IMT Institute for Advanced Studies, Lucca Lucca, Italy Deterministic Shift Extension of Affine Models for Variance Derivatives PhDPrograminComputerDecisionandSystemScience, curriculum: ManagementScience XXVIIICycle By Gabriele Pompa 2015 Program Coordinator: Prof. Rocco De Nicola, IMT Institute for Advanced StudiesLucca Supervisor: Prof. FabioPammolli,IMTInstituteforAdvancedStudiesLucca Supervisor: Prof. RobertoReno`,UniversityofVerona ThedissertationofGabrielePompaiscurrentlyunderreview. IMT Institute for Advanced Studies, Lucca 2015 Contents Abstract ix 1 AffineModels: preliminaries 3 1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 VIXandVIXderivatives 17 2.1 Markets: definitionsandempiricalfacts . . . . . . . . . . . . . . . . 18 2.1.1 VIXIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.2 VIXFutures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.3 VIXOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Models: standaloneandconsistentapproach . . . . . . . . . . . . . . 27 2.2.1 StandalonemodelsofVIX . . . . . . . . . . . . . . . . . . . . 27 2.2.2 ConsistentmodelsofS&P500andVIX . . . . . . . . . . . . . 33 3 TheHeston++model 54 3.1 PricingVIXderivativeswiththeHeston++model . . . . . . . . . . 56 3.1.1 Modelspecification . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.2 Nestedmodels . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.3 SPXandVIXderivativespricing . . . . . . . . . . . . . . . . 60 3.2 Ageneraldisplacedaffineframeworkforvolatility . . . . . . . . . 65 3.2.1 AffinemodelingofVIXindex . . . . . . . . . . . . . . . . . . 72 3.2.2 AffinemodelingofVIXderivatives . . . . . . . . . . . . . . 76 4 TheHeston++model: empiricalanalysis 79 4.1 Empiricalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2 Calibrationresults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 vii 4.2.1 Impactoftheshort-term . . . . . . . . . . . . . . . . . . . . . 100 4.2.2 AnalysiswithFellerconditionimposed . . . . . . . . . . . . 111 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 A Mathematicalproofsandaddenda 120 A.1 ConditionalcharacteristicfunctionsofHmodels . . . . . . . . . . . 120 A.2 ProofofProposition4: CH++(K,t,T) . . . . . . . . . . . . . . . . . 123 SPX A.3 ProofofProposition5: VIXH++ . . . . . . . . . . . . . . . . . . . . 123 t A.4 ProofofProposition6: FH++(t,T)andCH++(K,t,T) . . . . . . . . 123 VI(cid:104)X (cid:12) (cid:105)VIX A.5 Proofofproposition9: EQ (cid:82)T X ds(cid:12)F . . . . . . . . . . . . . . . 125 t s (cid:12) t A.6 Proof of proposition 11: F (t,T) and C (K,t,T) under the VIX VIX displacedaffineframework . . . . . . . . . . . . . . . . . . . . . . . 128 A.7 Affinityconservationunderdisplacementtransformationofinstan- taneousvolatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References 139 viii Abstract The growing demand for volatility trading and hedging has lead to- day to a liquid market for derivative securities written on it, which made these instruments a widely accepted asset class for trading, di- versifyingandhedging. Thisgrowingmarkethasconsistentlydriven the interest of both practitioner and academic researchers, which can find in VIX and derivatives written on it a valuable source of infor- mations on S&P500 dynamics, over and above vanilla options. Their popularitystemsfromthenegativecorrelationbetweenVIXandSPX index,whichmaketheseinstrumentsidealtotakeapurepositionon thevolatilityoftheS&P500withoutnecessarilytakingapositiononits direction. InthisrespectfuturesonVIXenablethetradertoexpressa visionofthemarketsfuturevolatilityandcalloptionsonVIXofferpro- tectionfrommarketdownturnsinaclear-cutway. Fromthetheoreti- calpointofview,thishasleadtotheneedofaframeworkforconsis- tentlypricingvolatilityderivativesandderivativesontheunderlying, thatistheneedtodesignmodelsabletofittheobservedcross-section ofoptionpricesofbothmarketsandproperlypriceandhedgeexotic products. TheconsistentpricingofvanillaoptionsonS&P500andfu- turesandoptionsonVIXisarequirementofprimaryimportancefor amodeltoprovideanaccuratedescriptionofthevolatilitydynamics. Sinceequityandvolatilitymarketsaredeeplyrelated,butatthesame time show striking differences, the academic debate around the rele- vantfeaturesshouldamodelincorporateinordertobecoherentwith bothmarketsisstillongoing.Inthisthesisweleverageonthegrowing literatureconcerningthedevelopingofmodelsforconsistentlypricing volatility derivatives and derivatives on the underlying and propose the Heston++ model, which is an affine model belonging to the class of models analyzed by Duffie et al. (2000) with a multi-factor volatil- ity dynamics and a rich jumps structure both for price and volatility. The multi-factor Heston (1993) structure enables the model to better ix capture VIX futures term structures along with maturity-dependent smilesofoptions. Moreover, bothcorrelatedandidiosyncraticjumps inpriceandvolatilityfactorshelpinreproducingthepositivesloping skewofoptionsonVIX,thankstoanincreasedleveloftheskewness ofVIXdistributionsubsumedbythemodel.Thekeyfeatureofourap- proachistoimposeanadditivedisplacement,inthespiritofBrigoand Mercurio(2001),ontheinstantaneousvolatilitydynamicswhich,act- ingaslowerboundforitsdynamics,noticeablyhelpsincapturingthe termstructureofvolatility. Bothincreasingthefittotheat-the-money termstructureofvanillaoptions,asalreadypointedoutinPacatietal. (2014),andremarkablycapturingthedifferentshapesexperiencedby thetermstructureoffuturesonVIX.Moreover,weproposeageneral affine framework which extends the affine volatility frameworks of Leippold et al. (2007), Egloff et al. (2010) and Branger et al. (2014) in whichtherisk-neutraldynamicsoftheS&P500indexfeaturesseveral diffusive and jump risk sources and two general forms of displace- mentcharacterizethedynamicsoftheinstantaneousvarianceprocess, which is affine in the state vector of volatility factors. The instanta- neous volatility is modified according to a general affine transforma- tion in which both an additive and a multiplicative displacement are imposed,thefirstsupportingitsdynamics,thesecondmodulatingits amplitude. WecalibratetheHeston++modeljointlyandconsistently on the three markets over a sample period of two years, with over- all absolute (relative) estimation error below 2.2% (4%). We analyze thedifferentcontributionsofjumpsinvolatility. Weaddtwosources ofexponentialupwardjumpsinoneofthetwovolatilityfactors. We first add them separately as an idiosyncratic source of discontinuity (as in the SVVJ model of Sepp (2008b)) and then correlated and syn- chronized with jumps in price (as in the SVCJ model of Duffie et al. (2000)).Finally,weletthetwodiscontinuitysourcesacttogetherinthe full-specified model. For any model considered, we analyze the im- pactofactingadisplacementtransformationonthevolatilitydynam- ics. Inaddition,weperformtheanalysisrestrictingfactorparameters freedom to satisfy the Feller condition. Our empirical results show a decisiveimprovementinthepricingperformanceovernon-displaced x
Description: