ebook img

IMT Institute for Advanced Studies, Lucca Lucca, Italy Deterministic Shift Extension of Affine Models PDF

158 Pages·2016·2.49 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview IMT Institute for Advanced Studies, Lucca Lucca, Italy Deterministic Shift Extension of Affine Models

IMT Institute for Advanced Studies, Lucca Lucca, Italy Deterministic Shift Extension of Affine Models for Variance Derivatives PhDPrograminComputerDecisionandSystemScience, curriculum: ManagementScience XXVIIICycle By Gabriele Pompa 2015 Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Advanced StudiesLucca Supervisor: Prof. FabioPammolli,IMTInstituteforAdvancedStudiesLucca Supervisor: Prof. RobertoReno`,UniversityofVerona ThedissertationofGabrielePompaiscurrentlyunderreview. IMT Institute for Advanced Studies, Lucca 2015 Contents Abstract ix 1 AffineModels: preliminaries 3 1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 VIXandVIXderivatives 17 2.1 Markets: definitionsandempiricalfacts . . . . . . . . . . . . . . . . 18 2.1.1 VIXIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 VIXFutures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.3 VIXOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Models: standaloneandconsistentapproach . . . . . . . . . . . . . . 27 2.2.1 StandalonemodelsofVIX . . . . . . . . . . . . . . . . . . . . 27 2.2.2 ConsistentmodelsofS&P500andVIX . . . . . . . . . . . . . 33 3 TheHeston++model 54 3.1 PricingVIXderivativeswiththeHeston++model . . . . . . . . . . 56 3.1.1 Modelspecification . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.2 Nestedmodels . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.3 SPXandVIXderivativespricing . . . . . . . . . . . . . . . . 60 3.2 Ageneraldisplacedaffineframeworkforvolatility . . . . . . . . . 65 3.2.1 AffinemodelingofVIXindex . . . . . . . . . . . . . . . . . . 72 3.2.2 AffinemodelingofVIXderivatives . . . . . . . . . . . . . . 76 4 TheHeston++model: empiricalanalysis 79 4.1 Empiricalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2 Calibrationresults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 vii 4.2.1 Impactoftheshort-term . . . . . . . . . . . . . . . . . . . . . 100 4.2.2 AnalysiswithFellerconditionimposed . . . . . . . . . . . . 111 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A Mathematicalproofsandaddenda 120 A.1 ConditionalcharacteristicfunctionsofHmodels . . . . . . . . . . . 120 A.2 ProofofProposition4: CH++(K,t,T) . . . . . . . . . . . . . . . . . 123 SPX A.3 ProofofProposition5: VIXH++ . . . . . . . . . . . . . . . . . . . . 123 t A.4 ProofofProposition6: FH++(t,T)andCH++(K,t,T) . . . . . . . . 123 VI(cid:104)X (cid:12) (cid:105)VIX A.5 Proofofproposition9: EQ (cid:82)T X ds(cid:12)F . . . . . . . . . . . . . . . 125 t s (cid:12) t A.6 Proof of proposition 11: F (t,T) and C (K,t,T) under the VIX VIX displacedaffineframework . . . . . . . . . . . . . . . . . . . . . . . 128 A.7 Affinityconservationunderdisplacementtransformationofinstan- taneousvolatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References 139 viii Abstract The growing demand for volatility trading and hedging has lead to- day to a liquid market for derivative securities written on it, which made these instruments a widely accepted asset class for trading, di- versifyingandhedging. Thisgrowingmarkethasconsistentlydriven the interest of both practitioner and academic researchers, which can find in VIX and derivatives written on it a valuable source of infor- mations on S&P500 dynamics, over and above vanilla options. Their popularitystemsfromthenegativecorrelationbetweenVIXandSPX index,whichmaketheseinstrumentsidealtotakeapurepositionon thevolatilityoftheS&P500withoutnecessarilytakingapositiononits direction. InthisrespectfuturesonVIXenablethetradertoexpressa visionofthemarketsfuturevolatilityandcalloptionsonVIXofferpro- tectionfrommarketdownturnsinaclear-cutway. Fromthetheoreti- calpointofview,thishasleadtotheneedofaframeworkforconsis- tentlypricingvolatilityderivativesandderivativesontheunderlying, thatistheneedtodesignmodelsabletofittheobservedcross-section ofoptionpricesofbothmarketsandproperlypriceandhedgeexotic products. TheconsistentpricingofvanillaoptionsonS&P500andfu- turesandoptionsonVIXisarequirementofprimaryimportancefor amodeltoprovideanaccuratedescriptionofthevolatilitydynamics. Sinceequityandvolatilitymarketsaredeeplyrelated,butatthesame time show striking differences, the academic debate around the rele- vantfeaturesshouldamodelincorporateinordertobecoherentwith bothmarketsisstillongoing.Inthisthesisweleverageonthegrowing literatureconcerningthedevelopingofmodelsforconsistentlypricing volatility derivatives and derivatives on the underlying and propose the Heston++ model, which is an affine model belonging to the class of models analyzed by Duffie et al. (2000) with a multi-factor volatil- ity dynamics and a rich jumps structure both for price and volatility. The multi-factor Heston (1993) structure enables the model to better ix capture VIX futures term structures along with maturity-dependent smilesofoptions. Moreover, bothcorrelatedandidiosyncraticjumps inpriceandvolatilityfactorshelpinreproducingthepositivesloping skewofoptionsonVIX,thankstoanincreasedleveloftheskewness ofVIXdistributionsubsumedbythemodel.Thekeyfeatureofourap- proachistoimposeanadditivedisplacement,inthespiritofBrigoand Mercurio(2001),ontheinstantaneousvolatilitydynamicswhich,act- ingaslowerboundforitsdynamics,noticeablyhelpsincapturingthe termstructureofvolatility. Bothincreasingthefittotheat-the-money termstructureofvanillaoptions,asalreadypointedoutinPacatietal. (2014),andremarkablycapturingthedifferentshapesexperiencedby thetermstructureoffuturesonVIX.Moreover,weproposeageneral affine framework which extends the affine volatility frameworks of Leippold et al. (2007), Egloff et al. (2010) and Branger et al. (2014) in whichtherisk-neutraldynamicsoftheS&P500indexfeaturesseveral diffusive and jump risk sources and two general forms of displace- mentcharacterizethedynamicsoftheinstantaneousvarianceprocess, which is affine in the state vector of volatility factors. The instanta- neous volatility is modified according to a general affine transforma- tion in which both an additive and a multiplicative displacement are imposed,thefirstsupportingitsdynamics,thesecondmodulatingits amplitude. WecalibratetheHeston++modeljointlyandconsistently on the three markets over a sample period of two years, with over- all absolute (relative) estimation error below 2.2% (4%). We analyze thedifferentcontributionsofjumpsinvolatility. Weaddtwosources ofexponentialupwardjumpsinoneofthetwovolatilityfactors. We first add them separately as an idiosyncratic source of discontinuity (as in the SVVJ model of Sepp (2008b)) and then correlated and syn- chronized with jumps in price (as in the SVCJ model of Duffie et al. (2000)).Finally,weletthetwodiscontinuitysourcesacttogetherinthe full-specified model. For any model considered, we analyze the im- pactofactingadisplacementtransformationonthevolatilitydynam- ics. Inaddition,weperformtheanalysisrestrictingfactorparameters freedom to satisfy the Feller condition. Our empirical results show a decisiveimprovementinthepricingperformanceovernon-displaced x

Description:
Their popularity stems from the negative correlation between VIX and SPX index, which make factors help in repro- ducing the positive sloping skew of options on VIX, thanks to an increased level. 1 capturing the term structure of volatility expressed both through the ATM term structure of vanilla
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.