermophilus,andcouldbe imagedinlivingcellsaswellasincell-freeproteinextracts[10].Thus,H5behavedlikeather- mostableversionofthecommercialSNAP-tagprotein,whichiswidelyusedforstudiesin mesophilicorganisms[4,11]. Sofarnoproteintaghasbeenreportedforhyperthermophilicarchaea.Thecellbiologyof theseorganismsisofparticularinterest,notonlyfortheirpeculiarlifestyle,butalsobecause theircellmachineriesdevotedtoDNAreplicationandrepair,andgenetranscriptionshare commonevolutionaryoriginwiththoseofeukaryotes.Therefore,theseorganismsprovide goodmodelsystemstostudythemostbasicmechanismsofgenome-relatedprocessesinthe lifebranchofEukaryaandArchaea. Oneofthemostfascinatingandmysteriousproteinsofhyperthermophilicorganismsis reversegyrase(RG).ItisauniqueDNAtopoisomerasethatintroducespositivesupercoilsinto DNAmolecules(forreviews,see[12,13,14])andisexclusivelyfoundinorganismsliving above60˚C[15,16],thussuggestingthattheenzymeplaysaroleinadaptationtohightemper- atures.Accordingly,positivesupercoilingispredictedtoprotectDNAfromdenaturationat thegrowthtemperaturesofhyperthermophiles.AnumberofstudiessupportaroleforRGin DNAprotection,repairandresponsetoDNAdamage:itactsasaDNArenaturase,promoting annealingofcomplementarysingle-strandedDNAcircles[17];bindstosinglestrandedbreaks onDNAandpreventsDNAthermaldenaturationattheDNAbreaks[18];isdegradedafter treatmentofS.solfataricuscellswithalkylatingagents,inconcomitancewithdegradationof genomicDNA[19];interactswithandinhibitsthetranslesionDNApolymerasePolYandthe single-strandDNAbindingprotein,SSB[20,21];isrecruitedtoDNAafterultravioletirradia- tion[22].Inaddition,RGisabletoresolveinvitroHollidayjunctionsfollowingbothATP- dependentandATP-independentmechanisms[23,24]. Despitebiochemicalandstructuraldata,thefunctionofthisenzymeisstillunderdebate. Geneticstudiesindifferentarchaealspeciesgavecontradictoryresults:aRGknockoutstrain ofThermococcuskodakaraensiswasviable,butshowedslowergrowthathighertemperatures, ascomparedwiththewildtype[25].Incontrast,deletionoftheRGgeneinPyrococcusfuriosus waslethalattemperatureshigherthan95˚C[26];finally,thetwoRGencodinggenesofthe crenarchaeonSulfolobusislandicuswerebothessentialforgrowthatanytemperature[27]. Thus,whereasRGislikelyinvolvedinthermotoleranceandfundamentalDNA-relatedprocess PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 3/19 Proteinimaginginthermophilicarchaea athightemperature,itsabsenceseemstohavedifferentdegreesofseverityindifferentspecies. Thereasonsforthesediscrepanciesarecurrentlyunknownandmanygapsarestillpresentin ourunderstandingofthefunctionofthispeculiartopoisomerase. Here,wepresentthedevelopmentofathermostableproteintagsuitableforproteinvisuali- zationinthehyperthermophiliccrenarcheaonS.islandicus,oneofthemostusefularchaeal modelsforgeneticstudies[28].Tothisaim,weconstructed,byaCRISPR-basedgenome-edit- ingmethod[29],aS.islandicusmutantstraindeletedfortheogtgene(Δogt).Thisstrainwas transformedwithanautonomouslyreplicatingplasmidexpressingtheH5protein.Theprotein wassuccessfullyexpressedandcouldbeefficientlylabeledusingspecificfluorescentsubstrates inS.islandicuslivingcells.Inordertodemonstratetheutilityofthistag,wefusedH5tothe TopR1RGfromS.solfataricus.Thechimericproteinwascorrectlyfoldedwhenexpressedin E.coliandretainedboththealkyl-transferaseandpositivesupercoilingactivities;moreover, thefusionproteinwassuccessfullyexpressedandfunctionalinS.islandicusΔogtcellstrans- formedwithasuitableexpressionvector.Thepotentialapplicationsofthistechnologyforcell biologystudiesinthermophilicorganismswillbediscussed. Resultsanddiscussion ConstructionofaS.islandicusogt-KOstrain Inaproof-of-conceptwork,wehavepreviouslyshownthattheH5proteincanbesuccessfully usedasaproteintaginthethermophilicbacteriumT.Thermophilus[10];thisorganismwasa convenientmodeltodemonstratetheusefulnessofourtagbecauseitisgeneticallytractable andlacksendogenousDNAalkyl-transferaseactivity[30]. Wesoughttoextendtheapplicationofoursystemtohyperthermophilicarchaea,forwhich noproteintagisavailable.Althoughtheseorganismsareprokaryotes,theyuseregulatoryele- mentsandmechanismsdistinctfrombacteria.Geneticmanipulationhasrecentlybecamepos- sibleonlyforalimitednumberofhyperthermophilicarchaealspecies,thusweneededto identifyanorganismsuitableforourpurpose,i.e.,transformableandselectable,lacking endogenousDNAalkyl-transferaseactivityandpermeabletotheH5substrate.Wechoose S.islandicus,forwhichvectors,transformationandgeneknockoutsystemsareavailable.Pre- liminarytestsshowedthatS.islandicuscellsarepermeabletotheH5substrate(datanot shown;seebelow).However,theS.islandicusgenomecontainsanORF(SiRe_0281)poten- tiallycodingforanOGTortholog,whichshares99%similaritywiththeS.solfataricusogtgene (datanotshown).Sincetheactivityofthisproteinmightinterferewithourassay,aprerequi- sitefortheapplicationoftheH5tagwastheconstructionofaS.islandicusmutantstrainin whichtheogtgenewasdeletedbyusingtheCRISPR-basedgenome-editingmethodwhichhas recentlybeendevelopedforthisspecies[29].Theknockoutplasmid(pKO-ogt)wascon- structedasdescribedinMaterialsandMethods.TheplasmidcontainsadonorDNAfragment carryinganin-framedeletionintheogtgeneandanartificialmini-CRISPRarraywithaspacer matchingaprotospacerintheogtgenesequence,andimportantly,theprotospacerisabsent fromtheogtdeletionallele(Fig2A).UpontransformationoftheplasmidintoS.islandicus E233S1,twogeneticeventswouldoccurinthetransformants:(a)recombinationbetweenthe donorDNAandthewild-typeogtgenelocuswouldyieldthedesiredogtmutantalleleonthe chromosome,and(b)crRNAgeneratedfromtheexpressionoftheplasmid-bornemini- CRISPRarraywouldformribonucleoproteincomplexeswithCasproteinsencodedbythe endogenousCRISPR-Cassystemandguidethemtomediateself-targetingonthechromo- somescontainingthewild-typeogtgene(Fig2A).Sinceogtdeletionmutantslacktheproto- spacer,theyarenottargetedbytheCRISPRactivity,whereasthewild-typechromosomeis targetedforDNAdegradation.Therefore,coloniesofpKO-ogttransformantsgrownon PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 4/19 Proteinimaginginthermophilicarchaea Fig2.ConstructionandanalysisofaS.islandicusΔogtstrain.A.SchemeoftheconstructionoftheS. islandicusΔpyrEFogt-KOderivativestrain(Δogt).B.PCRtestofnineΔogtstrainsandΔpyrEFasacontrol. Theprimers(T-UPandT-DW)areindicatedin(A).C.Westernblotanalysisoftotalcellextracts(400μg/lane) preparedfromculturesofΔpyrEF(lane1)andΔogt(lane2)strains.Thefilterwasprobedwiththeantibody againsttheS.solfataricusOGTprotein[9];asacontrolforproteinloading,thesamefilterwasstrippedand probedagainsttheS.solfataricusTopR1protein[21]. https://doi.org/10.1371/journal.pone.0185791.g002 PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 5/19 Proteinimaginginthermophilicarchaea Table1. OligonucleotidesusedfortheconstructionoftheS.islandicusΔogtstrain. Name Sequence KOSiRe_0281spF 5’-aagCTTGGCTATATAACTGTTGCTAAGGACGATAAGGGATTTA-3’ KOSiRe_0281spR 5’-agcTAAATCCCTTATCGTCCTTAGCAACAGTTATATAGCCAAG-3’ KOSiRe_0281Lf 5’-ctttgcatgcCCGCGTTGCAAGAATCGGGC-3’ KOSiRe_0281Lr 5’-CCACATCATTCCCCATACACTAGCACAAGTATTAAT-3’ KOSiRe_0281Rf 5’-GCTAGTGTATGGGGAATGATGTGGAAAAATTTAACAG-3’ KOSiRe_0281Rr 5’-gtttctcgagCCATCCCTTGTTTCTCTACG-3’ KOSiRe_0281T-UP 5’-CTAAGACAGTGGAAGTTTGGC-3’ KOSiRe_0281T-DW 5’-CCACGTCTTGGTTGTCCAGTC-3’ https://doi.org/10.1371/journal.pone.0185791.t001 uracil-freenutrientplatesshouldbethedesignedogtdeletionstrain.Indeed,characterization ofninecoloniesbyPCRamplificationoftheogtdeletionallelefromthecandidatemutants usingtheT-UPandT-DWprimerset(Table1)andagarosegelelectrophoresisoftheresulting PCRproductsrevealedthatallninecoloniesonlycontainedtheogtdeletionallele(Fig2B). Furthermore,DNAsequencingofthePCRproductsrevealedthatthedesignedmutationwas obtained,whichretainedashorttruncatedpeptideof6aminoacidsintheogtdeletionallele. Thestrain,hereaftercalledΔogt,wasviableat75˚CandtheabsenceoftheOGTproteinwas confirmedbywesternblotoftotalcellextracts,whichshowedabandreactingwiththeanti- bodydirectedagainsttheS.solfataricusOGTprotein[9]intheΔpyrEFstrain,butnotinΔogt (Fig2C). HeterologousexpressionofSsOGT-H5inS.islandicusandinvivo labeling Havingobtainedasuitablehost,thenextstepwastointroducetheH5proteininS.islandicus cells.Tothisaim,weconstructedanexpressionvectorsuitabletotransformtheΔogtstrain basedonuracilselection.StrainscarryingtheΔpyrEFmutationareunabletoproduceuracil thatisnecessaryforthegrowthinminimalliquidmedium(SCVmedium);transformantscan beselectedforbycomplementation,providedthatafunctionalpyrEFcassetteispresentinthe plasmid.Complementation-basedstrategiesareaconvenientchoiceforSulfolobusspecies, alsobecauseofthelimitedsuccessintheuseofantibioticsasselectivemarkersinhyperther- mophilicArchaea[31].Toconstructtheexpressionvector,theSsOgt-H5genewasclonedin thepSeSDplasmid(Fig3A)[32],whichcarriesasyntheticarabinose-induciblepromoterthat confershighlevelsofproteinexpression.TheresultantrecombinantplasmidwascalledpSH5. ThepSH5plasmidwasintroducedintheΔogtstrainbyelectroporation,andtransformants wereselectedbygrowthinaliquidselectivemedium(SCV,seeMaterialsandmethods)at 75˚C;after5days,transformedculturesreached*0.7/0.8OD .ThepresenceoftheH5pro- 600 teinintransformantswasconfirmedbywesternblot(Fig3B).TheH5proteinwasexpressed fromtheplasmid-bornegeneatabout0.2ngμg-1oftotalproteinextract,whichwascompara- bletotheleveloftheendogenousOGTproteinintheparentalΔpyrEFstrain(Fig3C). WenextwantedtotestwhethertheH5proteinwasfunctionalintransformants.Tothis aim,weappliedafluorescentassaywepreviouslydeveloped,whichutilizesafluorescentderiv- ativeoftheBGsubstrate(BG-FL)[9,10].BG-FLwasincubatedwithcellfreeextractsprepared fromculturesoftheΔogtstraintransformedwitheitherpSH5orthepSeSDemptyvector. Afterincubationat70˚Cfor30min.,samplesweredenaturedandloadedonSDS-PAGEfor fluorescenceimaginganalysis.Afluorescentbandoftheexpectedmolecularweightwas observedinextractsfromcellstransformedwithpSH5,butnotpSeSD,thusconfirmingthat PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 6/19 Proteinimaginginthermophilicarchaea Fig3.HeterologousexpressionofH5intheS.islandicusΔogtstrain.A.ThepSeSDplasmidusedto transformS.islandicus[32].TheH5andH5-TopR1geneswereinsertedintheNdeI-SalIandNdeI-NheI restrictionsites,respectively.B.Westernblotanalysisofcellextracts(400μg/lane)preparedfromculturesof PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 7/19 Proteinimaginginthermophilicarchaea theΔogtstraintransformedwitheitherpSH5(lane1)orthepSeSDemptyvector(lane2).Thesamefilterwas strippedandprobedwithantibodiesagainsttheindicatedproteins.C.Westernblotanalysisusingtheanti- OGTantibody[9].Lane1:purifiedH5protein(400ng);lane2:S.islandicusΔpyrEFcellextracts(400μg); lane3:ΔogttransformedwithpSH5cellextracts(300μg).Thearrowsindicatethemigrationofendogenous S.islandicusOGT(Si-OGT)andheterologousH5. https://doi.org/10.1371/journal.pone.0185791.g003 theH5proteiniscorrectlyexpressedandproficientforfluorescentlabelingintheheterologous host(Fig4A). InordertotestthepermeabilityofS.islandicuscellstotheBG-FLsubstrate,intactΔogt cellstransformedwitheitherpSH5orpSeSDwereincubatedinthepresenceofBG-FLat70˚C fordifferenttimes;afterreaction,cellswerewashed,denaturedandloadedonSDS-PAGEfor fluorescenceimaginganalysis.AsshowninFig4B,theresultswereverysimilartothose obtainedwithcellsextracts(compareFig4Aand4B),withastrongfluorescentbandseenin ΔogtcellstransformedwithpSH5,butnottheemptyplasmid.ThisresultsuggeststhatS.islan- dicuscellsarepermeabletotheBG-FLsubstrate. Thisresultwasconfirmedbyfluorescencemicroscopy(Fig5).IntactΔogtcellstransformed withtheemptypSeSDincubatedwithBG-FLandwashedasdescribedintheMaterialand Methodssection,showedlittlenofluorescentsignals;incontrast,strongfluorescentsignals appearedincellstransformedwiththepSH5plasmid,indicatingthatS.islandicuscellsareper- meabletotheBG-FLsubstrateandthattheobservedlabelingisspecificfortheH5protein. Quantitativeanalysisshowedthatmorethan80%ofcellstransformedwithpSH5,butonly about5%ofthosetransformedwithpSeSDshowedfluorescentsignals,suggestingthatthe plasmidisstablyretainedduringgrowthandtheH5proteiniscorrectlyexpressed,foldedand activeinthevastmajorityoftransformedcells.TheseresultsshowedthatourthermostableH5 tagissuitableforproteinlocalizationandanalysisinthishyperthermophilicarchaeon. ApplicationoftheH5tagtodetectionofRGinS.islandicus InordertovalidatethesuitabilityofH5asathermostabletagforproteinimaging,wesought tovisualizeRGinS.islandicuscells.Tothisaim,theS.solfataricustopR1genewasfuseddown- streamtoandinframewiththeH5gene,obtainingthechimericH5-topR1gene.Tobesure thatthepresenceoftheH5tagattheN-terminalendoftheenzymedoesnotaffectRGactivity, wefirstsoughttotestthefunctionalityofthefusionprotein.Tothisaim,thechimericgene wasclonedinthepQEvectorandintroducedinE.coliABLECstrain.Thefusionproteinwas successfullyexpressedinE.coli,asshownbywesternblotanalysis(Fig6A).Theabilityofthe fusionproteintointroducepositivesupercoilsintoDNAmoleculeswasassayedintotalpro- teinextractsaspreviouslyreported[20,33].AsshowedinFig6B,proteinextractscontaining thefusionproteinexhibitpositivesupercoilingactivity,indicatingthatthepresenceoftheH5 tagdoesnotimpairtheenzymeactivity. Purificationofthefusionproteinbyaffinitychromatographythroughanickelcolumnwas performed,exploitingthepresenceofaHisx6-tagattheN-terminusandthethermostabilityof bothRGandH5toperformathermoprecipitationstep(datanotshown).Totestwhetherthe fusionproteinmightbelabeledbythefluorescentsubstrate,weappliedthesamealkyl-trans- feraseassaydescribedabove[9].SDS-PAGEshowedthepresenceofafluorescentbandofthe expectedmolecularweight(Fig6C),indicatingthattheH5portionisfunctionalinthefusion protein.AspreviouslyshownforH5[10],thechimericproteincouldbelabeledatboth25and 70˚C,although,asexpected,moreefficientlyatthelattertemperature(Fig6C). InordertovisualizeRGinS.islandicus,cells,theH5-TopR1codingsequencewasclonedin thepSeSDplasmidandtheresultantvector,calledpSH5-TopR1,wasusedtotransformtheS. PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 8/19 Proteinimaginginthermophilicarchaea Fig4.ActivityoftheH5proteininS.islandicus.A.Cellfreeextracts(200μg)preparedfromculturesoftheΔogtstraintransformed withpSH5(lane1)orthepSeSDemptyvector(lane2);lane3contains100ngoftheH5proteinpurifiedfromE.coli.Sampleswere incubatedwiththeBG-FLsubstrate(2.5μM)for30min.at70˚CandloadedonSDS-PAGE;thegelwasexposedforfluorescence imaginganalysis,blottedandstainedwithCoomassieblue.Finally,thefilterwasprobedwiththeanti-OGTantibody(bottompanel).B. PermeabilityofS.islandicustotheBG-FLsubstrate.WholetransformedcellswereincubatedinSCVmediuminthepresenceof3.0μM PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 9/19 Proteinimaginginthermophilicarchaea ofBG-FL,at70˚Cfortimesasindicated.Lane1contains100ngofpurifiedH5protein;lanes2and3containΔogtcellstransformedwith pSH5;lanes4and5containΔogtcellstransformedwithpSeSD.Thegelwasexposedforfluorescenceimaginganalysis,blottedand stainedwithCoomassieblue.Finally,thefilterwasprobedwiththeanti-OGTantibody(bottompanel). https://doi.org/10.1371/journal.pone.0185791.g004 islandicusΔogtmutant.Transformantswereabletogrowat75˚Cshowingnoapparentgrowth defect(datanotshown).ThepresenceoftheH5-TopR1proteinintransformantswascon- firmedbywesternblot(Fig7A):anantibodydirectedagainstS.solfataricusTopR1recognized onebandintheΔogtstraintransformedwithpSeSD,correspondingtoendogenousS.islandi- cusprotein(whichshares91%sequenceidentitywithTopR1).Inthesamestraintransformed withpSH5-TopR1theantibodyrecognizedtwobands,correspondingtoendogenousRGand H5-TopR1,respectively;assumingthattheaffinityoftheantibodyforthetwoproteinsissimi- lar,weestimatedthatthefusionisexpressedatapproximatelythesamelevelsastheendoge- nousRG.Interestingly,theanti-OGTantibodyrevealedthepresenceofsmallerbandsin extractsofcellstransformedwithpSH5-TopR1(Fig7A,right).Sincetheseshorterfragments werenotevidencedbytheanti-TopR1antibody,weconcludethatthesefragmentscontainH5 andN-terminalportionsofTopR1,andcouldbeduetoeitherdegradationorprematureter- minationofthechimericprotein(seealsobelow).Degradationand/orprematuretermination hasbeenreportedforbothendogenousandheterologouslyexpressedS.solfataricusRG [19,34]. TheH5-TopR1proteinwasvisualizedinvivobyfluorescencemicroscopyanalysisofintact S.islandicuscells(Fig7B).AsshownaboveforcellsexpressingH5alone,weobservedspecific fluorescentsignalsincellstransformedwithpSH5-TopR1,thusshowingthattheH5-TopR1 proteinisproficientforlabelinginlivingcells.Quantitativeanalysisshowedthatabout70%of Fig5.Fluorescencemicroscopy.S.islandicusΔogtcellstransformedwiththeemptyvector(top)orwith thepSH5plasmid(bottom)wereincubatedwithBG-FL(3μM)andthenanalysedatfluorescencemicroscopy. Imagesshowbrightfield(BHF),AlexaFluor488(green)andmergedimages. https://doi.org/10.1371/journal.pone.0185791.g005 PLOSONE|https://doi.org/10.1371/journal.pone.0185791 October3,2017 10/19

Description:
Protein imaging, allowing a wide variety of biological studies both in vitro and in vivo, B. SDS-PAGE of purified H5 labeled with two different benzyl-guanine . Heterologous expression of SsOGT-H5 in S. islandicus and in vivo .. SDS-PAGE and Bio-Rad protein assay were performed, respectively.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.