Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor TheresearchdescribedinthisthesiswasperformedinthesectionPhysicsofNuclear Reactors(PNR),ofthedepartmentRadiation,Radionuclides&Reactors(R3),oftheDelft UniversityofTechnology,Delft,TheNetherlands. Visitingaddress:Mekelweg15,2629JBDelft,TheNetherlands. Support:PartsoftheworkpresentedinthisthesiswerefinancedundertheEuropean Commission/EURATOM6thFrameworkProgramme’GasCooledFastReactorSpecific TargetedREsearchProgramme’(GCFR-STREP),contractnumber012773(FI6O),effective March2005-February2009. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor Proefschrift terverkrijgingvandegraad van doctor aan deTechnischeUniversiteitDelft, op gezag van deRector Magnificusprof. dr. ir. J.T.Fokkema, voorzittervanhet CollegevoorPromoties, inhet openbaarteverdedigen opdinsdag12december 2006om12:30uur door: WillemFrederik GeertVAN ROOIJEN Natuurkundigingenieur, geboren teHaarlem Ditproefschriftisgoedgekeurddoordepromotoren: Prof.dr. ir. T.H.J.J.vanderHagen Prof.[em]dr. ir. H.vanDam Toegevoegdpromotor: Dr. ir. J.L.Kloosterman Samenstellingpromotiecommissie: RectorMagnificus,voorzitter Prof.dr. ir. T.H.J.J.vanderHagen TechnischeUniversiteitDelft Prof.[em]dr. ir. H.vanDam TechnischeUniversiteitDelft Dr. ir. J.L.Kloosterman TechnischeUniversiteitDelft Prof.W.M.Stacey,Ph.D. GeorgiaInstituteofTechnology,USA Prof.dr. M.J.vandenHoven TechnischeUniversiteitDelft Prof.dr. ir. A.H.M.Verkooijen TechnischeUniversiteitDelft Dr. G.Rimpault CEACadarache,France (cid:13)c 2006,W.F.G.vanRooijenandIOSPress Allrightsreserved. Nopartofthisbookmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,withoutpriorpermissionfromthepublisher. ISBN1-58603-696-3 Keywords: Gas Cooled Fast Reactor, Generation IV Nuclear Reactor, Closed Fuel Cycle, NuclidePerturbationTheory,PassiveSafety,LithiumInjectionModule PublishedanddistributedbyIOSPressundertheimprintDelftUniversityPress Publisher IOSPress NieuweHemweg6b 1013BGAmsterdam TheNetherlands tel:+31-20-6883355 fax:+31-20-6870019 email:[email protected] www.iospress.nl www.dupress.nl LEGALNOTICE Thepublisherisnotresponsiblefortheusewhichmightbemadeofthefollowinginforma- tion. PRINTEDINTHENETHERLANDS Contents 1 Introduction 1 1.1 Nuclearreactortypesrelevantforthisthesis . . . . . . . . . . . . . . . . . . 1 1.2 Thenuclearfuelcycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Safetyoffastreactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 TheGenerationIVinitiative . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Contentsofthisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 HistoryofGCFRdevelopment 13 2.1 Germany:theGasBreederMemorandum . . . . . . . . . . . . . . . . . . . 14 2.2 US:GeneralAtomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Europe:theGasBreederReactorAssociation . . . . . . . . . . . . . . . . . 15 2.4 TheSovietUnion:dissociatingcoolant. . . . . . . . . . . . . . . . . . . . . 18 2.5 UK:ETGBR/EGCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Japan:prismaticfuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 ThefutureofGCFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 BurnupandfuelcyclestudyforaGCFRusingCoatedParticlefuel 25 3.1 FuelforaGasCooledFastReactor . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Reprocessingstrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 CoatedparticlefuelforaGasCooledFastReactor . . . . . . . . . . . . . . 27 3.4 Fuelsubassemblydesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 BurnupstudyofthecoatedparticleGCFR . . . . . . . . . . . . . . . . . . . 33 3.6 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Extendedtimecalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.8 MovingontoGFR600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.9 Positivereactivityswingandtheperformanceparameterh . . . . . . . . . . 45 3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.A Appendix:Temperatureprofileinafuelpebble . . . . . . . . . . . . . . . . 49 4 BreedingGainfortheclosednuclearfuelcycle:theory 53 4.1 BreedingRatioandBreedingGain . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Definitionofw~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Reprocessingformalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Nuclideperturbationtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 v Contents 4.5 Limitationsofperturbationtheory . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 Applicationsofperturbationtheory. . . . . . . . . . . . . . . . . . . . . . . 65 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Breedinggainfortheclosednuclearfuelcycle: application 67 5.1 Reactormodelandcalculationaltools . . . . . . . . . . . . . . . . . . . . . 67 5.2 Comparisonwithexistingdefinitionsofw~ . . . . . . . . . . . . . . . . . . . 71 5.3 Illustrationsofadjointtransmutationcalculations . . . . . . . . . . . . . . . 71 5.4 BreedingGaincalculationsontheGFR600fuelcycle . . . . . . . . . . . . . 74 5.5 Longtermbehaviorofbreedinggainandk . . . . . . . . . . . . . . . . . . 77 eff 5.6 Checkingthevalidityofthequasi-staticapproximationforw~ . . . . . . . . . 79 5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 Passivereactivitycontrol:LithiumInjectionModule 83 6.1 Passivereactivitycontrol:optionsandconstraints . . . . . . . . . . . . . . . 83 6.2 Neutronicdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 ThermalhydraulicmodelofGFR600 . . . . . . . . . . . . . . . . . . . . . . 90 6.4 Resultsoftransientsimulations . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7 Conclusionsanddiscussion 105 A TheLOWFATcode 109 A.1 Obtainingthenucleardataforthetransmutationmatrix . . . . . . . . . . . . 110 A.2 Thestiffnessproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.3 ComparisonbetweenORIGEN-SandLOWFAT . . . . . . . . . . . . . . . . 110 A.4 Adjointtransmutationcalculations . . . . . . . . . . . . . . . . . . . . . . . 111 B Propertiesofceramics 113 B.1 Definitionandbasicpropertiesofceramics. . . . . . . . . . . . . . . . . . . 113 B.2 Fracturebehaviorofceramics. . . . . . . . . . . . . . . . . . . . . . . . . . 115 B.3 Thermalbehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 B.4 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 B.5 Fiberreinforcedceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 B.6 Interactionofneutronswithceramics. . . . . . . . . . . . . . . . . . . . . . 121 Bibliography 123 ListofSymbols 129 ListofPublications 135 Summary 137 Samenvatting 139 vi Contents Acknowledgments 141 CurriculumVitae 143 vii Contents viii List of Figures 1.1 Energydependenceofηforseveralfissilenuclides . . . . . . . . . . . . . . 2 1.2 Energydependenceofαforseveralnuclides . . . . . . . . . . . . . . . . . . 6 1.3 FeasibledesignregionforGenerationIVGCFRs . . . . . . . . . . . . . . . 11 2.1 CorelayoutoftheGeneralAtomicsGCFR. . . . . . . . . . . . . . . . . . . 15 2.2 CrosssectionalviewoftheGBR-4PCRV . . . . . . . . . . . . . . . . . . . 17 2.3 FuelassembliesforGBR-2andGBR-3 . . . . . . . . . . . . . . . . . . . . 18 2.4 GBR-4fuelassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 JAEAGenerationIVGCFRprismaticfuelblock . . . . . . . . . . . . . . . 21 2.6 Generation2400MWthGCFRprimarycircuitoverview . . . . . . . . . . . 22 3.1 TRISOcoatedparticlefuel . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 TheHollowSpherefuelelement . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Annularcylinderfuelassembly . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 CorelayoutforHollowSphereGCFR . . . . . . . . . . . . . . . . . . . . . 34 3.5 Calculationalpathirradiationcalculation . . . . . . . . . . . . . . . . . . . . 35 3.6 Typicaltimedependenceofk forcoatedparticleGCFR . . . . . . . . . . . 39 eff 3.7 FluxandabsorptioncrosssectionforCPGCFR . . . . . . . . . . . . . . . . 40 3.8 TypicalevolutionofPu-isotopesduringirradiation . . . . . . . . . . . . . . 42 3.10 FluxspectraMOxfuel,MAfuel . . . . . . . . . . . . . . . . . . . . . . . . 45 3.11 k ,ρasfunctionoftimeforMAfuel . . . . . . . . . . . . . . . . . . . . . 46 eff 3.13 Graphitelambdaasafunctionoftemperatureandneutronfluence . . . . . . 51 4.1 IllustrativeexampleofR=hw~,N~(t)i . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Materialflowinthereprocessingfuelcycle . . . . . . . . . . . . . . . . . . 59 5.1 GFR600fuelassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Threeadjointsfor241Pu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Weightedadjointsfor238U,237Npand241Am . . . . . . . . . . . . . . . . . 74 5.4 k andRformultiplerecyclingwithtwofuelcyclestrategies. . . . . . . . . 78 eff 5.5 CheckofthequasistaticapproximationforBG. . . . . . . . . . . . . . . . . 81 6.1 GenerationIVGCFRcoreoverview . . . . . . . . . . . . . . . . . . . . . . 85 6.2 LithiumInjectionModuledesign . . . . . . . . . . . . . . . . . . . . . . . . 89 ix ListofFigures 6.3 GFR600corelayoutwithLIMs. . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4 GFR600primarycircuitlayout . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5 CATHARE2modeloftheGFR600core . . . . . . . . . . . . . . . . . . . . 92 6.6 CATHARE2modeloftheGFR600coreandDHRcircuits . . . . . . . . . . 93 6.7 DecayheatcurveforGFR600 . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.8 PowerduringunprotectedLossofFlow(ULOF) . . . . . . . . . . . . . . . . 97 6.9 TemperatureduringunprotectedLossofFlow(ULOF) . . . . . . . . . . . . 97 6.10 PowerduringLossofFlowwithLIMs . . . . . . . . . . . . . . . . . . . . . 98 6.11 TemperatureduringLossofFlowwithLIMs. . . . . . . . . . . . . . . . . . 99 6.12 LongtermreactivityfollowingLossofFlowGFR600 . . . . . . . . . . . . . 99 6.13 LongtermreactivityafterLossofFlow,using1or3DHRcircuits . . . . . . 100 6.14 PowerduringControlRodWithdrawalwithLIMs . . . . . . . . . . . . . . . 101 6.15 TemperatureduringControlRodWithdrawalwithLIMs . . . . . . . . . . . 101 6.16 PowerforControlRodEjection,withLIMs . . . . . . . . . . . . . . . . . . 102 6.17 TemperatureforControlRodEjectionwithLIMs . . . . . . . . . . . . . . . 103 A.1 ComparisonofforwardcalculationsLOWFATvs. ORIGEN-S . . . . . . . . 111 A.2 ExampleadjointtransmutationcalculationwithLOWFAT. . . . . . . . . . . 112 B.1 Crosssectionof(n,p)reactionfornitrogen-15 . . . . . . . . . . . . . . . . . 115 B.2 Lennard-Jonespotentialforceramicmaterial . . . . . . . . . . . . . . . . . 116 B.3 Stressintensificationatthetipsofacrackinaceramicmaterial . . . . . . . . 117 B.4 Thermalshockinaceramicmaterial . . . . . . . . . . . . . . . . . . . . . . 119 B.5 Plasticityofceramicmaterials . . . . . . . . . . . . . . . . . . . . . . . . . 120 B.6 Reinforcedceramicsforextrastrength . . . . . . . . . . . . . . . . . . . . . 121 x
Description: