International Journal o f Molecular Sciences Article In Vitro Preservation of Transgenic Tomato (Solanum lycopersicum L.) Plants Overexpressing the Stress-Related SlAREB1 Transcription Factor AyedM.Al-Abdallat1,*,RidaA.Shibli1,MuhanadW.Akash1,ManarRabbaa1 andTamaraAl-Qudah2 1 DepartmentofHorticultureandCropScience,FacultyofAgriculture,theUniversityofJordan, 11942Amman,Jordan;[email protected](R.A.S.);[email protected](M.W.A.);[email protected](M.R.) 2 HamdiMangoCenterforScientificResearch,theUniversityofJordan,11942Amman,Jordan; [email protected] * Correspondence:[email protected];Tel.:+962-6-535-5000(ext.22331) Received:18May2017;Accepted:1July2017;Published:21July2017 Abstract: Invitro preservation of transgenic tomato lines overexpressing the stress-responsive transcriptionfactorSlAREB1wasstudiedbyusingslowgrowthandcryopreservationtechniques. Slowgrowthpreservationwasperformedbyusingdifferentconcentrationsofsucrose(0,100,200, 300mm)andabscisicacid(0,4,8,12µm)inMurashigeandSkoog(MS)media,whilecryopreservation wasconductedbyusingencapsulationdehydration,V-cryoplatesandseeds. Significantdifferences wereobservedbetweentestedlinesgrownonMSmediasupplementedwith200mmsucrosewhere transgeniclinesoverexpressingSlAREB1showedimprovedgrowthwhencomparedwithnegative control. Theadditionofabscisicacid(ABA)tothepreservationmediaaffectednegativelytransgenic linesgrowthanddevelopmentwhencomparedwithABA-freemedia. Inencapsulationdehydration, non-cryopreservedtransgeniclinesoverexpressingSlAREB1pretreatedin0.8Msucrosefor1day andsubjectedtodifferentdehydrationperiodsshowedsignificantlyhighersurvivalpercentages whencomparedwithnegativecontrol. ForV-cryoplatestechnique,cryopreservedtransgeniclines overexpressingSlAREB1treatedin0.3Msucrosefor3dayswithorwithoutcoldacclimatization showedsignificantlyhighersurvivalpercentageswhencomparedwiththenegativecontrol. Seed cryopreservationwasperformedsuccessfullywithaclearreductioningerminationpercentagein transgenic lines overexpressing high levels of SlAREB1. In conclusion, transgenic tomato lines overexpressingSlAREB1werefoundtoimprovetoleranceagainstdifferentabioticstressesassociated withdifferentinvitropreservationprotocols. Keywords: abscisic acid; encapsulation-dehydration; invitro preservation; Solanum lycopersicum; transcriptionfactor;V-cryoplates 1. Introduction Tomato(SolanumlycopersicumL.)isawarmseasonplant,whichisconsideredsensitivetocoldand underseverefrostconditionstheentireplantcouldbedestroyed. Suchsensitivitytocoldandother relatedabioticstressescanbeovercomebyseveralphysiologicalandbiochemicalprocessessuchasthe accumulationofabscisicacid(ABA),osmolytesandlateembryogenesisabundantproteinsandgrowth retardation [1]. Abscisic acid is known to regulate several physiological processes including seed germination,stomataclosureandtolerancetodifferentabioticstresses[2]. ABAhasbeenreportedto enhancetolerancetodifferentabioticstressesincludinglowtemperature,droughtandsalinitystresses inseveralplantspecies. Understanding the genetic basis of stress tolerance mechanisms in plants may offer the opportunityto developnew varietieswith improvedadaption todifferentstresses includingcold Int.J.Mol.Sci.2017,18,1477;doi:10.3390/ijms18071477 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2017,18,1477 2of19 anddrought. Inthisperspective, animportantstepincontrollingplanttoleranceresponsesisthe transcriptionalactivationorrepressionofstress-responsivegenes[3]. Transcriptionalregulationof stresstolerancegenesislargelymediatedbythespecificrecognitionofcis-actingpromoterelementsby trans-actingsequencespecificDNA-bindingproteinsknownastranscriptionfactors. Inaddition,such responsesaremediatedmainlythroughABA-dependentandABA-independentsignalsthatregulate the expression of stress responsive genes involved in conferring stress tolerance phenotypes [3]. The basic strategy of generating tolerant plants is based on the activation of either one or both pathwaysthroughtheintroductionofkeyregulatorygenesthataredirectlyinvolvedinactivating molecularmechanismscontrollingabioticstresstolerance[4]. TheABAresponsiveelementbinding (AREB) factors (also known as the ABF for ABA binding factors) are members of the bZIP family of transcription factors that specifically bind to ARE cis-elements found in the promoter region of manyABA-responsivegenes[5]. TheoverexpressionoftheAREBfactorsindifferentplantspecies improvesfreezinganddehydrationtolerance[4]. Intomato,theoverexpressionofSlAREB1wasfound toincreasedroughtandsaltstresstolerance[6]aswellastheinductionofchangesinorganicacid accumulationandtheexpressionofgeneencodingenzymesinvolvedintheirsynthesis[7]. The loss of valuable plant genetic resources has prompted international actions to preserve such valuable exotic plant material [8]. Invitro, preservation of plant germplasm can be divided into medium-term preservation (slow growth preservation) and long-term preservation (cryopreservation) [9]. In medium-term preservation, the plant material is subjected to growth retardationconditionsthatslowdownplantgrowthanddevelopmentinvitro.Thisincludesgrowth underlowtemperatures,reducedlightconditionsandmodificationofgaseousenvironments,and the use of growth retardants such as ABA and osmoticums [10]. Medium-term preservation was used successfully for many plant species where regeneration potential could be restored [11]. Cryopreservationreferstotheconservationofplantgermplasmforindefiniteperiodsbykeepingitin ultra-lowtemperatureconditionssuchasliquidnitrogen(−196◦C)[12]. Undersuchconditions,the biochemicalprocesses,metabolicactivities,andcelldivisionofthecryopreservedbiologicalmaterial will be arrested [13]. The cryopreserved material can retain its biological activities as soon as it is allowed to re-grow under suitable conditions. Cryopreservation in liquid nitrogen is the only currentlyavailablemethodthatensuressafe,cost-effectiveandlong-termconservationofvegetatively propagatedplantsandforplantswithrecalcitrantseeds[10,14]. Cryopreservationisperformedby usingdifferentmethodssuchasencapsulationdehydration,vitrification,encapsulation-vitrification andcryoplates[15]. Forinstance,thecryopreservationofSolanumphurejashoottipswasachieved successfullybyusingtheencapsulationdehydrationapproach[16].In2014and2015,Costeetal.[17,18] succeededinthecryopreservationoffivetomatocultivarsbyusingencapsulationdehydrationand dropletvitrification. Theyfoundthatthepreculturingofshoottipsinsucroseplaysanimportantrole inincreasingtheefficiencyofcryopreservationbyenhancingtheresistancetodesiccationandliquid nitrogenexposure. Recently,anewcryopreservationtechniquewasdevelopedbyusingaluminium cryoplates that could be either based on vitrification (V-cryoplates) or dehydration-(D-cryoplates) andbothwerefoundtogivehighsurvivalandregrowthpercentagesaftercryopreservationwhen comparedtoothermethods[19–21]. Theutilizationofseedsasaplantmaterialincryopreservation wasusedsuccessfullyindifferentplantspeciesincludingtomato[22,23]. Previously, the cryopreservation of transgenic plants was performed successfully with no majoralternationsincryopreservedmaterialphenotypeorgenotypeaftertheirregeneration[24–26]. For instance, transgenic chrysanthemum plant with improved trehalose accumulation had higher regeneration percentages when compared with wild type [26]. In this study, invitro preservation of transgenic lines overexpressing the stress-related SlAREB1 transcription factors was studied by using slow-growth and cryopreservation approaches. For slow-growth preservation, the effect of differentlevelsofsucroseandABAonmicroshootdevelopmentafter12weeksofculturewasstudied. Cryopreservationoftransgeniclineswasstudiedbyusingencapsulation-dehydration,V-cryoplates andseeds. Tothebestofourknowledge,nopreviousreportsdescribingtheeffectofstress-related transcriptionfactorsoninvitropreservationofthetomatoplantexist. Int.J.Mol.Sci.2017,18,1477 3of19 2. Results 2.1. OverexpressionofSlAREB1inTomato TotestwhetherSlAREB1canimproveinvitropreservationoftomatoplants,anoverexpression constructwithSlAREB1CDS(GenBankaccessionnumber: AY530758)underthecontrolof35SCaMV promoterwasintroducedintotomatocv. Moneymaker. Only5independenttransgeniclineswere produced and were confirmed to be positive based on hygromycin selection. Three of them were found to carry a single insertion event as revealed by real time PCR analysis (data not shown). The transgenic lines grew normally when compared with tomato plants transformed with empty plasmidandthisisconsistentwithOrellanaetal.(2010)[6],whoshowedthatthemajorityoftransgenic lines overexpressing SlAREB1 had normal morphological phenotypes. Gene expression analysis using quantitative RT-PCR analysis in transgenic tomato plants overexpressing SlAREB1 showed highexpressionlevelsofthetargetedgenewhencomparedwithnegativecontrolplants(FigureS1). However,acleardifferenceinSlAREB1expressionlevelsbetweenthetransgeniclineswasobvious withSlAREB1#3lineshowingthehighestvalue. Thisparticularlineshowedadelayedgermination phenotype when compared with other tested lines. The T3 generations of two homozygous lines overexpressingdifferentlevelsofSlAREB1(SlAREB1#2andSlAREB1#3)andasingletransgenicline harboringemptyT-DNAwereselectedandusedfurtherforinvitropreservationexperiments. 2.2. SlowGrowthPreservation To test the effect of sucrose concentration on slow growth preservation of transgenic tomato lines, microshoots were incubated for 12 weeks on MS media supplemented with different levels of sucrose (0, 100, 200, 300 mm). Microshoots placed on media lacking sucrose showed a growth arrest phenotype where no significant changes in plant height, roots number and leaves number mean values were observed (Table 1). At 100 mm sucrose level, all tested plants showed normal growthanddevelopmentwithrespecttoplantheight,leavesnumberandrootsnumber,although nosignificantdifferenceswereobservedbetweentransgeniclinesandnegativecontrol(Figure1a; Table1). Increasingsucroseconcentrationinthestoragemediato200mmsignificantlyreducedgrowth innegativecontrolmicroshootswhencomparedwithtransgeniclinesoverexpressingSlAREB1after6 and12weeksofstorage(Figure1b;Table1). Theeffectof200mmsucroselevelonrootingwasalso obviouswhereafullinhibitionofrootformationwasobservedinnegativecontrolmicroshootswhen comparedwithSlAREB1transgeniclines. At300mmsucroselevel,microshootsoftransgenicline SlAREB1#3significantlyproducedthehighestmeanvaluesforplantheight,rootnumberandleaf numberindicatingitsabilitytogrowunderhighosmoticstressconditions(Table1). Atthesamelevel, themicroshootsoftransgeniclineSlAREB1#2showedgrowthretardationphenotype. Forregrowth potential, the SlAREB1#3 microshoots were able to give the highest percentage after 12 weeks of culturingat200and300mmsucroselevelswhencomparedwithnegativecontrol(Table2). TotesttheeffectofABAconcentrationonslowgrowthpreservationoftransgenictomatolines, microshootswereincubatedfor12weeksonMSmediasupplementedwithdifferentlevelsofABA (0,4,8and12µm). SlAREB1#3microshootshadsignificantlylowerrootsandleavesnumberat4µm ABAlevelafter6and12weeksofstoragewhencomparedwithABA-freemedia(Table3).Furthermore, onlySlAREB1#3microshootscultivatedonMSmediasupplementedwith4µmABAlevelfor12weeks showed a significantly lower plant height when compared with negative control and SlAREB1#2 microshoots. Adecreaseinmicroshootsheightwasrecordedafter6weeksofculturingwhenABA wasaddedtothemediacomparedtothecontrol(ABA-freemedia),whichwasmorepronouncedafter 12weeksonlyathighABAlevels(8and12µm)(Table3). Forrootsandleavesnumbers,significant reductionsinalltestedlineswereobservedathighABAlevels(8and12µm)after6and12weeks ofstoragewhencomparedwithABA-freemedia. Forregrowthpotential,theadditionofABAtothe preservationmediadidn’taffecttheregrowthpercentagesofalltestedlineswhencomparedwith ABA-freemedia(Table2). Int.J.Mol.Sci.2017,18,1477 4of19 Table1. Effectsofsucroseconcentrationonplantheight, rootsnumberandleavesnumberofinvitroconservedmicroshootsofnegativecontrol, SlAREB1#2, SlAREB1#3transgenictomatoplantsafter6and12weeksofstorage. Sucrose PlantHeight(cm) RootsNumber LeavesNumber Concentration(mm) Control SlAREB1#2 SlAREB1#3 Control SlAREB1#2 SlAREB1#3 Control SlAREB1#2 SlAREB1#3 6weeks 0 1.00a*±0.00** 1.00a±0.00 1.21a±0.10 0.00a±0.00 0.00a±0.00 0.00a±0.00 1.00a±0.00 1.00a±0.00 1.14a±0.67 100 5.32a±0.59 5.85a±0.42 5.99a±0.66 7.14a±1.12 7.66a±1.55 7.89a±2.49 7.86a±1.28 7.29a±1.67 6.43a±1.37 200 1.71b±0.24 6.13a±1.18 6.47a±0.50 0.00b±0.00 10.71a±2.31 9.57a±1.86 3.57b±1.03 6.29a±1.23 5.71a±1.23 300 1.14b±0.13 1.97b±0.36 3.84a±0.92 0.00b±0.00 0.57b±0.56 3.43a±0.83 2.00b±0.61 1.57b±0.83 6.00a±1.22 12weeks 0 1.00a±0.00 1.00a±0.00 1.34a±0.11 0.00a±0.00 0.00a±0.00 0.00a±0.00 1.00a±0.00 1.00a±0.00 1.43a±0.77 100 8.47a±1.10 8.55a±0.68 9.10a±1.10 10.14a±2.39 9.23a±1.29 10.86a±1.32 12.29a±2.71 11.46a±2.77 10.43a±1.58 200 2.54b±0.21 7.27a±1.29 8.77a±0.72 0.14b±0.04 13.57a±3.33 13.43a±3.03 5.57b±1.59 10.86a±2.79 9.43a±1.24 300 1.24b±0.12 2.22b±0.44 5.27a±0.76 0.00b±0.00 0.86b±0.73 7.43a±2.10 2.57b±0.56 2.43b±0.56 8.57a±2.19 *BasedonTukey’sHSDtest,differentletterindicatessignificantdifferenceamongtransgeniclines(p<0.05)foreachcombinationofsucroseconcentrationandnumberofweeks.**Values arethemean±SD. Table2.Regrowthpercentagesofinvitroconservedmicroshootsofnegativecontrol,SlAREB1#2,SlAREB1#3transgenictomatoplantsafter12weeksfromculturing onmediawithdifferentlevelsofsucroseandabscisicacid(ABA). Transgenic SucroseConcentration(mm) ABAConcentration(µm) Lines 0.00 100 200 300 0 4 8 12 Control 0.00a*±0.00** 78.6a±10.97 38.5b±13.00 21.4b±10.97 71.4a±12.07 71.4a±12.07 81.8a±10.31 83.0a±9.96 SlAREB1#2 0.00a±0.00 81.8a±10.31 71.4a±12.07 38.5b±13.00 76.9a±11.26 78.6a±10.97 84.6a±9.64 83.0a±9.96 SlAREB1#3 0.00a±0.00 85.7a±9.35 78.6a±10.97 92.3a±7.12 85.7a±9.35 69.2a±12.97 78.6a±10.97 78.56a±10.97 *BasedonTukey’sHSDtest,differentletterindicatessignificantdifferenceamongtransgeniclines(p<0.05)foreachconcentration.**Valuesarethemean±SD. Int.J.Mol.Sci.2017,18,1477 5of19 Table3.EffectsofABAconcentrationonplantheight,rootsnumberandleavesnumberofinvitroconservedmicroshootsofnegativecontrol,SlAREB1#2,SlAREB1#3 transgenictomatoplantsafter6and12weeksofstorage. ABAConcentration PlantHeight(cm) RootsNumber LeavesNumber (µm) Control SlAREB1#2 SlAREB1#3 Control SlAREB1#2 SlAREB1#3 Control SlAREB1#2 SlAREB1#3 6weeks 0 5.04a*±0.55** 5.14a±1.31 5.01a±0.70 5.86a±1.42 6.57a±2.01 5.57a±1.03 6.14a±1.42 5.71a±1.58 5.29a±1.00 4 2.91a±0.66 2.46a±0.37 2.11a±0.31 5.43a±1.81 4.57a±1.20 1.86b±1.55 5.14a±1.42 5.29a±1.80 2.86b±1.13 8 1.41a±0.11 1.43a±0.15 1.53a±0.25 0.00a±0.00 0.14a±0.40 0.00a±0.00 2.71a±0.52 3.14a±0.95 3.00a±0.86 12 1.46a±0.20 1.51a±0.13 1.43a±0.18 0.00a±0.00 0.29a±0.80 0.00a±0.00 2.57a±0.83 3.29a±0.80 3.14a±0.40 12weeks 0 7.19a±1.00 7.33a±1.75 6.93a±0.56 9.86a±2.69 8.71a,b±1.18 7.57b±2.10 13.00a±3.56 11.71a±2.91 11.00a±1.83 4 6.90a±1.19 7.14a±1.61 2.26b±0.32 8.43a±2.79 6.86a±0.95 1.86b±1.55 9.71a±2.42 8.29a±1.58 3.86b±1.42 8 1.53a±0.15 1.94a±0.29 1.60a±0.15 0.14a±0.40 0.57a±0.83 0.14a±0.40 5.43a±0.83 5.14a±0.95 4.43a±0.83 12 1.73a±0.27 1.73a±0.26 1.61a±0.20 0.00a±0.00 0.29a±0.52 0.00a±0.00 5.29a±0.80 4.14a±0.73 3.71a±1.00 *BasedonTukey’sHSDtest,differentletterindicatessignificantdifferenceamongtransgeniclines(p<0.05)foreachcombinationofABAconcentrationandnumberofweeks.**Values arethemean±SD. Int.J.Mol.Sci.2017,18,1477 6of19 Int. J. Mol. Sci. 2017, 18, 1477 6 of 19 FFiigguurree 11. .SSloloww ggrroowwthth pprreesseerrvvaatitoionn oof ftwtwoo trtraannssggeennicic lilnineess oovveerreexxpprreessssiinngg SSlAlARREEBB11 ((SSllAARREEBB11##22 aanndd SSlAlARREEBB11##33)) aanndd nneeggaattiivvee ccoonnttrrooll aafftteerr 1122 wweeeekkss ooff ccuultltuurriinngg. .(a(a) )GGrroowwthth oonn MMSS mmeeddiaia ssuupppplelemmeenntteedd wwiitthh 110000 mmmm ssuuccrroossee wwiitthhoouutt AABBAA; ;((bb)) GGrroowwtthh oonn MMSS mmeeddiiaa ssuupppplleemmeenntteedd wwitithh 220000 mmmm ssuuccrroossee withoutABA;(c)GrowthonMSmediasupplementedwith100mmsucroseand4µmABA;(d)Growth without ABA; (c) Growth on MS media supplemented with 100 mm sucrose and 4 μm ABA; (d) onMSmediasupplementedwith100mmsucroseand8µmABA. Growth on MS media supplemented with 100 mm sucrose and 8 μm ABA. 22.3.3. .CCrryyoopprreesseerrvvaattioionn TThhee eeffffeecctt ooff ccrryyoopprreesseerrvvaattioionn oonn ttrraannssggeennicic totommaatoto lilnineess wwaass sstutuddieiedd bbyy uussiningg eennccaappssuulalatitoionn-- ddeehhyyddrraatitoionn, ,VV-c-rcyryoopplaltaetse sanadn dseesedesd. Fs.orF eonrcaepnscualpastuiolnat-idoenh-ydderhaytdiorna,t imonic,romsihcoroostsh oofo ttrsaonfsgterannics glienneisc wlienrees swuberjeecsteudb jteoc tdeidffetorednitf tfreeraetnmtetrnetast mincelnutdsiinngc lcuodminbgincaotimonbsin oaft itownos soufctrwosoe sluevcreolss e(0l.e4v aenlsd( 00..84 Man)d, i0n.c8uMba)t,ioinnc puebraitoidon (1p aenrido d3 (d1aayns)d a3ndd adyesh)yadnrdatdioenh ypderriaotdio n(1,p 3e,r i6o hd) (b1e,f3o,r6e hsu)bbjeefcotirnegs uthbejemct tino gliqthueimd ntiotrloiqguenid onri trwoigtehnouotr (wroitohmou tte(mropoemrattuemrep).e rIantiutiraell)y., Inthiteia lmlyo,itshtuerme ociostnuterentc oonf tetnretaotefdtr ebaetaeddsb ewaadss dweatesrmdeitneerdm iannedd afonudnfdo uton ddteocrdeeacsree awseithw iitnhcirnecarseinagsi ntghet hpeeprieordio dofo fddeheyhdyrdartaiotino n(F(Figiguurer eSS22).) .FFoorr eennccaappssuullaatteedd sshhoooott ttiippss wwiitthhoouutt lilqiquuiidd nnititrrooggeenn,, aa ccoommpplelettee ssuurrvvivivaall ppeerrcceennttaaggee ((110000%%)) wwaass oobbsseerrvveedd wwiitthh nneeggaattiivvee cocnontrtorlo,lS, lASlRAERBE1B#21,#a2n, danSldA RSElABR1#E3Bt1r#e3a tetrdeiante0d.4 iMn s0u.4cr oMse fsourcoronseed afoyra nodned edhayyd raantedd dfoehry0dorra3tehd afonrd 0i nor0 3.4 hM ansdu cirno 0se.4f Mor sthurcereosdea fyosr atnhdrede edhayydsr aantedd dfeohry0dhra(tFeidg uforer 20) h. O(Fnigtuhreeo 2th).e Ornh athned , oetnhcearp hsualnadte, denshcoapotsutilpasteodf nsehgoaottiv teipcso notfr onletrgeaattievde icno0n.4trMol sturecarotesde fionr 30.d4a Mys asnudcrdoeshe yfdorra t3e ddafoyrs 3aanndd d6ehhypdroradtuedce fdorlo 3w aenrds u6 rhv ipvraoldpuecrecden ltoawgeesr wsuhrevnivcaol mpepracreendtawgietsh wSlhAeRnE cBo1m#p2aarnedd SwlAithR ESBlA1#R3EsBh1o#o2t atnipds . SElAncRaEpBsu1l#a3t esdhoshoto otitptsip. Esnocfanpesgualtaivteedc oshnotrootl tliipnse otrfe nateegdatiniv0e. 8coMntsruocl rloinsee ftorera1tedda yinw 0i.t8h M0h sudcerhoysde rfaotrio 1n dsahyo wweitdh a0 shli gdhethryeddruatcitoionn shinowsuerdv iav aslligphert creendtuagcteisonw ihne nsucrovmivpala rpeedrcwenitthagSelsA wREheBn1 ctroamnpsgaernedic wlinitehs SblAutRaEcBl1e atrrarnesdguecntiioc nlinweass boubts ae rcvleeadr irnedshuocotitotnip wsadse ohbysderravteedd ifno rsh3oaontd ti6psh d(Fehigyudrreaste2da nfodr 33) .anOdn 6t hhe (oFtihgeurrehsa n2d a,nndo n3-c).r yOonp rtehsee rovtehdeer nhcaanpdsu, lnaotend-csrhyoooptrteispesrvofedSl AenRcEaBp1s#u3lattreadn ssgheonoict ltiinpes torefa StelAdRinE0B.18#M3 tsruancrsogseenfioc rl3indea ytsresahtoewd eidn a0s.i8g nMifi csaunctrionscer efaosre i3n sduaryvsi vsahlopwerecden taa gseigsnwifhiceanncto minpcraeraedsew iinth snuergvaivtiavle pceorncternotlaagneds wSlhAeRnE cBo1m#2pashreodo twtiipths .negative control and SlAREB1#2 shoot tips. IInn ggeenneerraal,l ,tthhee hhiigghheesstt rreeggrroowwtthh ppeerrcceennttaaggeess iinn tthhee nnoonn--ccrryyoopprreesseerrvveedd ttrraannssggeennicic lliinneess wweerree oobbsseerrvveedd inin sshhoooott ttiippss ttrreeaatteedd iinn 00.4.4 MM ssuuccrroossee ffoorr oonnee ddaayy aanndd ddeehhyyddrraatteedd ffoorr 00 hh ((FFiigguurree 44)).. TThhee ddeehhyyddrraatitoionn oof fshsohooto ttiptisp fsorf o6r h6 rehsurletseudl tiend siignnisfiigcannifit craendtucretidounc itnio rnegirnowretghr powertchenptaergceesn otfa aglels teosfteadll ltinesetse datl i0n.e4s Mat 0s.u4cMrosseu clerovseel lienvceulbiantceudb aetiethdeeri tfhoer r1f oorr1 3o rda3ydsa wyshwenh ecnomcopmapreadre wdiwthit h0 0h.h .HHoowweveveer,r , ttrraannssggeenniicc SSllAARREEBB11##22 aanndd SSllAARREEBB11##33 sshhoooottt tipipsst rtereaateteddi nin0 .04.4M Ms uscurcorsoesfeo fro3r d3a dyasyasn adndde dhyehdyradtreadtefodr f3orh 3s hho wsheodwsiegdn isfiicganniftilcyahnitglyh ehrirgehgerro wretghrpoewrcthen ptaegrecsenwtahgeensc owmhpenar ecdomwpitahrende gwatiitvhe ncoengatrtoivle(F cigounrtero4l) . (IFrirgeuspree c4t)iv. eIrorefsipnecuctbivaeti oonf tiinmcuebaantdiodne thimyder aatniodn dpeehryioddr,atthioent rpeeartimoden, tthine 0tr.8eaMtmseunctr oisne 0r.e8s uMlt esducinrotshee raebsuseltnecde ionf trhege raobwsethncine oefn creagprsouwlatthed in-d eenhcyadprsauteladtende-gdaethivyedcroantetrdo nlsehgoaotitvtei pcson(Ftrigoul rsehso4ota tnidps5 ()F.iOgnurtehse 4o athnedr 5h).a Ondn, tthrea nostgheenr ihcaSnldA, RtrEaBn1sg#2enainc dSlSAlARERBE1B#12# a3nsdh oSolAtRtipEsB1tr#e3a stehdooint t0ip.8s Mtresautecdro isne 0f.o8r M1 dsuacyroansed fdoer h1y ddarya taenddf odre0hyhdwraetreeda fbolre 0to hr wegerroew ab(Flei gtou rreesg4roawnd (F5i)g.uMreesa n4 wanhdil e5,).S MlAeRaEnBw1h#i3les,h SoloAtRtiEpBs1t#re3a sthedooitn tips treated in 0.8 M sucrose for 3 days and dehydrated for 0 and 3 h showed a significant ability to regrow when compared with other tested lines. On the contrary to non-cryopreserved treatments, Int.J.Mol.Sci.2017,18,1477 7of19 0.8Msucrosefor3daysanddehydratedfor0and3hshowedasignificantabilitytoregrowwhen Int. J. Mol. Sci. 2017, 18, 1477 7 of 19 comparedwithothertestedlines. Onthecontrarytonon-cryopreservedtreatments,neithersurvival norregrowthwereobservedinalltransgeniclinessubjectedtocryopreservationinliquidnitrogen neither survival nor regrowth were observed in all transgenic lines subjected to cryopreservation in (Figures3and5). liquid nitrogen (Figures 3 and 5). Int. J. Mol. Sci. 2017, 18, 1477 7 of 19 neither survival nor regrowth were observed in all transgenic lines subjected to cryopreservation in liquid nitrogen (Figures 3 and 5). Figure 2. Survival percentages of encapsulated-dehydrated shoot tips of non-cryopreserved s hoots Figure2. Survivalpercentagesofencapsulated-dehydratedshoottipsofnon-cryopreservedshoots tips (−LN) of negative control, SlAREB1#2 and SlAREB1#3 transgenic tomato plants as affected by air tips(F−igLuNre) 2o. fSnuervgiavtailv peecrocennttraogle,sS loAf RenEcBap1s#u2laatnedd-dSelAhyRdEraBte1d# 3shtroaont stigpesn oicf ntoonm-cartyoopprleasnetrsveads ashffoeocttse dby adierhdyetdihprysa dt(i−roLanNti od) noufrd nauetigroaanttii voaenf tceaorfnt eptrrroepl,t rrSeeltAarteRmaEteBmn1et# 2nw tainwtdhi tS0hl.A40 R.a4EnaBdn1 #d03. 08t.r 8aMnMs sguseuncriccor otsoesme cacotonon cpcelenanntrttrasa taitsoi onanf ffefocortre odon nbeey ooarirr tthhrreeee ddaayyssd ((evvhaayllduureeasst iaoanrree d ttuhhreea tmimonee aaannft e±±r pSSrDDet))r.. eBaBtaamsseeedndt oownni thTT uu0kk.4ee ayyn’’ssd HH0.SS8 DDM ttseeussctt,,r oddsieiff ffceeorrneecnnettn tllreeatttttieeorrn i infnoddr iioccnaatetee ossr s stiihggrnneieifif iccaanntt differdeanycse ( vaamluoensg a trrea tnhseg meneiacn l i±n eSsD ()p. B<a 0s.e0d5 )o fno rT euakcehy’ sc oHmSbDi nteastti,o dni foffe rseunctr loestete cr oinndceicnattreas tsioignn,i nfiucamntb er of differenceamongtransgeniclines(p<0.05)foreachcombinationofsucroseconcentration,numberof daysd, aifnfedr eanicre d aemhoyndgr atrtaionnsg denuirca ltinioens .( p < 0.05) for each combination of sucrose concentration, number of days,andairdehydrationduration. days, and air dehydration duration. FigurFeig3u.rSeu 3r. vSiuvravlivoafl towf otwtora tnrasngsegneincicl ilnineesso ovveerreexxpprreessssiinngg SSlAlARREBE1B (1Sl(ASlRAERBE1#B21 a#n2da SnldARSElAB1R#E3B) a1n#d3 )and nFiegguarnteiev g3ea. tcSivouenr vtcroiovnlatr(lo -ovl fe( -tvwceoo nc ottrrnaotnrl)oslgs) hesnohioocot ltti intpiepsss aoafvftteeerrre eexnnpccraaeppssssuiunlalgati toSinolA ndRedEheyBhd1yr a(dStriloaAntiR otErneBat1trm#e2ae ntamtn oedfn S1tl AodfaRy1E (Bd11 aD#y3) )( 1anDd) innecguabitnaivctiueo bncaotiinnotn0r o.i8nl M0(-.8v seMu cc srouoncstreroosaeln) a dsnhd0o h0o htd edtihephysyd darfratatetiiroo nnen wwciiattphh s((u++LlLaNtNi)o )onro wrdweithhityohudotr ualittqiluoiiqndu tnirdietranotigmternoe ng(−et LnoNf( −)1. LdNa)y. (1 D) incubation in 0.8 M sucrose and 0 h dehydration with (+LN) or without liquid nitrogen (−LN). Int.J.Mol.Sci.2017,18,1477 8of19 Int. J. Mol. Sci. 2017, 18, 1477 8 of 19 Int. J. Mol. Sci. 2017, 18, 1477 8 of 19 Figure 4. Regrowth percentages of encapsulated-dehydrated shoot tips of non-cryopreserved shoots Figure4.Regrowthpercentagesofencapsulated-dehydratedshoottipsofnon-cryopreservedshoots Figure 4. Regrowth percentages of encapsulated-dehydrated shoot tips of non-cryopreserved shoots tips (−LN) of negative control, SlAREB1#2 and SlAREB1#3 transgenic tomato plants as affected by air tips(−LN)ofnegativecontrol,SlAREB1#2andSlAREB1#3transgenictomatoplantsasaffectedby tips (−LN) of negative control, SlAREB1#2 and SlAREB1#3 transgenic tomato plants as affected by air dehydration duration after pretreatment with 0.4 and 0.8 M sucrose concentration for one or three airdehydrationdurationafterpretreatmentwith0.4and0.8Msucroseconcentrationforoneorthree dehydration duration after pretreatment with 0.4 and 0.8 M sucrose concentration for one or three ddaayyss ((vvaalluueess aarree tthhee mmeeaann ±± SSDD)).. BBaasseedd oonn TTuukkeeyy(cid:48)′ss HHSSDD tteesstt,, ddiiffffeerreenntt lleetttteerr iinnddiiccaatteess ssiiggnniifificcaanntt days (values are the mean ± SD). Based on Tukey′s HSD test, different letter indicates significant difference among transgenic lines (p < 0.05) for each combination of sucrose concentration, number of differenceamongtransgeniclines(p<0.05)foreachcombinationofsucroseconcentration,numberof difference among transgenic lines (p < 0.05) for each combination of sucrose concentration, number of days, and air dehydration duration. days,andairdehydrationduration. days, and air dehydration duration. Figure 5. Regrowth of two transgenic lines overexpressing SlAREB1 (SlAREB1#2 and SlAREB1#3) and FFiigguurree 55. .RRegergorwowtht hofo tfwtow toratnrasgnesngiecn liicnelisn oevseorvexeprerxepssriensgs iSnlgARSlEABR1E (BSl1A(RSElABR1#E2B a1n#d2 SalnAdRSElBA1R#E3)B a1n#d3) negative control (-ve control) shoot tips after encapsulation dehydration treatment of 1 day (1 D) naengdatnivegea ctiovnetrcooln (t-rvoel (c-ovnetcroonl)t rsohlo)osht otioptst iapfstearf teenrceanpcsauplsautiloanti odnehdyehdyradtriaotnio tnretaretmatemnet notfo 1f 1ddaya y(1(1 DD)) incubation in 0.8 M sucrose and 0 h dehydration with (+LN) or without liquid nitrogen (−LN). incubationin0.8Msucroseand0hdehydrationwith(+LN)orwithoutliquidnitrogen(−LN). incubation in 0.8 M sucrose and 0 h dehydration with (+LN) or without liquid nitrogen (−LN). Int.J.Mol.Sci.2017,18,1477 9of19 Int. J. Mol. Sci. 2017, 18, 1477 9 of 19 To test the effect of cryopreservation using V-cryoplates technique on the transgenic tomato To test the effect of cryopreservation using V-cryoplates technique on the transgenic tomato lines,shoottipsweretreatedin0.3Msucrosefortwoincubationperiods(1or3days)withoutcold lines, shoot tips were treated in 0.3 M sucrose for two incubation periods (1 or 3 days) without cold acclimatizationandin0.3Msucroseforthreedayswithacoldacclimatizationpretreatmentfor3days. acclimatization and in 0.3 M sucrose for three days with a cold acclimatization pretreatment for 3 Thetreatedshoottipsweresubjectedthentoeitherliquidnitrogen(cryopreservation)orkeptatroom days. The treated shoot tips were subjected then to either liquid nitrogen (cryopreservation) or kept temperature(withoutliquidnitrogen). Irrespectivetoincubationtimeorcoldacclimatization, the at room temperature (without liquid nitrogen). Irrespective to incubation time or cold V-cryoplatestechniqueproducedhighsurvivalpercentagesinalltestedtransgeniclinesthatwerenot acclimatization, the V-cryoplates technique produced high survival percentages in all tested subjectedtoliquidnitrogentreatment(Figures6and7). Inaddition,nomajordifferencesinregrowth transgenic lines that were not subjected to liquid nitrogen treatment (Figures 6 and 7). In addition, percentageswereobservedbetweenthetreatednon-cryopreservedtransgeniclines(Figures6and8). no major differences in regrowth percentages were observed between the treated non-cryopreserved Nevertheless,regrowthpercentagesofnon-cryopreservedshoottipswereconsiderablylowerthan transgenic lines (Figures 6 and 8). Nevertheless, regrowth percentages of non-cryopreserved shoot observed survival percentages (Figure 6). Cryopreserved shoot tips (with liquid nitrogen) of all tips were considerably lower than observed survival percentages (Figure 6). Cryopreserved shoot transgeniclinesshowedlowersurvivalpercentageswhencomparedwithnon-cryopreservedshoot tips (with liquid nitrogen) of all transgenic lines showed lower survival percentages when compared tips(Figures6and7). Ontheotherhand,cryopreservedtransgenicSlAREB1#2andSlAREB1#3shoot with non-cryopreserved shoot tips (Figures 6 and 7). On the other hand, cryopreserved transgenic tips treated in 0.3 M sucrose for 3 days with or without cold acclimatization showed significantly SlAREB1#2 and SlAREB1#3 shoot tips treated in 0.3 M sucrose for 3 days with or without cold highersurvivalpercentageswhencomparedwiththenegativecontrol. Noregrowthofcryopreserved acclimatization showed significantly higher survival percentages when compared with the negative shoottipswasobservedinalltransgeniclines(Figures6and8). control. No regrowth of cryopreserved shoot tips was observed in all transgenic lines (Figures 6 and 8). Figure 6. Survival and regrowth percentages of V-cryoplates treated non-cryopreserved and Figure 6. Survival and regrowth percentages of V-cryoplates treated non-cryopreserved and cryopreserved shoots tips of negative control, SlAREB1#2, SlAREB1#3 transgenic tomato plants as cryopreservedshootstipsofnegativecontrol,SlAREB1#2,SlAREB1#3transgenictomatoplantsas affected by pretreatment with 0.3 M sucrose concentration for one day or three days with or without affectedbypretreatmentwith0.3Msucroseconcentrationforonedayorthreedayswithorwithout ccoolldd aacccclliimmaattiizzaattiioonn ((vvaalluueess aarree tthhee mmeeaann ±± SSDD)).. BBaasseedd oonn TTuukkeeyy′(cid:48)ss HHSSDD tteesstt,, ddiiffffeerreenntt lleetttteerr iinnddiiccaatteess significant difference among transgenic lines (p < 0.05) for each combination of cryopreservation and significantdifferenceamongtransgeniclines(p<0.05)foreachcombinationofcryopreservationand cold acclimatization treatment. coldacclimatizationtreatment. For seed cryopreservation experiments, 100 seeds of each transgenic tomato line were subjected Forseedcryopreservationexperiments,100seedsofeachtransgenictomatolineweresubjected to dissection by using silica gel until they reached an equilibrium state where the initial fresh weight todissectionbyusingsilicageluntiltheyreachedanequilibriumstatewheretheinitialfreshweight is equal to dry weight. Thereafter, the treated seeds were subjected then to either liquid nitrogen is equal to dry weight. Thereafter, the treated seeds were subjected then to either liquid nitrogen (cryopreservation) or kept at room temperature (without liquid nitrogen). Seed cryopreservation was (cryopreservation) or kept at room temperature (without liquid nitrogen). Seed cryopreservation performed successfully with the ability of all transgenic lines to germinate after liquid nitrogen wasperformedsuccessfullywiththeabilityofalltransgeniclinestogerminateafterliquidnitrogen treatment (Figure 9; Table 4). However, a significant difference exists between tested transgenic lines treatment (Figure 9; Table 4). However, a significant difference exists between tested transgenic where SlAREB1#3 seeds produced lower percentages when compared with negative control and lines where SlAREB1#3 seeds produced lower percentages when compared with negative control SlAREB1#2. This was also observed in non-cryopreserved seeds indicating that the reduced and SlAREB1#2. This was also observed in non-cryopreserved seeds indicating that the reduced germination in SlAREB1#3 is most likely related to the genotype itself. This was further confirmed by germinationinSlAREB1#3ismostlikelyrelatedtothegenotypeitself. Thiswasfurtherconfirmedby performing a germination test on tested transgenic lines seeds (without silica gel treatment) incubated on filter paper with distilled water (data not shown). Int.J.Mol.Sci.2017,18,1477 10of19 performingagerminationtestontestedtransgeniclinesseeds(withoutsilicageltreatment)incubated onfilterpaperwithdistilledwater(datanotshown). Int. J. Mol. Sci. 2017, 18, 1477 10 of 19 Int. J. Mol. Sci. 2017, 18, 1477 10 of 19 FigurFeig7u.rSeu 7r. vSiuvravlivoafl towf otwtora tnrasngsegneincicli lnineesso ovveerreexxpprreessssiinngg SSlAlARREBE1B 1(S(lASlRAERBE1#B21 a#n2da SnldARSlEABR1#E3B) 1a n#d3) and negatnievgeFaitcgiouvrnee tc r7oo. nSltu(r-rovvl ie(v-avcloe o ncf totrwnotolr) otrla)af natesfgtreerVn iV-cc -lrciynryoeosp pollvaaettereessx ttprrreeeaaststmimnegen nSt ltAoofR f3E 3Bd1ad y(aS yilnAciRnuEcbBua1tb#ioa2n tai noindn 0Si.ln3A M0R.E3 sBuM1c#r3os) usaenc rdaon sde and coldacoclcdnlie magcacatlitivimze aacttoiinzoatnrtoifolo n(r- vf4oer dc 4oa ndytasroywls) iwatfhitteh(r+ (VL+-LNcNry))oo oprrla wwteiistt hhtrooeuuattt mlliiqeqnuuti diod fn 3nit dirtoargyoe ginne c(nu−Lb(−aNtiL)o. nN i)n. 0.3 M sucrose and cold acclimatization for 4 days with (+LN) or without liquid nitrogen (−LN). FigurFeig8Fu.irgReu e8rge. Rr8o.e wRgretoghwrootwhft tohwf o tofw ttwor aotrn tarsnagsnegsngeinecnicilc iln ilnienesess oo ovvveeerrreeexxxppprrreeessssssiininnggg SSlSlAAlRAREREBBE11B ( S(1SlAl(ASRlREAEBRB1#E12#B 2a1 na#dn2 dSal SAnlRdAERSBEl1AB#31R)#E a3Bn) da1n #d3 )and negatnievgenaetcgiovaneti vtcreoo nclot(rn-otvlr oe(l- vc(o-ev nceto crnootnlr)torlao)fl )at efatrfetreV rV- Vc-rc-ycrryoyopoppllalaatteteesss tttrrreeeaaatttmmmeeennntt toofof 3f3 d3daadyy ai nyinccuinubcbautaitobinoa ntiin oi n0n .30i .n3M M0 s.u3 scuMrocsreos usaenc rdaon sde and cold acclimatization for 4 days with (+LN) or without liquid nitrogen (−LN). coldacoclcdli maccaltiimzaattiizoantifoonr f4ord 4a dyasyws iwthith(+ (L+LNN))o orr wwiitthhoouutt lliiqquuidid nnitirtorgoegne (n−L(−NL). N). Table 4. Germination percentages of non-cryopreserved and cryopreserved seeds of negative control, Table 4. Germination percentages of non-cryopreserved and cryopreserved seeds of negative control, Table4.SGlAeRrEmBi1n#a2,t iSolAnRpEeBr1c#e3n ttraagnsegseonficn toomn-actroy polapnrtess. ervedandcryopreservedseedsofnegativecontrol, SlAREB1#2, SlAREB1#3 transgenic tomato plants. SlAREB1#2,SlAREB1#3transgenictomatoplants. Non-Cryopreserved Cryopreserved Transgenic Lines NonN-uCmryboepr roefs Deravyesd NuCmrbyeorp oref sDearvyes d Transgenic Lines N5on-CryoNpurem7s beervr eofd Days10 14 5 7NumCbreyro opf rD1e0sa yesr ved 14 Transgenic Control 60 a5 * ± 7.07 ** 80 7a ± 7.07 84 a1 0± 5.47 100 a1 ±4 0.00 60 a ±5 7.07 78 a ± 77.07 86 a ± 51.04 7 100 a ± 01.040 Lines CoSnlAtrRoEl B1#2 60 a 5*0 ± a 7 ±.0 17N2 .*2u*4 m b8e07r a2o ±af ±7D .40.7a4 y7 s 8748 a a ± ± 5 5.4.477 19040 aa ± ± 5 0.4.070 606 0a a± ±1 27..2047 727 8a a± 4±. 47N7.0 7u m7b6 8ea6r ± ao 5 ±f.4 5D7. 4a7y s96 1a0 ±0 8 a.4 ±9 0.00 SlARSlEABR1E#B25 1#3 50 a2 5± b1 2±. 274.07 7 724 a4 b± 4± .54.74 7 107580 ab ±± 51.04.70 0 951444 ab ±± 85..4497 3600 ba ±±5 71.20.72 4 427 2b a± ±5. 4477.4 7 50 b7 6± a1 0±. 050.4 71 074 b9 6± a5. 4±7 8 .49 14 SlA*R BEBa1s#e3d on Tu2k5 eby ±’ s7 .0H7 SD t4e4s bt, ±d 5i.f4f7e ren50t ble ±t 1te0r.0 0i ndi5c4a tbe ±s 8s.4i9g nifi3c0a nb t± d7.i0f7f ere4n2c be ±a 5m.47o ng5 t0r ba n± s1g0.e0n0 ic l7in4 ebs ± 5 .47 Control 60a*±7.07** 80a±7.07 84a±5.47 100a±0.00 60a±7.07 78a±7.07 86a±5.47 100a±0.00 SlAREB1#2* B(aps5 e<0d a0 .o±0n51) 2Tf.o2ur4k eeayc’hs 7cH2oaSnDc±e n4te.t4rs7att, idonif.7f *8e*ra eV±natl5 ul.e4e7tst earr ei n9th4deai cm±ate5ea.s4n 7s ±ig SnD6if.0 icaa±nt1 2d.i2f4fere7n2cea ±am4.o47ng tr7a6nasg±e5n.i4c7 line9s6 a±8.49 SlAREB1#3(p < 02.505b)± fo7r. 0e7ach co4n4cbe±nt5r.a4t7ion. 5*0* bV±alu10e.0s0 are t5h4eb m±e8a.4n9 ± SD3.0 b±7.07 42b±5.47 50b±10.00 74b±5.47 *BasedonTukey’sHSDtest,differentletterindicatessignificantdifferenceamongtransgeniclines(p<0.05)for eachconcentration.**Valuesarethemean±SD.
Description: