h h In-medium mass and N interaction in vacuum in ′ ′ the linear sigma model 4 ∗ 1 0 2 n a J 0 ShuntaroSakai† 1 DepartmentofPhysics,KyotoUniversity,Kitashirakawa-Oiwakecho,Kyoto606-8502,Japan E-mail: [email protected] ] h DaisukeJido t - l DepartmentofPhysics,TokyoMetropolitanUniversity,Hachioji,Tokyo192-0397,Japan c E-mail: [email protected] u n [ We investigatethe h N two-body interaction in the contextof the h meson mass modification ′ ′ 1 inthenuclearmedium. Ithasbeenarguedinseveralarticlesthatthemassesofh andtheother v ′ 5 pseudoscalarmesons(p , K, h ) shoulddegeneratein the chiral-symmetricphase. Itis expected 3 thatthereductionofthemassdifferencebetweenh andh wouldtakeplaceinthenuclearmatter 2 ′ 2 ifoneassumesthatthedecreaseofthequarkcondensateatthenormalnucleardensityoccurswith . 1 partialrestorationofchiralsymmetry.Atlowdensity,thein-mediumself-energygivingthemass 0 modificationbythemediumeffectcanbeobtainedbytheh Ntwo-bodyT matrix.Thus,wealso 4 ′ 1 estimatetheh N interactionstrengthinvacuumwiththelinearsigmamodelwhichinvolvesthe ′ : v effect of partial restoration of chiral symmetry. In the view of the linear sigma model, we find Xi thattheh ′Ninteractionisattractiveandgeneratedthroughthesigmamesonexchange.Weexpect r thattheinteractionisenoughstrongandfortheexistenceofaboundstateoftheh ′N system. a XVInternationalConferenceonHadronSpectroscopy-Hadron2013 4-8November2013 Nara,Japan ReportNo.:KUNS-2473 ∗ †Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ In-mediumh massandh N two-bodyinteraction ShuntaroSakai ′ ′ 1. Introduction Themassspectrumofhadronsreflectsthesymmetryofitsfundamentaltheory,QuantumChro- modynamics (QCD). Ifone considers simply, nine Nambu–Goldstone (NG)bosons would appear according to the NGtheorem if one assumes the axial part of U(3) U(3) isspontaneously bro- L R × ken downtoU(3) . Nevertheless, whenoneseesthepseudoscalar mesonmasses, onecannot find V the singlet pseudoscalar meson around the pion mass [1]. Taking account of the U (1) anomaly, A we can regard the U (1) symmetry as broken explicitly and the h mass can be expained with the A ′ U (1)anomaly[2]. A Other than the U (1) anomaly, chiral symmetry breaking also plays an important role for A thegeneration oftheh mass. Asdiscussed inRefs. [3],thepseudoscalar singlet mesonandoctet ′ mesondegeneratewhenchiralsymmetryisrestored,e.g. athightemperatureorhighdensity,inthe chirallimiteveniftheU (1)symmetryisbrokenexplicitly. Takingaccountofthedegeneracyofthe A pseudoscalar flavor-singlet and octet meson in the chiral restored phase and the partial restoration of chiral symmetry, weexpect the reduction of the h mass in the nuclear matter. Concerning the ′ chiralrestorationinthenuclearmatter,the35%reductionofthequarkcondensateissuggestedfrom the analysis of the experimental data [4]. Recent experiments have suggested that the h -nucleus ′ optical potential could be attractive with certain strength and could hava a smaller imaginary part [5]. We can interpret the h mass reduction in the nuclear matter as the attractive potential of ′ h in the nuclear matter. The existence of h -mesic nuclei is suggested theoretically [6] and the ′ ′ experimental attempt to observe the h -mesic nuclei is discussed [7]. However, it is not known ′ wellwhethertheinteraction betweenh andnucleonisattractiveorrepulsivedespitetheexistence ′ of someexperimental data [8]. Suchapoor knowledge ofthe h N interaction makesitdifficult to ′ analyze theh properties inthenuclearmatter. ′ In the below, we study the h N two-body interaction with the linear sigma model as a chiral ′ effective model. In the construction of the model, we assume the 35% reduction of the quark condensate. In addition to the h N interaction, we calculate the in-medium h mass which is ′ ′ expected toreduceinthenuclearmatter. ThedetailofthisworkisshowninRef. [9] 2. Method Forthecalculation, weusetheSU(3)linear sigmamodel asachiral effective model[10,11]. The linear sigma model can describe both the chiral restored phase and the spontaneously broken phase. To describe the h N interaction, we introduce the nucleon degree of freedom explicitly ′ basedonthechiralsymmetry. TheLagrangian isgivenas L = 1tr¶ m M¶ m M† m 2trMM† l tr(MM†)2 l ′ trMM† 2 2 − 2 − 4 − 4 (cid:0) (cid:1) +Atr c M†+Mc † +√3B detM+detM† (cid:0) s (cid:1) s (cid:0) ~t ~p h (cid:1) h +N¯i¶/N gN¯ 0 + 8 +ig · +ig 0 +ig 8 N. (2.1) 5 5 5 − (cid:18)√3 √6 √2 √3 √6(cid:19) Here,themesonfield,thenucleon field,andthequarkmassaregiven,respectively, by 8 s l 8 p l M= (cid:229) a a +i(cid:229) a a, N =(p,n)t, c =diag(m ,m ,m ). (2.2) q q s √2 √2 a=0 a=0 2 In-mediumh massandh N two-bodyinteraction ShuntaroSakai ′ ′ V] 280 1000 1/3) [Me 226700 (〈- ss〉)1/3 ]V 890000 mη’ densate 224500 eM[ ssaM 567000000 m Quark Con 222123000 0 0.04 (〈- q 0q.0〉8)1/3 0.12 0.16 noseM 123400000000 0 0.04 η 0m.08π 0.12 0.16 (- Nuclear Density [fm-3] Nuclear Density [fm-3] Figure 1: In-medium quark condensate. The Figure 2: In-medium meson mass. The solid, dashed and solid lines represent the in-medium dotted and dashed lines representthe h , h and ′ u,dandsquarkcondensates,respectively. p masses,respectively. TheLagrangianisconstructedtopossessthesameglobalsymmetryasQCD.Thetermproportional toAexpresses theeffectofthecurrentquarkmass. Here, c corresponds tothecurrentquarkmass and we assume the isospin symmetry, m =m =m , and introduce the SU(3) flavor symmetry q u d breaking withm =m . Thetermproportional toBrepresents theeffectoftheU (1)anomalyand q s A 6 thistermisnotinvariant undertheU (1)transformation. A TheLagrangian contains 6freeparameters whichcannot befixedfrom thesymmetry. Wefix these parameters using the observed meson masses, the meson decay constants and the fact that the 35% reduction of the quark condensate at the normal nuclear density. For the calculation of thein-medium quantities, i.e. themeson masses, weintroduce theeffectofthesymmetric nuclear matterwiththemeanfieldapproximation ofnucleon. In the linear sigma model, the vacuum expectation value of the sigma field s is an order 0 h i parameter ofthechiral symmetry breaking. Now,wehavenon-zero s duetotheexplicit flavor 8 h i symmetrybreaking. Wedetermine s and s tominimizetheeffectivepotential. 0 8 h i h i 3. Results 3.1 In-mediummesonmass First, we show the in-medium quark condensate in Fig. 1. As mentioned above, we assume the35%reduction ofthequarkcondensate, sothevalueoftheu,d quarkcondensate atthenormal nuclear density istheinput value. Here,wehaveassumed theisospin symmetry, sotheu,d quark condensates coinside. Next,wediscussthein-mediummesonmass. Thein-mediumself-energyof themesonscomesfromthediagramsshowninFig. 3. Diagram(a)inFig.3comesfromthenucleon meanfield,while(b)and(c)comefromtheparticle-hole excitation andthecrossedchannel ofthe particle-hole excitation, respectively. Inthechirallimit,theh masscanbewrittenas ′ mh2 =6B s 0 . (3.1) ′ h i B is the coefficient of the determinant term and represents the effect of the U (1) anomaly. From A thisexpression, onecanfindthenecessity oftheU (1)anomalyandthechiralsymmetrybreaking A for the generation of the h mass, and the restoration of chiral symmetry, the reduction of s , ′ 0 h i leads to the reduction of the h mass. Thecalculated in-medium meson masses are shown in Fig. ′ 3 In-mediumh massandh N two-bodyinteraction ShuntaroSakai ′ ′ (a) (b) (c) (a) (b) (c) Figure 3: The diagrams contributing to the in- Figure4: Thediagramswhichcontributetothe h N interaction mediummesonself-energy. ′ 2Fromthecalculation, theh massreducesabout80MeVandtheh massenhances about50MeV ′ at the normal nuclear density. The mass difference between the h and h mass reduces about ′ 130MeV,goingtowardthedegeneracy ofh andh ,aswehaveexpected. ′ 3.2 h N 2-bodyinteraction ′ Here,weshowtheh N 2-bodyinteraction evaluatedwiththesamelinearsigmamodel. Inthe ′ linear sigma model, the diagrams shown in Fig. 4 contribute to the h N interaction. The diagram ′ (a)intheFig. 4showsthecontribution fromthesigmamesonexchange,whilediagram(b)and(c) in Fig. 4 are the contributions from the Born term which contain the nucleon intermediate state. From these diagrams, we have obtained the low-energy h ′N 2-body interaction Vh N in the chiral ′ limitas 6gB Vh N = . (3.2) ′ −√3m2 s 0 Substitutingthevalueofthefixedparameters,wefindthattheh Ninteractioniscomparablystrong ′ totheK¯Nsystem. IntheK¯Nsystem,aboundstate,L (1405),existsduetothestrongK¯Nattraction. WiththeanalogytoL (1405),weexpecttheexistenceoftheh N boundstate. Fortheinvestigation ′ ofthepossibilityoftheboundstate,weanalyzedtheT-matrixoftheh Nsystembecausethebound ′ state appears as the pole of the T-matrix. We obtain the T-matrix with solving the single-channel Lippman-Schwinger equation, T = V+VGT. (3.3) Here,Gistheloopintegral ofh andnucleon, ′ d4q 1 1 G(W) = 2m , (3.4) NZ (2p )4(P q)2 m2 +ie q2 m2 +ie − − N − N P=(W,0)is the 4-momentum ofthe h N in the center ofmass system. As the interaction kernel ′ V, we use the h N interaction obtained with linear sigma model shown in Eq. (3.2). Now, the ′ interaction kernel is momentum-independent, so the equation can be solved with the algebraic way, 1 T(W)= . (3.5) V 1 G(W) − − The obtained T matrix contains a divergence in the loop integral G. Here, we regulate the diver- gence with dimensional regularization and we fix the subtraction constant with the natural renor- malization scheme, which exclude the other dynamics than h and N [12]. We have found a h N ′ ′ 4 In-mediumh massandh N two-bodyinteraction ShuntaroSakai ′ ′ boundstateasapoleoftheobtainedTmatrix. Thebindingenergyis6.2MeV,thescatteringlength is-2.7fmandtheeffectiverangeis0.25fm. Thescatteringlengthistherepulsivesigninournota- tion. Here, we note that the obtained h N scattering length is somewhat larger value compared to ′ thevaluesuggested inRef. [8]. 4. Conclusion In this paper, we have calculated the in-medium meson mass and the h N 2-body interaction ′ with the SU(3) linear sigma model. The medium effect is introduced as one nucleon loop for the calculation of the in-medium meson mass. We have obtained about 80 MeV reduction of the h ′ mass and 130 MeV decrease of the mass difference between h and h . Concerning the h N two- ′ ′ body interaction, we have found the strong attraction of h N comparable to the K¯N system. The ′ h N interactionobtainedfromthelinearsigmamodelisprovidedfromthesigmamesonexchange. ′ ThisisadifferentcharacterfromthatoftheordinaryNGboson,theWeinberg–Tomozawa interac- tionwhichisenergydependent. WiththeanalogyofL (1405), wehaveinvestigated thepossibility oftheh N bound state. Asaresult, wefound ah N bound statewiththebinding energy 6.2MeV ′ ′ and thescattering length -2.7fm. Thecoupling between s andh isnecessary forthegeneration 0 ′ oftheh massandtheh -s coupling leadstotheattraction throughthesigmamesonexchange. ′ ′ 0 Acknowledgments S.S.isaJSPSFellowandappreciates thesupportbyaJSPSGrant-in-Aid(No. 25-1879). Thisworkwaspartiallysupported byGrants-in-AidforScientificResearchfromMEXTandJSPS (No. 25400254 andNo. 24540274). References [1] S.Weinberg,Phys.Rev.D11(1975)3594. [2] E.Witten,Nucl.Phys.B156(1979)269;G.Veneziano,Nucl.Phys.B159(1979)213. [3] T.D.Cohen,Phys.Rev.D54(1996)1867;S.H.Lee,T.Hatsuda,Phys.RevD54(1996)1871;D.Jido, etal.,Phys.Rev.C85(2012)032201. [4] K.Suzuki,etal.,Phys.Rev.Lett.92(2004)72302;E.Friedman,etal.,Phys.Rev.Lett.93(2004) 122302. [5] M.Nanova,etal.,Phys.Lett.B710(2012)600;ibidB727(2013)417. [6] H.Nagahiro,S.Hirenzaki,Phys.Rev,Lett.94(2005)232503;K.Saito,etal.,Prog.Part.Nucl.Phys. 58(2007)1. [7] K.Itahashi,etal.,Prog.Theor.Phys.128(2012)601. [8] P.Moskal,etal.,Phys.Lett.B474(2000)416;P.Moskal,etal.,Phys.Lett.B482(2000)356. [9] S.Sakai,D.Jido,Phys.Rev.C88(2013)064906. [10] J.Schechter,Y.Ueda,Phys.Rev.D3(1971)168. [11] J.T.Renaghan,etal.,Phys.Rev.D62(2000)085008. [12] T.Hyodo,D.Jido,A.Hosaka,Phys.Rev.C78(2008)025203. 5