Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2015, Article ID 252434, 23 pages http://dx.doi.org/10.1155/2015/252434 Review Article In Vivo In Vitro and Metabolites from the Main Diester and Monoester Diterpenoid Alkaloids in Aconitum a Traditional Chinese Herb, the Species MinZhang,Chong-shengPeng,andXiao-boLi SchoolofPharmacy,ShanghaiJiaoTongUniversity,800DongchuanRoad,Shanghai200240,China CorrespondenceshouldbeaddressedtoXiao-boLi;[email protected] Received9September2014;Accepted13November2014 AcademicEditor:RojaRahimi Copyright©2015MinZhangetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. Diesterditerpenoidalkaloids(DDAs),suchasaconitine(AC),mesaconitine(MA),andhypaconitine(HA),arebothpharmaco- logicallyactivecompoundsandtoxicingredientsinatraditionalChineseherb,theAconitumspecies.ManyDDAmetabolism studieshavebeenperformedtoexploremechanismsforreducingtoxicityinthesecompoundsandinAconitumspeciesextracts forsafeclinicaladministration.Inthisreview,wesummarizerecentprogressonthemetabolismoftoxicAC,MA,andHAand corresponding monoester diterpenoid alkaloids (MDAs) in the gastrointestinal tract and liver in different animal species and humansinvivoand/orinvitro,wherethesealkaloidsareprimarilymetabolizedbycytochromeP450enzymes,carboxylesterases, andintestinalbacteria,whichproducesphaseImetabolites,esterhydrolysedproducts,andlipoalkaloids.Furthermore,weclassify metabolitesdetectedinthebloodandurine,wheretheaforementionedmetabolitesareabsorbedandexcreted.LesstoxicMDAs andnontoxicalcoholaminesaretheprimaryDDAmetabolitesdetectedintheblood.MostotherDDAsmetabolitesproducedin theintestineandliverdetectedintheurinehavenotbeenreportedintheblood.Weproposeanexplanationforthisnonconformity. Finally,takingAC,forinstance,wegeneralizeaprocessoftoxicityreductioninthebodyafteroralACadministrationforthefirst time. 1.Introduction DDA-containing drugs or prescriptions, such as Chuanwu [5],Caowu[6],andFuzi[7].Therefore,Aconitumherbsare Diesterditerpenoidalkaloids(DDAs,Table1),suchasaconi- traditionally boiled or steamed before oral administration tine(AC),mesaconitine(MA),andhypaconitine(HA),area to ensure safety [8]. During this process, DDAs are mainly familyofhighlytoxicalkaloidsfromtherootofatraditional hydrolysed to less toxic MDAs. Further MDA hydrolysis Chinese herb, the Aconitum species (sp.), which has been yieldsalmostnontoxicalcoholamines(Table1),suchasaco- used clinically for years. Monoester diterpenoid alkaloids nine,mesaconine,andhypaconine[3,9,10].Incontrastwith (MDAs, Table 1) are the ester hydrolysis products of DDAs AC,thehalf-maximallethaldose(LD50,mg/kg,i.v.mice)of attheC-8position,whicharealsocomponentsofthisherb. 14-benzoylaconine(BAC)andaconineincreasesbyapproxi- Both DDAs and MDAs exhibit excellent pharmacologi- mately38-and430-fold,respectively[11]. cal effects, including anti-inflammatory, analgesic, and car- Ontheotherhand,manyvaluablestudieshaverecently diotonicactivities[1,2]. been performed on DDA and MDA metabolism to explore However,thesecompounds,especiallyDDAs,havenar- the toxicity reduction mechanisms and obtain information rowtherapeuticwindows.Forexample,asinglelethalACdose for clinical guidance. In this paper, we review for the first forhumansisestimatedat2–6mg[3,4]withpoisoningsymp- time the metabolites biotransformed in the gastrointestinal toms, such as hypotension, palpitations, ventricular tachy- tractandliverfromtoxicAC,MA,andHAofDDAsaswell arrhythmias, asystole, and numbness of the face and limbs as their corresponding ester hydrolysed products, BAC, [1].Severepoisoningmayoccurafterimproperingestionof 14-benzoylmesaconine (BMA), and 14-benzoylhypaconine 2 Evidence-BasedComplementaryandAlternativeMedicine Table1:DDA,MDA,andalcoholaminechemicalstructures. HO OCH3 H3CO 13 16 12 17 14 OR4 1 10 9 15 2 11 R1 3N 5 78 OH 4 6 R2 OR3 19 18 H3CO OCH3 Compounds R R R R Formula Mass 1 2 3 4 DDAs Aconitine(AC) Ethyl(Et) Hydroxy(OH) Acetyl(Ac) Benzoyl(Bz) C H NO 645.3149 34 47 11 Mesaconitine(MA) Methyl(Me) OH Ac Bz C H NO 631.2992 33 45 11 Hypaconitine(HA) Me Hydrogen(H) Ac Bz C H NO 615.3043 33 45 10 MDAs Benzoylaconine(BAC) Et OH H Bz C H NO 603.3043 32 45 10 Benzoylmesaconine(BMA) Me OH H Bz C H NO 589.2887 31 43 10 Benzoylhypaconine(BHA) Me H H Bz C H NO 573.2938 31 43 9 Alcoholamines Aconine Et OH H H C H NO 499.2781 25 41 9 Mesaconine Me OH H H C H NO 485.2625 24 39 9 Hypaconine Me H H H C H NO 469.2676 24 39 8 (BHA)ofMDAs,indifferentanimalspeciesandhumansin The ester hydrolysis products at the C-8 and C-14 posi- vivo and in vitro. Furthermore, we classify the metabolites tionsarenotonlyobservedinrabbitstomachsbutalsoinacid detectedinthebloodandurine,inwhichthesemetabolites solutions(negativecontrol).Esterhydrolysisinthestomach are absorbed and excreted. Our study will be fundamental may be catalysed by carboxylesterases (CEs) in the gastric and helpful for further studies on reducing the toxicity mucosa[17]becauseCEexpressionhasalsobeenreportedin of DDA-containing drugs compatible with other medicine thestomach,althoughCEsarepredominantlydistributedin basedonDDAsabsorptionandmetabolism[12,13]. theliver,plasma,andintestine[18].However,thisfindingalso impliesthatDDAscanbenonenzymaticallyesterhydrolysed 2.MetabolismintheGastrointestinal underacidicconditions,whichisdiscussedinSection5. TractandLiver Inaddition,AC,MA,HA,andtheirhydrolysisproducts (MDAsandalcoholamines)aredetectedingastriccontents Traditional Chinese prescriptions are commonly prepared inadeadfemale,whowassuspectedofdyingfromacutedrug throughdecoctionandingestedorally.Theactivecompounds poisoning involving Aconitum alkaloids [19]. However, the areunavoidablyconvertedinthegastrointestinaltract. reference did not indicate whether the hydrolysis products weremetabolizedfromDDAsinthestomachorwereorig- 2.1. Metabolism in the Stomach. The stomach provides an inallyinthetoxicant. acidicenvironmentfordrugdissolutionandabsorption;how- ever, studies on stomach metabolism are typically ignored. 2.2.MetabolismintheIntestine. Alargenumberofbacteria OnlyonestudyhasfocusedonACmetabolisminthestom- populate the gastrointestinal tract; the bacterial concentra- ach. tion increases distally. The majority of bacteria reside in 11 12 Inthisstudy,14metabolitesand2esterhydrolysisprod- the colon, where the density approaches 10 -10 cells/mL, ucts are identified in gastric content in rabbits after oral and anaerobic species dominate. This microbiota secretes a ACadministration[14].Metabolismincludeshydroxylation, diversearrayofenzymesthatparticipateinvariousmetabolic deoxylation, demethylation, didemethylation/deethylation, processes,suchasreduction,hydrolysis,deoxylation,acetyla- andesterexchangeattheC-8positionwithlongchainfatty tion,deacetylation,andN-demethylation;thus,theintestinal acids(Table2).Theenzymesresponsibleformetabolismhave microbiotaisimportanttoorallyingesteddrugmetabolism not been reported. The aforementioned metabolic process [20,21].Notably,hydrolysiscatalysedbybacteriaiscommon maybecatalysedbyCYP2C9andCYP2C8thatareexpressed in glycosides. Based on DDA and MDA structures, ester inparietalgastriccells[15]andbybacteriathatarelocatedin hydrolysis is likely driven by CEs, which also dominate the thehumanstomach[16]. intestine[18]. Evidence-BasedComplementaryandAlternativeMedicine 3 Table2:ACmetabolitesproducedinrabbitstomachs. 𝑚/𝑧 Neutralloss(Da), Metabolic MS DDAs Formula Identification identificationoffatty References (ESI+) procedure detection acid 2-HydroxyACor 3-AC(M1)a 662 C34H47NO12 3-HydroxyACor NAb 2-hydroxyAC(M3)a Rabbitsandrats; 4-HydroxyAC(M6)a ig,invivo. IT,FT-ICR 632 C H NO DemethylAC(M4) NA 33 45 11 Indaconitine(15-deoxyAC,M5)c 630 C H NO NA 34 47 10 Deoxyaconitine(3-deoxyAC, M7) DidemethylACor AC 618 C H NO NA [14] 32 43 11 N-deethylAC(M2) Rabbitsandrats; 604 C H NO BAC(hydrolysisproduct2) NA IT,FT-ICR 32 45 10 ig,invivo. 14-O-DebenzoylAC(hydrolysis Rabbitsandrats; 542 C H NO NA IT,FT-ICR 27 43 10 product1) ig,invivo. 242,pentadecanoic 828 C H NO 8-O-PentadecanoylBAC(M10) 47 73 11 acid 842 C H NO 8-O-PalmitoylBAC(M12) 256,palmiticacid 48 75 11 864 C H NO 8-O-LinolenoylBAC(M9) 278,linolenicacid Rabbitsandrats; 50 73 11 IT,FT-ICR 866 C H NO 8-O-LinoleoylBAC(M11) 280,linoleicacid ig,invivo. 50 75 11 868 C H NO 8-O-OleoylBAC(M13) 282,oleicacid 50 77 11 870 C H NO 8-O-StearoylBAC(M14) 284,stearicacid 50 79 11 8-O-HexacosandienoylBAC 392,hexacosandienoic 978 C H NO 58 91 11 (M8) acid a2,3,and4,thepositioninbenzoylgroup. bNotavailable. cDeoxymayalsobereferredtoasdehydroxyintheliterature. TheintestinalbacteriaDDAmetabolismreviewedherein 8-O-butyryl- (from short chain fatty acid) benzoylmesaco- wasmainlyperformedinvitrothroughanaerobicincubation nineis15.78mg/kg,whichis5.5-foldgreaterthanMA(8-O- inafecessuspension,whichincludedhighlevelsofintestinal acetyl-benzoylmesaconine)[22].TheLD50formicewithlipo- bacteria.TheintestinalbacteriaDDAmetabolismissimilar mesaconitines (from long chain fatty acids) are from 10 to to metabolism in the stomach and included hydroxylation, 40mg/kg,whichare20-foldgreaterthanMA[32]. deoxylation,demethylation,demethylationwithdeoxylation, ester hydrolysis at the C-8 and/or C-14 position, and ester 2.3. Metabolism in the Liver. The liver is an important exchangeattheC-8positionwithshortandlongchainfatty organ for drug metabolism, and it expresses many drug- acids(Table3).ACmetabolites,suchas16-O-demethylAC, metabolising enzymes. After oral administration, drugs are 3-deoxy AC, and 16-O-demethyl-3-deoxy AC, were further typicallysubjectedtohepaticmetabolism,includingCEsthat converted to deoxylation, demethylation, ester hydrolysis, catalyseesterhydrolysis[18],phaseIdrugmetabolicenzymes and ester exchange products (Table 4). These results imply thatcatalyseoxidation,andphaseIImetabolicenzymesthat thatMDAs,whichareDDAesterhydrolysedproducts,may catalyse conjugation [21]. The metabolites are hydrophilic bemetabolizedthroughthesamepathway;however,nostud- and are more rapidly excreted from the body than parent ieshavereportedonintestinalMDAmetabolism. drugs. Cytochrome P450 enzymes (CYP450s) and uridine Esterexchangemetabolitesareclassifiedaslipoalkaloids 5 -diphosphate(UDP)-glucuronosyltransferases(UGTs)are orlipoaconitineswithanacetylgroupattheC-8positionof themostcommonphaseIandphaseIImetabolicenzymes, DDAsreplacedbyotherfattyacidacylgroups[24,31].Pre- respectively[33]. sumably, the short chain fatty acids (such as propionic, butyric, hexanoic, phenylacetic, and phenylpropionicacids) The hepatic metabolism studies reviewed herein were for ester exchange are generated from xenobiotics, such mainly performed in vitro through incubation with liver as food decomposed by intestinal bacteria, while certain microsomes. CYP450- or UGT-catalysed metabolism in long chain fatty acids (such as palmitic, oleic, and stearic microsomescanbeselectivelyperformedindifferentreaction acids)aregeneratedfrombacterialcellwalls[24].DDAtoxi- systemswithauxiliaryenzymesandexclusivesubstrates[34, cityisreducedafteresterexchange.Forexample,theLD50of 35]. 4 Evidence-BasedComplementaryandAlternativeMedicine References [22](P4) [23](M3) [24](M1) [23](M6) [22](P5) [23](M5) [24](M2) [22](P10) [24](M3) [23](M2) [25] [26] [22](P1) n o R R R detecti IT IT FT-IC IT IT IT FT-IC IT FT-IC IT IT IT IT S T, T, T, M I I I d d d d n n n n a a a a e c e e c c e obic ntestin aerobi ntestin obic ntestin aerobi obic aerobi ntestin obic obic obic vertedinintestine. Metabolicprocedure Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Rabbits;contentsfromsmallicaecumandfeces;ig,invivo.Human;intestinalbacteria;anincubation,invitro.Rabbits;contentsfromsmallicaecumandfeces;ig,invivo.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Rabbits;contentsfromsmallicaecumandfeces;ig,invivo.Human;intestinalbacteria;anincubation,invitro.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Human;intestinalbacteria;anincubation,invitro.Rabbits;contentsfromsmallicaecumandfeces;ig,invivo.Rats;intestinalbacteria;anaercincubation,invitro.Rats;intestinalbacteria;anaerdincubation,invitro.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro. n o c A H y nd ),fatt A,a (Danof M so AC, allosficati olitesof Neutridentiacid aNA NA NA NA NA b a Met bC) ∗C Table3: Identification 10-HydroxyAC ∗16-O-DemethylAC ndaconitine(15-deoxyA ∗DeoxyAC 16-O-Demethyl-deoxyA BAC I a O12 O11 O10 O10 O10 ul N N N N N orm H47 H45 H47 H45 H45 F C34 C33 C34 C33 C32 ) + SI E 2 2 0 6 4 𝑧( 66 63 63 61 60 / 𝑚 s A D C D A Evidence-BasedComplementaryandAlternativeMedicine 5 References [23](M1) [22](P2) [25,26] [24] [27] [22](P8) [24] [27] [22](P9) [24] [27] [24] [22](P7) [22](P11) [24] Ibid. R R R C C C I I I T- T- T- n F F F o R e- R e- R e- R R Sdetecti IT IT IT T,FT-IC DIsourc IT T,FT-IC DIsourc IT T,FT-IC DIsourc T,FT-IC IT IT T,FT-IC Ibid. M I L I L I L I I A A A M M M T, T, T, I I I d n a e c c c c c ntestin obic obic aerobi obic obic aerobi obic obic aerobi obic aerobi obic obic aerobi ntinued. Metabolicprocedure Rabbits;contentsfromsmallicaecumandfeces;ig,invivo.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Rats;intestinalbacteria;anaerc,dincubation,invitro.Human;intestinalbacteria;anincubation,invitro.Rats;intestinalbacteria;anaereincubation,invitro.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Human;intestinalbacteria;anincubation,invitro.Rats;intestinalbacteria;anaereincubation,invitro.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Human;intestinalbacteria;anincubation,invitro.Rats;intestinalbacteria;anaereincubation,invitro.Human;intestinalbacteria;anincubation,invitro.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Rats;intestinalbacteria;anaerincubationatpH7.0,invitro.Human;intestinalbacteria;anincubation,invitro.Ibid. o C y Table3: Neutralloss(Da),identificationoffattacid NA NA NA 74,propionicacid NA NA 88,butyricacid NA NA 102,valericacid NA 114,hexenoicacid NA NA 116,hexanoicacid 130,heptanoicacid C A B AC AC C C AC ryl AC AC Identification 16-O-DemethylB 15-DeoxyBAC DeacetoxyAC 8-O-PropionylB 8-O-ButyrylBA 8-O-ValerylBA 8-O-HexenoylB (3-Hydroxy)-buty 8-O-HexanoylB 8-O-HeptanoylB - O - 8 a O10 O9 O9 O11 O11 O11 O11 O12 O11 O11 ul N N N N N N N N N N orm H43 H45 H43 H49 H51 H53 H53 H51 H55 H57 F C31 C32 C32 C35 C36 C37 C38 C36 C38 C39 ) + SI E 0 8 6 0 4 8 0 0 2 6 𝑧( 59 58 58 66 67 68 70 69 70 71 / 𝑚 s A D C D A 6 Evidence-BasedComplementaryandAlternativeMedicine s Reference [24] [27] [22](P3) [24] Ibid. Ibid. Ibid. Ibid. Ibid. Ibid. [24] [25,26] [24] Ibid.Ibid. Ibid. Ibid. Ibid. R C I T- n F o R e- R R R Sdetecti T,FT-IC DIsourc IT T,FT-IC Ibid. Ibid. Ibid. Ibid. Ibid. Ibid. T,FT-IC IT T,FT-IC Ibid.Ibid. Ibid. Ibid. Ibid. M I L I I I A M T, I c c c c bi bi bi bi o c c o o c o er bi bi er er bi er a o o a a o a n r r n n r n ria;a anae anaevitro.ria;a ria;a anae ria;a ntinued. Metabolicprocedure Human;intestinalbacteincubation,invitro.Rats;intestinalbacteria;eincubation,invitro.Rats;intestinalbacteria;incubationatpH7.0,inHuman;intestinalbacteincubation,invitro.Ibid. Ibid. Ibid. Ibid. Ibid. Ibid. Human;intestinalbacteincubation,invitro.Rats;intestinalbacteria;c,dincubation,invitro.Human;intestinalbacteincubation,invitro.Ibid.Ibid. Ibid. Ibid. Ibid. Table3:Co Neutralloss(Da),identificationoffattyacid 136,phenylaceticacid NA NA 150,phenylpropionicacid214,tridecanoicacid228,tetradecanoicacid242,pentadecanoicacid256,palmiticacid268,heptadecenoicacid270,methylpalmiticacid 280,linoleicacid NA 282,oleicacid 284,stearicacid296,nonadecene300,3-hydroxystearicacid368,tetracosanoicacid376,pentacosatrienoicacid C Identification 8-O-PhenylacetylBAC 8-O-OctenoylBAC 8-O-PhenylpropionylBAC 8-O-TridecanoylBAC 8-O-TetradecanoylBAC 8-O-PentadecanoylBAC 8-O-PalmitoylBAC 8-O-HeptadecenoylBAC 8-O-(Methyl)-palmitoylBAC 8-O-LinoleylBAC 8-O-OleoylBAC 8-O-StearoylBAC8-O-(9)-NonadecenoylBAC -O-(3-Hydroxy)-stearoylBA 8-O-TetracosanoylBAC 8-O-PentacosatrienoylBAC 8 a O11 O11 O11 O11 O11 O11 O11 O11 O11 O11 O11 O11O11 O12 O11 O11 ul N N N N N N N N N N N NN N N N orm H51 H57 H53 H69 H71 H73 H75 H75 H77 H75 H77 H79H79 H79 H91 H87 F C40 C40 C41 C45 C46 C47 C48 C49 C49 C50 C50 C50C51 C50 C56 C57 ) + SI E 2 8 6 0 4 8 2 4 6 6 8 02 6 4 2 𝑧( 72 72 73 80 81 82 84 85 85 86 86 8788 88 95 96 / 𝑚 s A D C D A Evidence-BasedComplementaryandAlternativeMedicine 7 s eference [25,26] Ibid. [27] Ibid. [25,26] [27] [25,26] [25,26] [27] Ibid.Ibid.Ibid. [25,26] R R R R C C C I I I T- T- T- n F F F o e- e- e- Sdetecti IT Ibid. DIsourc Ibid. IT DIsourc IT IT DIsourc Ibid.Ibid.Ibid. IT M L L L MA MA MA ma. T, T, T, zo I I I hi R e a al h x. p di ce a o R cr aerobic aerobic aerobic aerobic aerobic aerobic aerobic aerobic mpelopsis ylodisMa Table3:Continued. Neutralloss(Da),𝑚/𝑧+identificationoffattyMetabolicprocedureDDAs(ESI)FormulaIdentificationacidRats;intestinalbacteria;anNAHNOBMA590Cc,d314310incubation,invitro.NAIbid.572CHNODeacetoxyMA31419MARats;intestinalbacteria;anNA660CHNO8-O-ButyrylBMAe354911incubation,invitro.NAIbid.674CHNO8-O-ValerylBMA365111Rats;intestinalbacteria;anNA852CHNO8-O-LinoleylBMAc,d497311incubation,invitro.Rats;intestinalbacteria;aneincubation,invitro.NAHNOBHA574C31439Rats;intestinalbacteria;anc,dincubation,invitro.Rats;intestinalbacteria;anNA556CHNODeacetoxyHAc,d31418incubation,invitro.HARats;intestinalbacteria;anNA630CHNO8-O-PropionylBHAe344710incubation,invitro.NAIbid.644CHNO8-O-ButyrylBHA354910NAIbid.658CHNO8-O-ValerylBHA365110NAIbid.692CHNO8-O-PhenylacetylBHA394910Rats;intestinalbacteria;anNA836CHNO8-O-LinoleylBHAc,d497310incubation,invitro.aNotavailable.bDeoxymayalsobereferredtoasdehydroxyintheliterature.cDDAwasproducedthroughdecoctionofAconitiRadixCoctawithFritillariaeThunbergiiBulbus,PinelliaeRhizomaPreparatum,andAItisnotclearwhetherthesecompoundsweredirectlymetabolizedfromDDAsorwereoriginallyingested.dDDAwasproducedthroughdecoctionofAconitiLateralisRadixPraeparatawithGlycyrrhizaeRadixandRhizomeaswellaswithAtractItisnotclearwhetherthesecompoundsweredirectlymetabolizedfromDDAsorwereoriginallyingested.eInadditiontoACandHAmonomers,DDAswerealsogeneratedfromethylalcoholextractionofRadixAconiti.ItisnotclearwhetherthesecompoundsweredirectlymetabolizedfromDDAsorwereoriginallyingested.∗Thesemetaboliteswerefurtherbiotransformedintheintestine.MetabolitesoftheseintermediateproductsarelistedinTable4. 8 Evidence-BasedComplementaryandAlternativeMedicine s e c n ] e 8 r 2 e [ ef R n o R detecti FT-IC S T, M I m intestine. Metabolicprocedure 16-O-DemethylACHNO,632)fro(C334511AC;human;intestinalbacteria;anaerobicincubation,invitro. e h t n i s e ationofintestinalACmetabolit Neutralloss(Da),identificationoffattyacidaNANANANANA74,propionicacid88,butyricacid102,valericacid102,methylbutyricacid124,heptatrienoicacid126,heptadienoicacid128,heptenoicacid130,heptanoicacid138,octatrienoicacid144,octanoicacid158,nonanoicacid164,decatetraenoicacid190,dodecapentaenoicacid192,dodecatetraenoicacid194,dodecatrienoicacid206,tridecatetraenoicacid214,methyldodecanoicacid228,tetradecanoicacid282,oleicacid284,stearicacid298,methylstearicacid312,arachidicacid326,heneicosanoicacid354,tricosanoicacid m r o C Table4:Furtherbiotransf Identification 1,16-DidemethylAC(M1)b16-O-Demethyl-3-deoxyAC(M2)1,16-Didemethyl-3-deoxyAC(M3)16-O-DemethylBAC(M4)16-O-Demethylaconine(M5)16-O-Demethyl-8-O-propionylBAC16-O-Demethyl-8-O-butyrylBAC16-O-Demethyl-8-O-valerylBAC16-O-Demethyl-8-O-(methyl)-butyrylBAC16-O-Demethyl-8-O-heptatrienoylBAC16-O-Demethyl-8-O-heptadienoylBAC16-O-Demethyl-8-O-heptenoylBAC16-O-Demethyl-8-O-heptanoylBAC16-O-Demethyl-8-O-octatrienoylBAC16-O-Demethyl-8-O-octanoylBAC16-O-Demethyl-8-O-nonanoylBAC16-O-Demethyl-8-O-decatetraenoylBAC16-O-Demethyl-8-O-dodecapentaenoylBAC16-O-Demethyl-8-O-dodecatetraenoylBAC16-O-Demethyl-8-O-dodecatrienoylBAC16-O-Demethyl-8-O-tridecatetraenoylBAC6-O-Demethyl-8-O-(methyl)-dodecanoylBA16-O-Demethyl-8-O-retradecanoylBAC16-O-Demethyl-8-O-oleoylBAC16-O-Demethyl-8-O-stearoylBAC16-O-Demethyl-8-O-(methyl)-stearoylBAC16-O-Demethyl-8-O-arachidylBAC16-O-Demethyl-8-O-heneicosanoylBAC16-O-Demethyl-8-O-tricosanoylBAC 1 a O11O10O10O10O9O11O11 O11 O11O11O11O11O11O11O11O11O11O11O11O11O11O11O11O11O11O11O11O11 ul NNNNNNN N NNNNNNNNNNNNNNNNNNNN orm H43H45H43H43H39H47H49 H51 H49H51H53H55H51H57H59H53H55H57H59H59H67H69H75H77H79H81H83H87 F C32C33C32C31C24C34C35 C36 C38C38C38C38C39C39C40C41C43C43C43C44C44C45C49C49C50C51C52C54 ) + SI E ( 𝑚/𝑧 618616602590486646660 674 696698700702710716730736762764766778786800854856870884898926 Evidence-BasedComplementaryandAlternativeMedicine 9 s e c n ] ] e 9 0 r 2 3 efe [ [ R n o R R detecti FT-IC FT-IC S T, T, M I I m Metabolicprocedure 3-DeoxyAC(CHNO,344710630)fromAC;human;intestinalbacteria;anaerobicincubation,invitro. 16-O-Demethyl-3-deoxyHNO,616)froAC(C334510AC;human;intestinalbacteria;anaerobicincubation,invitro. 4:Continued. Neutralloss(Da),identificationoffattyacidNANANANA74,propionicacid88,butyricacid130,heptanoicacid132,2-methyl-3-hydroxyvalericacid144,octanoicacid160,3-hydroxyoctanoicacid176,undecapentaenoicacid192,dodecatetraenoicacid216,hydroxydodecanoicacid230,hydroxytridecanoicacid244,hydroxytetradecanoicacid258,hydroxypentadecanoicacid284,stearicacidNANANANA74,propionicacid88,butyricacid140,octadienoicacid144,octanoicacid146,hydroxyheptanoicacid174,hydroxynonanoicacid190,dodecapentaenoicacid206,tridecatetraenoicacid222,tetradecatrienoicacid e l Tab ACACCCC C BBAAA Identification 16-O-Demethyl-3-deoxyAC(M1)1,13-DideoxyAC(M2)3-DeoxyBAC(M3)3-Deoxyaconine(M4)3-Deoxy-8-O-propionylBAC3-Deoxy-8-O-butyrylBAC3-Deoxy-8-O-heptanoylBAC 3-Deoxy-8-O-(2-methyl-3-hydroxy)-valerylBA 3-Deoxy-8-O-octanoylBAC3-Deoxy-8-O-(3-hydroxy)-octanoylBAC3-Deoxy-8-O-undecapentaenoylBAC3-Deoxy-8-O-dodecatetraenoylBAC3-Deoxy-8-O-(hydroxy)-dodecanoylBAC3-Deoxy-8-O-(hydroxy)-tridecanoylBAC3-Deoxy-8-O-(3-hydroxy)-tetradecanoylBAC3-Deoxy-8-O-(hydroxy)-pentadecanoylBAC3-Deoxy-8-O-propionylBAC1,16-O-Didemethyl-3-deoxyAC(M1)16-O-Demethyl-3-deoxy-deoxyAC(M2)16-O-Demethyl-3-deoxyBAC(M3)16-O-Demethyl-3-deoxyaconine(M4)16-O-Demethyl-3-deoxy-8-O-propionylBAC16-O-Demethyl-3-deoxy-8-O-butyrylBAC16-O-Demethyl-3-deoxy-8-O-octadienoylBAC16-O-Demethyl-3-deoxy-8-O-octanoylBAC16-O-Demethyl-3-deoxy-8-O-(hydroxy)-heptanoyl16-O-Demethyl-3-deoxy-8-O-(hydroxy)-nonanoyl16-O-Demethyl-3-deoxy-8-O-dodecapentaenoylB16-O-Demethyl-3-deoxy-8-O-tridecatetraenoylB16-O-Demethyl-3-deoxy-8-O-tetradecatrienoylB dehydroxyintheliterature. as o Formula CHNO334510HNOC34479CHNO32459CHNO25418CHNO354910CHNO365110CHNO395710 CHNO385511 CHNO405910CHNO405911CHNO435510CHNO445910CHNO446711CHNO456911CHNO467111CHNO477311CHNO507910CHNO324310HNOC33459CHNO31439CHNO24398CHNO344710CHNO354910CHNO395310CHNO395710CHNO385511CHNO405911CHNO435510CHNO445910CHNO456310 obereferredt +ESI) ailable.mayals ( avxy 𝑚/𝑧 616614588484644658700 702 714730746762786800814828854602600574470630644696700702730746762778 NotDeo a b 10 Evidence-BasedComplementaryandAlternativeMedicine The DDA and MDA phase I metabolic pathways are afecessuspension,despitethesymbioticintestinalbacteria, similar and include hydroxylation, deoxylation, demethy- which should also contain apoptosis-undergoing intestinal lation, didemethylation/deethylation, dehydrogenation, and epithelial cells that release phase I and phase II metabolic demethylation with dehydrogenation (Table 5). The indi- enzymes into the suspension. Thus, intestinal metabolites vidual CYP450s responsible for specific metabolites were arelikelyconvertedby bothbacteriaandphase Imetabolic furtherdeterminedviaindividualinhibitorsorrecombinant enzymes. isoenzymes. CYP3A4 and CYP3A5 are the most common Metabolic isoenzyme expression is not identical among isoenzymes that catalyse both DDAs and MDAs. In addi- different species [50] that lead to metabolic differences in tion,CYP2D6,CYP1A1/2,CYP2C9,CYP2C8,CYP2C19,and differentspecies.Basedonreferencesinthisreview,wefind CYP2E1alsopartiallycatalyseDDAs. that DDAs were ester hydrolysed to MDAs in rat intestine Hydrophobicdrugbiotransformationcommonlyoccurs and liver, but not in humans. On the other hand, the same firstthroughphaseImetabolisminwhichfunctionalgroups, metabolitesconvertedindifferentspecieshavebeenreported. such as hydroxy, sulfhydryl, carboxyl, and amino group, For example, 16-O-demethyl BAC, the ester hydrolysed are formed and provide reaction sites for the subsequent productsfrom16-O-demethylACinintestinalmetabolism, phase II conjugation [46, 47]. For lipophilic DDAs and was detected not only in rats but also in humans. Hydroxy MDAs,hydroxygroupsareinitiallypresentandareformed aconitinefromACwasdetectedthroughincubationinliver afterhydroxylationduringthephaseImetabolism.However, microsomesorS9fromhumans,rats,guineapigs,andmice. phase II metabolites of either DDAs or MDAs were not ItisnotablethattheACdemethylationattheC-16positionis detected in hepatic metabolism in vitro and in vivo, which catalysedbyCYP3AandCYP1A1/2inratswhileitiscatalysed demonstrates that phase II metabolism is not dominant byCYP3A,CYP2D6,andCYP2C9inhumans.However,no compared with phase I metabolism in the liver. DDA ester studieshavespecificallycomparedmetabolitesfromDDAsor hydrolysis should be catalysed by CEs. However, CYP3A, MDAs among humans and different experimental animals. CYP1A1,andCYP1A2arealsoinvolvedinesterhydrolysisof Briefly, the metabolic differences in different species yield AC,whichreflectsthecomplexityofmetabolism. certainrisksinpredictinghumandrugmetabolismbasedon datafromexperimentalanimals. 2.4. A Comparison of DDA and MDA Metabolism in the ThemetabolicpathwaysproposedforDDAsaregeneral- Gastrointestinal Tract and Liver. The metabolites generated izedinFigure1. inthestomach,intestine,andliverarecomparedinTable6. The organ/tissue metabolic processes are partially indi- The polarity of most metabolites increased after DDA gas- cated.Thewavybondsindicatethepotentialmetabolicposi- trointestinal and hepatic metabolism, except lipoalkaloids. tions. Me, Et, Ac, and Bz indicate methyl, ethyl, acetyl, and Metabolites of AC from dehydrogenation and demethyla- benzoylgroups,respectively. tion with dehydrogenation were only observed in the liver. The AC metabolites from demethylation with deoxylation observed from intestinal bacteria incubation [24] were also 3.MetabolitesDetectedintheBlood detectedintheurineafteroralACadministrationinrabbits. However,thesemetaboliteswerenotfoundintheurineafter MDAs and alcohol amines are the main DDA metabolites intravenousinjection[48].Thisobservationsuggeststhatthe in the blood (Table 7). It has been suggested that AC gastrointestinal tract may participate in biotransformation. and related alkaloids can be rapidly absorbed by the upper The characteristic metabolites in the gastrointestinal tract gastrointestinaltractfortheshortlatentperiodbetweenthe were lipoalkaloids, which might be converted by enzymes ingestionofaconiterootsandtheonsetofpoisoningfeatures that are only produced by intestinal bacteria. In addition, [3]. Therefore, the absorbed DDAs may be partially and morelipoalkaloidvarietiesweredetectedintheintestinethan graduallyesterhydrolysedtolesstoxicMDAsandnontoxic inthestomach,whichisconsistentwithabundantbacterial alcoholaminesbyCEsdistributedintheblood.Furthermore, distribution in the gastrointestinal tract [16]. More studies the blood provides a suitable pH environment for ester havefocusedonDDAsthanMDAs.However,itisspeculated hydrolysis. This hypothesis is supported by an analysis of that MDAs may share similar metabolic pathways (except ratplasmaafterDDAadministrationviaatailvein,wherein for ester hydrolysis at the C-8 position) with DDAs in the MDAsandalcoholaminesweredetected[39]. gastrointestinaltractbasedonthesimilarityintheirhepatic MDAs and alcohol amines are commonly considered metabolismandchemicalstructures. markers in forensic and clinical evaluations of aconitine Interestingly, phase I metabolites of hydroxylation, poisoningbecausetheirhalf-livesarelongerthanDDAs[19], deoxylation, demethylation, and didemethylation/deethyla- which might lead to the neglect of other metabolites in the tion were detected not only in the liver but also in the gas- blood.Additionally,manyefflux/influxtransporters,suchas trointestinaltract.AsmentionedaboveinSection2.2,intesti- P-glycoprotein (P-gp), multidrug resistance-associated pro- nalbacteriaparticipateinmetabolism,suchasthroughdeox- tein 2 (MRP2), and MRP3 expressed in intestinal epithelial ylation, reduction, and deacetylation. However, it has also and hepatic cells, are involved in drug absorption [53]. It been reported that human small intestinal epithelial cells is difficult to determine whether the various metabolites express a range of P450s, which include CYP3A, the isoen- produced in the gastrointestinal tract and liver are trans- zymethatdominatesintheliver[49].Intestinalmetabolism portedintothebloodfromthefewstudiesontheirtransport was performed in vitro through anaerobic incubation in mechanism.
Description: