ebook img

Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor PDF

156 Pages·2006·2.95 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor

Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor TheresearchdescribedinthisthesiswasperformedinthesectionPhysicsofNuclear Reactors(PNR),ofthedepartmentRadiation,Radionuclides&Reactors(R3),oftheDelft UniversityofTechnology,Delft,TheNetherlands. Visitingaddress:Mekelweg15,2629JBDelft,TheNetherlands. Support:PartsoftheworkpresentedinthisthesiswerefinancedundertheEuropean Commission/EURATOM6thFrameworkProgramme’GasCooledFastReactorSpecific TargetedREsearchProgramme’(GCFR-STREP),contractnumber012773(FI6O),effective March2005-February2009. Improving Fuel Cycle Design and Safety Characteristics of a Gas Cooled Fast Reactor Proefschrift terverkrijgingvandegraad van doctor aan deTechnischeUniversiteitDelft, op gezag van deRector Magnificusprof. dr. ir. J.T.Fokkema, voorzittervanhet CollegevoorPromoties, inhet openbaarteverdedigen opdinsdag12december 2006om12:30uur door: WillemFrederik GeertVAN ROOIJEN Natuurkundigingenieur, geboren teHaarlem Ditproefschriftisgoedgekeurddoordepromotoren: Prof.dr. ir. T.H.J.J.vanderHagen Prof.[em]dr. ir. H.vanDam Toegevoegdpromotor: Dr. ir. J.L.Kloosterman Samenstellingpromotiecommissie: RectorMagnificus,voorzitter Prof.dr. ir. T.H.J.J.vanderHagen TechnischeUniversiteitDelft Prof.[em]dr. ir. H.vanDam TechnischeUniversiteitDelft Dr. ir. J.L.Kloosterman TechnischeUniversiteitDelft Prof.W.M.Stacey,Ph.D. GeorgiaInstituteofTechnology,USA Prof.dr. M.J.vandenHoven TechnischeUniversiteitDelft Prof.dr. ir. A.H.M.Verkooijen TechnischeUniversiteitDelft Dr. G.Rimpault CEACadarache,France (cid:13)c 2006,W.F.G.vanRooijenandIOSPress Allrightsreserved. Nopartofthisbookmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,withoutpriorpermissionfromthepublisher. ISBN1-58603-696-3 Keywords: Gas Cooled Fast Reactor, Generation IV Nuclear Reactor, Closed Fuel Cycle, NuclidePerturbationTheory,PassiveSafety,LithiumInjectionModule PublishedanddistributedbyIOSPressundertheimprintDelftUniversityPress Publisher IOSPress NieuweHemweg6b 1013BGAmsterdam TheNetherlands tel:+31-20-6883355 fax:+31-20-6870019 email:[email protected] www.iospress.nl www.dupress.nl LEGALNOTICE Thepublisherisnotresponsiblefortheusewhichmightbemadeofthefollowinginforma- tion. PRINTEDINTHENETHERLANDS Contents 1 Introduction 1 1.1 Nuclearreactortypesrelevantforthisthesis . . . . . . . . . . . . . . . . . . 1 1.2 Thenuclearfuelcycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Safetyoffastreactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 TheGenerationIVinitiative . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Contentsofthisthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 HistoryofGCFRdevelopment 13 2.1 Germany:theGasBreederMemorandum . . . . . . . . . . . . . . . . . . . 14 2.2 US:GeneralAtomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Europe:theGasBreederReactorAssociation . . . . . . . . . . . . . . . . . 15 2.4 TheSovietUnion:dissociatingcoolant. . . . . . . . . . . . . . . . . . . . . 18 2.5 UK:ETGBR/EGCR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Japan:prismaticfuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 ThefutureofGCFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 BurnupandfuelcyclestudyforaGCFRusingCoatedParticlefuel 25 3.1 FuelforaGasCooledFastReactor . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Reprocessingstrategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 CoatedparticlefuelforaGasCooledFastReactor . . . . . . . . . . . . . . 27 3.4 Fuelsubassemblydesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 BurnupstudyofthecoatedparticleGCFR . . . . . . . . . . . . . . . . . . . 33 3.6 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Extendedtimecalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.8 MovingontoGFR600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.9 Positivereactivityswingandtheperformanceparameterh . . . . . . . . . . 45 3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.A Appendix:Temperatureprofileinafuelpebble . . . . . . . . . . . . . . . . 49 4 BreedingGainfortheclosednuclearfuelcycle:theory 53 4.1 BreedingRatioandBreedingGain . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Definitionofw~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3 Reprocessingformalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Nuclideperturbationtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 v Contents 4.5 Limitationsofperturbationtheory . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 Applicationsofperturbationtheory. . . . . . . . . . . . . . . . . . . . . . . 65 4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5 Breedinggainfortheclosednuclearfuelcycle: application 67 5.1 Reactormodelandcalculationaltools . . . . . . . . . . . . . . . . . . . . . 67 5.2 Comparisonwithexistingdefinitionsofw~ . . . . . . . . . . . . . . . . . . . 71 5.3 Illustrationsofadjointtransmutationcalculations . . . . . . . . . . . . . . . 71 5.4 BreedingGaincalculationsontheGFR600fuelcycle . . . . . . . . . . . . . 74 5.5 Longtermbehaviorofbreedinggainandk . . . . . . . . . . . . . . . . . . 77 eff 5.6 Checkingthevalidityofthequasi-staticapproximationforw~ . . . . . . . . . 79 5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 Passivereactivitycontrol:LithiumInjectionModule 83 6.1 Passivereactivitycontrol:optionsandconstraints . . . . . . . . . . . . . . . 83 6.2 Neutronicdesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 ThermalhydraulicmodelofGFR600 . . . . . . . . . . . . . . . . . . . . . . 90 6.4 Resultsoftransientsimulations . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7 Conclusionsanddiscussion 105 A TheLOWFATcode 109 A.1 Obtainingthenucleardataforthetransmutationmatrix . . . . . . . . . . . . 110 A.2 Thestiffnessproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 A.3 ComparisonbetweenORIGEN-SandLOWFAT . . . . . . . . . . . . . . . . 110 A.4 Adjointtransmutationcalculations . . . . . . . . . . . . . . . . . . . . . . . 111 B Propertiesofceramics 113 B.1 Definitionandbasicpropertiesofceramics. . . . . . . . . . . . . . . . . . . 113 B.2 Fracturebehaviorofceramics. . . . . . . . . . . . . . . . . . . . . . . . . . 115 B.3 Thermalbehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 B.4 Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 B.5 Fiberreinforcedceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 B.6 Interactionofneutronswithceramics. . . . . . . . . . . . . . . . . . . . . . 121 Bibliography 123 ListofSymbols 129 ListofPublications 135 Summary 137 Samenvatting 139 vi Contents Acknowledgments 141 CurriculumVitae 143 vii Contents viii List of Figures 1.1 Energydependenceofηforseveralfissilenuclides . . . . . . . . . . . . . . 2 1.2 Energydependenceofαforseveralnuclides . . . . . . . . . . . . . . . . . . 6 1.3 FeasibledesignregionforGenerationIVGCFRs . . . . . . . . . . . . . . . 11 2.1 CorelayoutoftheGeneralAtomicsGCFR. . . . . . . . . . . . . . . . . . . 15 2.2 CrosssectionalviewoftheGBR-4PCRV . . . . . . . . . . . . . . . . . . . 17 2.3 FuelassembliesforGBR-2andGBR-3 . . . . . . . . . . . . . . . . . . . . 18 2.4 GBR-4fuelassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 JAEAGenerationIVGCFRprismaticfuelblock . . . . . . . . . . . . . . . 21 2.6 Generation2400MWthGCFRprimarycircuitoverview . . . . . . . . . . . 22 3.1 TRISOcoatedparticlefuel . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 TheHollowSpherefuelelement . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Annularcylinderfuelassembly . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4 CorelayoutforHollowSphereGCFR . . . . . . . . . . . . . . . . . . . . . 34 3.5 Calculationalpathirradiationcalculation . . . . . . . . . . . . . . . . . . . . 35 3.6 Typicaltimedependenceofk forcoatedparticleGCFR . . . . . . . . . . . 39 eff 3.7 FluxandabsorptioncrosssectionforCPGCFR . . . . . . . . . . . . . . . . 40 3.8 TypicalevolutionofPu-isotopesduringirradiation . . . . . . . . . . . . . . 42 3.10 FluxspectraMOxfuel,MAfuel . . . . . . . . . . . . . . . . . . . . . . . . 45 3.11 k ,ρasfunctionoftimeforMAfuel . . . . . . . . . . . . . . . . . . . . . 46 eff 3.13 Graphitelambdaasafunctionoftemperatureandneutronfluence . . . . . . 51 4.1 IllustrativeexampleofR=hw~,N~(t)i . . . . . . . . . . . . . . . . . . . . . . 56 4.2 Materialflowinthereprocessingfuelcycle . . . . . . . . . . . . . . . . . . 59 5.1 GFR600fuelassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.2 Threeadjointsfor241Pu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.3 Weightedadjointsfor238U,237Npand241Am . . . . . . . . . . . . . . . . . 74 5.4 k andRformultiplerecyclingwithtwofuelcyclestrategies. . . . . . . . . 78 eff 5.5 CheckofthequasistaticapproximationforBG. . . . . . . . . . . . . . . . . 81 6.1 GenerationIVGCFRcoreoverview . . . . . . . . . . . . . . . . . . . . . . 85 6.2 LithiumInjectionModuledesign . . . . . . . . . . . . . . . . . . . . . . . . 89 ix ListofFigures 6.3 GFR600corelayoutwithLIMs. . . . . . . . . . . . . . . . . . . . . . . . . 90 6.4 GFR600primarycircuitlayout . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.5 CATHARE2modeloftheGFR600core . . . . . . . . . . . . . . . . . . . . 92 6.6 CATHARE2modeloftheGFR600coreandDHRcircuits . . . . . . . . . . 93 6.7 DecayheatcurveforGFR600 . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.8 PowerduringunprotectedLossofFlow(ULOF) . . . . . . . . . . . . . . . . 97 6.9 TemperatureduringunprotectedLossofFlow(ULOF) . . . . . . . . . . . . 97 6.10 PowerduringLossofFlowwithLIMs . . . . . . . . . . . . . . . . . . . . . 98 6.11 TemperatureduringLossofFlowwithLIMs. . . . . . . . . . . . . . . . . . 99 6.12 LongtermreactivityfollowingLossofFlowGFR600 . . . . . . . . . . . . . 99 6.13 LongtermreactivityafterLossofFlow,using1or3DHRcircuits . . . . . . 100 6.14 PowerduringControlRodWithdrawalwithLIMs . . . . . . . . . . . . . . . 101 6.15 TemperatureduringControlRodWithdrawalwithLIMs . . . . . . . . . . . 101 6.16 PowerforControlRodEjection,withLIMs . . . . . . . . . . . . . . . . . . 102 6.17 TemperatureforControlRodEjectionwithLIMs . . . . . . . . . . . . . . . 103 A.1 ComparisonofforwardcalculationsLOWFATvs. ORIGEN-S . . . . . . . . 111 A.2 ExampleadjointtransmutationcalculationwithLOWFAT. . . . . . . . . . . 112 B.1 Crosssectionof(n,p)reactionfornitrogen-15 . . . . . . . . . . . . . . . . . 115 B.2 Lennard-Jonespotentialforceramicmaterial . . . . . . . . . . . . . . . . . 116 B.3 Stressintensificationatthetipsofacrackinaceramicmaterial . . . . . . . . 117 B.4 Thermalshockinaceramicmaterial . . . . . . . . . . . . . . . . . . . . . . 119 B.5 Plasticityofceramicmaterials . . . . . . . . . . . . . . . . . . . . . . . . . 120 B.6 Reinforcedceramicsforextrastrength . . . . . . . . . . . . . . . . . . . . . 121 x

Description:
Samenvatting. 139 vi .. of energy released per fission, and the product Σf φ is the number of fissions per unit time per . Partitioning and Transmutation nuclear fuel is mainly due to the presence of plutonium and Minor Actinides.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.