UnderconsiderationforpublicationinTheoryandPracticeofLogicProgramming 1 Improving Adherence to Heart Failure Management Guidelines via Abductive Reasoning 7 1 ZhuoChen,ElmerSalazar,KyleMarple,GopalGupta,LakshmanTamil 0 2 UniversityofTexasatDallas,Texas,USA. (e-mail:{zxc130130,ees101020,kbm072000,gupta,laxman}@utdallas.edu) l u SandeepDas,AlpeshAmin J 6 CardiologyDivision,DepartmentofInternalMedicine,UniversityofTexasSouthwesternMedicalCenter,Texas,USA. 1 (e-mail:{Sandeep.Das,Alpesh.Amin}@UTSouthwestern.edu) ] submitted1January2003;revised1January2003;accepted1January2003 I A . s Abstract c [ Management ofchronicdiseasessuchasheartfailure(HF)isamajorpublichealthproblem.Astandard approachtomanagingchronicdiseasesbymedicalcommunityistohaveacommitteeofexpertsdevelop 1 guidelinesthatallphysiciansshouldfollow.Duetotheircomplexity,theseguidelinesaredifficulttoimple- v 7 mentandareadoptedslowlybythemedicalcommunityatlarge.Wehavedevelopedaphysicianadvisory 5 systemthatcodestheentiresetofclinicalpracticeguidelinesformanagingHFusinganswersetprogram- 9 ming(ASP).Inthispaperweshowhowabductivereasoningcanbedeployedtofindmissingsymptomsand 4 conditionsthatthepatientmustexhibitinorderforatreatmentprescribedbyaphysiciantoworkeffectively. 0 Thus,ifaphysiciandoesnotmakeanappropriaterecommendation ormakesanon-adherent recommen- 7. dation,oursystemwilladvisethephysicianaboutsymptomsandconditionsthatmustbeineffectforthat 0 recommendationtoapply.ItisunderconsiderationforacceptanceinTPLP. 7 KEYWORDS:chronicdiseasemanagement,abduction,answersetprogramming,knowledgerepresentation 1 : v i X r a 1 Introduction Heartfailure is theinability ofthe heartto keepup with thedemandsof the body.As a result, aninadequateamountofbloodissuppliedtothehumanbodyand/orpressuresintheheartcan rise. This can cause congestionof bloodin the lungs, abdomen,legs. All of this culminatesin symptomsofexerciseintolerance.HalfofthepeoplediagnosedwithHFdiewithinfiveyears.In U.S.alonethereare5.7millionpeoplecurrentlylivingwithHF(Goetal.2013). OptimalmanagementofHFrequiresadherencetoevidence-basedclinicalpracticeguidelines. TheAmericanCollegeofCardiologyFoundation(ACCF)/AmericanHeartAssociation(AHA) GuidelinesfortheManagementofHeartFailurehavebeencreatedbyamulti-disciplinarycom- mittee of experts and are based on thorough review of best available clinical evidence on the managementofheartfailure.Theyrepresentaconsensusamongexpertsontheappropriatetreat- mentandmanagementofHF(Jacobsetal.2013). Althoughevidenced-basedguidelinesshouldbethebasisforalldiseasemanagement,physi- cians’adherencetothoseguidelinesispoor(Cabanaetal.1999).Oneofthereasonsforthisis thatguidelinescanbequitecomplex,asisthecaseforHFmanagement.Forexample,morethan 2 Z.Chen,E.Salazar,K.Marple,L.Tamil,G.Gupta,S.Das,A.Amin 100variableshavebeenassociatedwithmortalityandre-hospitalizationinheartfailurepatients. Inthe2013ACCF/AHAGuidelinefortheManagementofHeartFailure(Yancyetal.2013),the variablesrangefromstraightforwardinformationlikeageandsextosophisticateddatalikeelec- trocardiogramresultsandthehistoryofHF-relatedsymptomsanddiseases.Therearemorethan 60complexrulestointegrateallthesedatatogether.Suchcomplexitycanleadtodelaysinadop- tionandmissedopportunitiesatgivingeffectiverecommendationsforeventhemostexperienced healthcareproviders(Group2006). We have developed a physician advisory system that assists physicians in adhering to the guidelines for managing HF (Chenetal.2016) based on ASP (MarekandTruszczyn´ski1999; Niemela¨1999). This system automates the 2013 ACCF/AHA Guideline for the Management of Heart Failure and gives recommendationssimilar to human physicians that strictly follows the guidelines, even if the information about the patient is incomplete. This system has been implemented using the the s(ASP) system (Marpleetal.2016b), a goal-directed ASP system (Marpleetal.2012).Moreover,knowledgepatternsin theguidelinewereidentifiedandmodu- larized using ASP. An example of the application of knowledge patterns in the system can be found in Sect. 3. The outputs the physician advisory system produces have been found to be consistent with our interpretation of the guidelines. The system has also been tested with the helpofourcardiologistco-authorsonrepresentativepatientdataprovidedbythem.Thesetests showed that the system makes treatment recommendationsconsistent with physicians’ recom- mendations.Infact,insomecasesthesystemmadetreatmentrecommendationsthatresultedin physiciansrevisingtheiroriginaltreatmentrecommendations. In this paper we build on our previouswork and show how abductivereasoningcan be em- ployedin oursystem to help physiciansvalidatetheir treatmentrecommendations.In practice, physiciansoftenneedtogivetreatmentplansbasedonincompleteinformationaboutapatient, especially in underdevelopedareas where complete information about a patient is not always available.Weshowhowourphysicianadvisorysystemhelpstoensurethecompliancewiththe 2013ACCF/AHAGuidelinefortheManagementofHeartFailureviaabductivereasoning.The coreideaisthatthe(non-adherent)physician-prescribedtreatmentistreatedasanobservation andfedasaquerytoourphysicianadvisorysystem,whichisthenrunintheabductivemodeto discoverthenecessaryevidencethatmustbeavailableforthegiventreatmenttobeapplicable. Thisevidencemaybesymptomsthatthepatientmustexhibitortheconditionsthatmustapply tothepatientforthe(non-adherent)physician-prescribedtreatmenttobeapplicable.Itislikely thatthephysicianoverlookedestablishingthisevidence,whichisnowproducedviaabduction. Inlightofthisabducedevidence,thephysicianmaywanttore-evaluatehis/hertreatmentrecom- mendation(s). Casestudiesbasedonthismethodologyanditsresultsarealsopresented.Giventhatcompli- ancewiththeguidelinesispoor(Cabanaetal.1999),weshowhowabductioncanbeusedtoin- formaphysicianaboutsymptomsandconditionsthatmustexistinapatientforanon-guideline- complianttreatmentrecommendationtobeapplicable.Ourabduction-poweredsystemcanalso beusedasatoolfortrainingphysiciansformanagingHF.Thesystemhasbeenevaluatedonten representativepatients, data for which was providedby our cardiologistco-authors. In four of thesetencasesoursystempointedoutsymptoms/conditionsthatmayhavebeenoverlooked.In threeofthetencases,oursystemcouldnotabduceanythingtovalidatetheoriginalrecommen- dation,indicatingthatthe recommendationshouldbe rejectedorclosely examined.Inthreeof thecases,thephysician’srecommendationwerecorrect,i.e.,compliantwiththeguidelines. Ourresearchmakesthefollowingcontribution: TheoryandPracticeofLogicProgramming 3 • We show how abductive reasoning within ASP can be useful for medical diagnosis, es- pecially, for heart failure management. To the best of our knowledge, our work is the firstreal-lifeapplicationofabductionwithASPtechnologyintheveryimportantareaof medicine. • Ourresearchillustratesamajoradvantageofgoal-directedASPsystemssuchass(ASP), namely, their ability to perform effective abductive reasoning. As explained later, it is difficulttodeterminetheminimumsetofabducibleswithSAT-solverbasedASPsystems suchasCLASP.In(Chenetal.2016),webrieflymentioneds(ASP)’spotentialtoproduce abducibles with respect to a query. This paper demonstrates the technical details of the implementationofabductivereasoningins(ASP).Tenverifiedexperimentalresultsusing abductionarealsopresented. 2 AbductiveReasoningInGoal-directedASPSystems Ourphysicianadvisorysystemhasbeendevelopedonthes(ASP)PredicateAnswerSetProgram- mingsystem.Thes(ASP)systemalsoperformsabductionunderthestablemodelsemantics.We givea briefintroductionto bothgoal-directedexecutionofanswer setprogramsandabductive reasoningforanswersetprogramming.WeassumethatthereaderisfamiliarwithASP. Goal-directedExecution of ASP: With the ability to compute stable models of normal logic programs,goal-directedsystems forexecutinganswer set programsadopta differentapproach thantraditionalASPsystemsthatarealmostallbasedontheuseofSATsolvers.TraditionalASP systemsfindtheentiremodel(answerset)ofagivenanswersetprogram.CheckingifaqueryQ issatisfiedinthisprogramthenamountstocheckingifQispresentinthecomputedanswerset. Incontrast,agoal-directedsystemisquerydriven.GivenananswersetprogramPandaquery goalQ,agoal-directedsystemforexecutinganswersetprogramswillsystematicallyenumerate all answer sets that contain the propositions/predicatesin Q. This enumeration employs Coin- ductiveSLDresolution(orCo-SLDresolution),whichsystematicallycomputeselementsofthe greatestfixedpoint(GFP)ofaprogramviabacktracking(Marpleetal.2012).Withs(ASP),our goal-directedmethod lifts the restriction that answer set programsmust be finitely groundable (Marpleetal.2012). Oneramificationofthetop-downexecutionstrategyofagoal-directedASPsystemisthatthe answersetproducedmaybepartial(Marpleetal.2012).1Considerthefollowingprogram: p :- not q. r :- not s. q :- not p. s :- not r. Usinga goal-directedASP system, the query:- q will produce{q, not p} asthe answer be- causetherulescontainingrandsareindependentoftherulesforqandp.Hadthequerybeen :-q,s,thesystemwouldgive{q, not p, s, not r}astheresult.Hencethepartoftheanswerset wegetisdeterminedbythequery.Thepartialanswersetessentiallycontainstheelementsthat arenecessarytoestablishthequery. TheGalliwaspsystem(MarpleandGupta2012)wasthefirstefficientimplementationofthe goal-directed method. It is essentially an implementation of A-Prolog (Baral2003) that uses groundednormallogicprogramsasinput.TheunderlyingalgorithmofGalliwaspmakesuseof 1Becauseanswersetsarepartial,weenumerateelementsthataretrueaswellasfalseinthepartialanswerset. 4 Z.Chen,E.Salazar,K.Marple,L.Tamil,G.Gupta,S.Das,A.Amin coinduction (Guptaetal.2007) to find partial answer sets containing a given query. In query- driven,top-downexecution,coinductionishelpfulinprocessingevenloops2 wherecyclicalna- tureofexecutionneedstobedetectedandusedasabasisforgoal-success(MarpleandGupta2012). Specifically,Galliwaspusescallgraphstoclassifyrulesbasedontwoattributes:(i)aruleissaid tocontainanoddloopovernegation(OLON)ifitcanbecalledrecursivelywithanoddnumber ofnegationsbetweentheinitialcallanditsrecursiveinvocation,and(ii)itiscalledanordinary ruleifithasatleastonepathinthecallgraphthatwillnotresultinsuchacall.Galliwaspuses ordinaryrulestogeneratecandidateanswersetsandOLONrulestorejectinvalidcandidatesets. AnimplementationofGalliwaspisavailable(MarpleandGupta2012). The s(ASP) predicate ASP system (Marpleetal.2016a; Marpleetal.2016b) operates in a manner similar to its predecessor, Galliwasp, in that rules are classified according to nega- tion (OLON rules and non-OLON rules) and executed in a goal-directed manner. However, s(ASP) completely removes the need to ground input programs. Therefore, unlike Galliwasp and other ASP solvers, s(ASP) programs do not need to have a finite grounding. That is, the s(ASP) system executes predicate answer set programs directly, without grounding them at all. Unlike traditional ASP systems, s(ASP) programscan contain arbitrary terms; lists, terms and complexdata structurescan appearas argumentsof predicatesin s(ASP) programs.Thus, s(ASP)isamuchmorepowerfulandexpressivesystem.Theintroductionoffullpredicateswith termsrequiresanumberofinnovativetechniquestosupportthem.Thesetechniquesincludeco- SLD resolution (Guptaetal.2007), constructive negation, and dual rules (Marpleetal.2016a; Marpleetal.2016b).Animplementationofthes(ASP)systemisavailable(Marpleetal.2016b) atsourceforge. Abduction:Thetermabductionreferstoaformofreasoningthatisconcernedwiththegener- ationandevaluationofexplanatoryhypotheses.Abductivereasoningleadsbackfromfactstoa proposedexplanationofthosefacts.Accordingto(Harman1965),abductivereasoningtakesthe followingform: The fact B is observed. But if A were true, B would be a matter of course. Hence, there is reason to suspect that A is true. In this form, B can be either a particular event or an empirical generalization. A serves an explanatory hypothesis and B follows from A combined with relevant background knowledge. Note that A is not necessarily true, but plausible and worthy of further validation. A simple exampleofabductivereasoningisthatonemightattributethesymptomsofacommoncoldtoa viralinfection. 2.1 AbductiveReasoninginASP Moreformally,abductionisaformofreasoningwhere,giventhepremiseP⇒Q,andtheobser- vationQ,onesurmises(abduces)thatPholds(Kakasetal.1992).Moregenerally,givenatheory T,anobservationO,andasetofabduciblesA,thenE isanexplanationofO(whereE⊂A)if: 1. T∪E|=O 2Anevenloopoccurswhenarecursivecallisencounteredwithaneven,non-zeronumberofnegationsbetweenthe callanditsancestorinthecallstack.(Marpleetal.2016a) TheoryandPracticeofLogicProgramming 5 2. T∪E isconsistent Generally,Aconsistsofasetofpropositionssuchthatifp∈A,thenthereisnoruleinT withpas itshead.WeassumethetheoryT tobeananswersetprogram.Underagoal-directedexecution regime,anASPsystemcanbeextendedwithabductionbysimplyaddingthefollowingrule: p :- not _not_p. _not_p :- not p. foreveryp∈A. Posingthe observationO asa queryto thisextendedanswer set programwill yieldalltheexplanationsaspartofa(partial)answerset.Thereasonwhythisworksissimple: rulesoftheformabovehavetwoanswersets,oneinwhichpisfalseandanotherinwhichpis true.Thesesettings(alongwithassignmentstootherpropositions)maymaketheobservationO succeed.Asanexample,considertheprogrambelow: p :- a, not q. q :- a, b. q :- c. andtheabducibles{a, b, c}.Ifweaddtheclausesbelowtoprogramabove: a :- not _not_a. b :- not _not_b. _not_a :- not a. _not_b :- not b. c :- not _not_c. _not_c :- not c. thenthequery(observation)?- pwillsucceed,producingtheanswerset{p, not q, a, not b, not c} and abducibles {a, not b, not c}. First, not a, not b and not c are not included in the answer set as they are auxiliary predicates introduced for convenience. Note thats(ASP)omitsfromoutputthepredicatesstartingwithanunderscore(’ ’).Second,ingoal- directed execution,since the models generatedmay be partial, propositions/predicatesthat are knownto be true, aswell aspropositions/predicatesknownto be false, are shownexplicitlyin the(partial)answerset. It should also be noted that abductive reasoning is more precise under goal-directed execu- tion.Otherexecutionstrategies,mostofwhicharebasedaroundSAT-solvers(e.g.,theCLASP system(Gebseretal.2014)),computetheentirestablemodel,whichcanproduceconfusingan- swerswhereitisnotclearastowhichoftheabduciblesareinvolvedintheexplanation.Consider the exampleprogramabove.Supposewe extendthe set of abduciblesto includea new propo- sition {d}andaddthe two customaryrulesinvolvingd and not d. Forobservation{p},if we use a traditionalASP solver,nowwe will gettwo answer sets: {p, not q, a, not b, not c, d} and {p, not q, a, not b, not c, not d}. These two answer sets essentially are extensionsofthesingleanswersetproducedbythegoal-directedmethod,however,thisanswer sethastobereplicatedtwice—onceforincluding{d}andonceforincluding{not d}.Thus,if thereareirrelevantabducibles,thenforagivenobservation,thenumberofanswersetswillpro- liferateexponentially.Considerableanalysiswillberequiredtoextractthetrueabducibles.The goal-directedexecutionmethoddoesnotsufferfromthisproblem,asitonlyexploresthespace ofknowledgethatisrelevanttotheobservation.Thus,onlyrelevantpropositions/predicatesare abduced. 6 Z.Chen,E.Salazar,K.Marple,L.Tamil,G.Gupta,S.Das,A.Amin 3 PhysicianAdvisorySystemforHFmanagement InthissectionwediscusstheguidelinesforHFmanagement,aswellasgiveanoverviewofour physicianadvisorysystem(Chenetal.2016). The2013ACCF/AHA GuidelinefortheManagementofHeartFailureisbasedonfourpro- gressivestagesofheartfailure.StageAincludespatientsatriskofheartfailurewhoareasymp- tomaticanddonothavestructuralheartdisease.StageBdescribesasymptomaticpatientswith structuralheartdiseases;itincludesNewYorkHeartAssociation(NYHA)classI,inwhichordi- naryphysicalactivitydoesnotcausesymptomsofheartfailure.StageCdescribespatientswith structuralheartdiseasewhohavepriororcurrentsymptomsofheartfailure;itincludesNYHA classI,II(slightlimitationofphysicalactivity),III(markedlimitationofphysicalactivity)and IV(unabletocarryonanyphysicalactivitywithoutsymptomsofheartfailure,orsymptomsof heartfailureatrest).StageDdescribespatientswithrefractoryheartfailurewhorequirespecial- izedinterventions;itincludesNYHAclassIV.Interventionsateachstageareaimedatreducing riskfactors(stageA),treatingstructuralheartdisease(stageB)andreducingmorbidityandmor- tality(stagesCandD). ThetreatmentrecommendationsinthesefourstagesarearticulatedintheACCF/AHAClass ofRecommendation(COR)andLevelofEvidence(LOE).CORisanestimateofthesizeofthe treatmenteffectconsideringrisksversusbenefitsinadditiontoevidenceand/oragreementthata giventreatmentorprocedureisorisnotuseful/effectiveorinsomesituationsmaycauseharm. CORissummarizedasfollows: • ClassIrecommendation:thetreatmentiseffectiveandshouldbeperformed. • ClassIIarecommendation:thetreatmentcanbeusefulandisprobablyrecommended. • ClassIIbrecommendation:thetreatment’susefulnessisuncertainanditmightbeconsid- ered. • ClassIIIrecommendation:thetreatmentisharmfulorunhelpfulandshouldbenotadmin- istrated. Onerulefortreatmentrecommendationsintheguidelinelooksasfollows: “Aldosteronereceptorantagonistsarerecommendedtoreducemorbidityandmortalityfollowinganacute MI in patients who have LVEF of 40% or less who develop symptoms of HF or who have a history of diabetesmellitus,unlesscontraindicated.” To overcome the difficulties that physicians face in implementing the guidelines, we have developeda physicianadvisorysystem thatautomatesthe 2013ACCF/AHA Guidelineforthe ManagementofHeartFailure.Ourphysicianadvisorysystemisabletogiverecommendations withjustificationslikearealhumanphysicianwhostrictlyfollowstheguidelines,evenunderthe conditionofincompleteinformationaboutthepatient. The physician advisory system for HF managementconsists of the rule database and a fact table. The rule database covers all the knowledge in the 2013 ACCF/AHA Guideline for the Management of Heart Failure. The fact table contains the relevant information of the patient withheartfailuresuchasdemographics,historyofpresentillness,dailysymptoms,medication intolerance, known risk factors, measurements as well as ACCF/AHA stage and NYHA class (Yancyetal.2013).Theserulesandfactscanbeloadedintothes(ASP)system,andthequery?- recommendation(Treatment, Recommendation class) posed to find possible treatments for this patient. There may be more than one potential treatment that can be discovered via backtracking. TheoryandPracticeofLogicProgramming 7 Therulesabovecanbegrounded,andthenthegroundedprogramcanberunontheCLASP system(Gebseretal.2014)aswell.NotethatSAT-basedASPsystemssuchasCLASPwillre- portall the recommendationsin a single answer set, as they cannotdistinguish between treat- mentsthatareinthesamemodelbutareindependentofeachother.However,knowingallappli- cablerecommendationsforapatientisuseful,aswillbediscussedlater.Theseapplicablerecom- mendationsarepharmaceuticaltreatments,managementobjectivesanddevice/surgicaltherapies. s(ASP)isabletogenerateallvalidrecommendationsforagivenpatientaswell,however,CLASP ismuchfasterintermsofexecutionefficiency.Themainadvantageofthes(ASP)systemforour HFapplicationisthatitisabletogenerateindividualrecommendationsseparatelyalongwithall thepredicates/propositionsneededtosupportthatrecommendation. Theguidelinerulesarefairlycomplexandrequiretheuseofnegationasfailure,non-monotonic reasoning and reasoning with incomplete information. A fairly common situation in medicine is that a drug can only be recommended if its use is not contraindicated (i.e., the use of the drugwillnothaveanadverseimpactonthatpatient).Contraindicationisnaturallymodeledvia negationasfailure.Theabilityofanswersetprogrammingtomodeldefaults,exceptions,weak exceptions, preferences, etc., makes it ideally suited for coding these guidelines. Not surpris- ingly, the program for the physician advisory system is unstratified. Both odd and even loops overnegationoccurintheprogram.Asanexample,theindispensablechoiceknowledgepattern (Chenetal.2016) used in our system contains an even loop. As a concrete example of non- stratification,considerthefollowingrulefromACCF/AHAstageC(Yancyetal.2013): “Inpatientswithacurrentorrecenthistoryoffluidretention,betablockersshouldnotbeprescribedwithout diuretics.” The pattern describes a case in which if a choice is made, some other choices must also be made;if those choices can’tbe made, then the first choice is revoked (Chenetal.2016). Note thatPrologconventionsarefollowed(variablesbeginwithanuppercaseletter). recommendation(beta_blockers, class_1) :- not absent_indispensable_choice(beta_blockers), not rejection(beta_blockers), evidence(accf_stage_c), diagnosis(hf_with_reduced_ef). absent_indispensable_choice(beta_blockers) :- not recommendation(diuretics, class_1), diagnosis(hf_with_reduced_ef), evidence(accf_stage_c), current_or_recent_history_of_fluid_retention. recommendation(diuretics, class_1) :- recommendation(beta_blockers, class_1), diagnosis(hf_with_reduced_ef), not rejection(diuretics), evidence(accf_stage_c), current_or_recent_history_of_fluid_retention. This paper focuses on the physician advisory system’s ability to perform abductive reason- ing.Usingthisabductivecapability,aphysiciancan,forexample,figureoutthesymptomsthat aparticularpatientmustexhibitfora giventreatmentrecommendedbythe doctor(sothatthis 8 Z.Chen,E.Salazar,K.Marple,L.Tamil,G.Gupta,S.Das,A.Amin treatmentisconsistentwiththe2013ACCF/AHAGuidelinefortheManagementofHeartFail- ure).Theautomaticcheckingforcomplianceusingthephysicianadvisorysystemisdiscussedin detailinSect.4. 4 AutomaticCheckingofAdherencetoGuidelines AbductiveReasoningins(ASP):Abductivereasoningissupportedbythes(ASP)system,where theabduciblespredicatesarespecifiedasfollows,forexample: #abducible goal(X). Thisdeclarationmeansthatthespecifiedgoalmaybeabducedwhenfailureofthequerywould otherwiseoccurduringexecution.Specifically,s(ASP)createsthefollowingrulesforthedecla- rationstatementabove: goal(X) :- not _neggoal(X), abducible(goal(X)). _neggoal(X) :- not goal(X). abducible(goal(X)) :- not _negabducible(goal(X)). _negabducible(goal(X)) :- not abducible(goal(X)). Case Study: As mentioned earlier, many times available patient information is incomplete or guidelines are not complied with. A physician may give prescriptions using his/her intuitions basedon incompleteinformationabouta patient. Insuch a case, the physician’srecommenda- tioncanberuninthes(ASP)systemintheabductivemodewherethephysician’srecommenda- tionisposedasaquery.Thesystemwillthentellthephysician,viaabduction,anysymptoms, conditions,orrequiredevidencethatmustbepresentfortherecommendationtobecorrect.The physician can then work on ascertaining the presence of those symptoms, conditions, etc., or revisetheirrecommendationifthosesymptoms/conditionsarenotpresent.Sointhiscase,while thephysicianmayhavemadeanincorrectrecommendation,it canstill beapplicableif the ab- duced symptoms/conditions/evidencewere to be present. In contrast, if the query representing thephysician’srecommendationfails,thenitmeansthatthephysician’srecommendationisin- correctwithrespecttotheguidelines,andshouldberejectedorcarefullyre-evaluated. Ouraim,thus,istohelpimprovecompliancewiththeclinicalpracticeguidelinesviaabduc- tivereasoning.Thisisachievedasfollows:allguideline-complianttreatmentrecommendations arefirstgeneratedinasingleanswersetwiththehelpoftheCLASPsystem.Anytreatmentrec- ommendationmadebyadoctorthatisnotamongtherecommendationsmadebyCLASPsystem isconsideredanon-guideline-complianttreatmentrecommendation.Anon-guideline-compliant treatmentrecommendationmadebyaphysicianisposedasanobservationandfedasaqueryto s(ASP)system,whichisthenrunintheabductivemodetodiscoverthenecessaryevidencethat mustbeavailableforthegiventreatmenttobeapplicable. Figure1displaysthefacttabledistilledfromtheprofileofoneofthe10representativepatients. Therepresentativepatients’datawereprovidedbytheUniversityofTexasSouthwesternMedical Center. According the patient’s profile, her doctor prescribed the combination of hydralazine and isosorbidedinitrate(isordil/hydralazine)tothispatient,However,weknowthattherecommen- dationofisordil/hydralazineisnotreasonableforthispatientundertheguidelinesoncewerun theCLASPsystemonthedata. Sinceisordil/hydralazineishighlyeffectiveintreatingHFforAfricanAmericans,wewantto TheoryandPracticeofLogicProgramming 9 %doctor’s assessments %demographics evidence(accf_stage_c). evidence(female). evidence(nyha_class_3). evidence(age, 60). %history of the patient diagnosis(hf_with_reduced_ef). diagnosis(diabetes). diagnosis(dilated_cardiomyopathy). evidence(angina). history(standard_neurohumoral_antagonist_therapy). %measurements from the lab measurement(potassium, 3.0). measurement(lvef, 0.16). measurement(creatinine, 1.49). measurement(non_lbbb, 110). measurement(nt_pro_bnp, 5051). measurement(glomerular_filtration_rate, 44). %contraindications contraindication(crt). contraindication(ace_inhibitors). Fig.1. Representationofthepatient’sinformation makesurewedidnotmissanyvitalinformationregardingtheirrecommendation.Theapplicable rulesforthisclassIrecommendationofisordil/hydralazineisreproducedbelow(Yancyetal.2013): “ClassI : The combination of hydralazine and isosorbide dinitrateis recommended to reduce morbidity andmortalityforpatientsself-describedasAfricanAmericanswithNYHAclassIII-IVHFrEFreceiving optimaltherapywithACEinhibitorsandbetablockers,unlesscontraindicated.” “ThecombinationofhydralazineandisosorbidedinitrateshouldnotbeusedforthetreatmentofHFrEFin patientswhohavenoprioruseofstandardneurohumoralantagonisttherapyandshouldnotbesubstituted forACEinhibitororARBtherapyinpatientswhoaretoleratingtherapywithoutdifficulty.” Nowwe declareall possibleabducibleswhichare notshownin the patient’sprofiles(thisstep canbeautomatedusingsimplestringmatching): #abducible contraindication(beta_blockers). #abducible contraindication(icd). ... #abducible diagnosis(atrial_fibrillation). #abducible diagnosis(hypertension). ... #abducible evidence(fluid_retention). #abducible evidence(sleep_apnea). ... #abducible history(angioedema). #abducible history(thromboembolism). ... Abduciblesinvolvingnumericvaluesaredeclaredastextualpropositions,e.g.,“lvef less than 30”, “mi post 40 days”,etc.Andcorrespondingauxiliaryrulesareintroduced.Forexample: lvef_less_than_30:- measurement(lvef, Data), Data =< 30. mi_post_40_days:- measurement(mi, Data), Data >= 40. 10 Z.Chen,E.Salazar,K.Marple,L.Tamil,G.Gupta,S.Das,A.Amin { contraindication(ace_inhibitors), contraindication(arbs), diagnosis(hf_with_reduced_ef), evidence(accf_stage_c), history(ace_inhibitors), recommendation(hydralazine_and_isosorbide_dinitrate,class_2a), treatment(hydralazine_and_isosorbide_dinitrate), not absent_indispensable_treatment(hydralazine_and_isosorbide_dinitrate), not contraindication(hydralazine_and_isosorbide_dinitrate), not rejection(hydralazine_and_isosorbide_dinitrate), not skip_concomitant_treatment(hydralazine_and_isosorbide_dinitrate), not superseded(hydralazine_and_isosorbide_dinitrate), not taboo_choice(hydralazine_and_isosorbide_dinitrate) } Abducibles: { history(angioedema), contraindication(arbs) } Fig.2. Resultsofabductivereasoning The declaration of abducibles should be placed after facts and rules in s(ASP) since we do notwantto abduceknownfactsor deduciblefacts. Thisarrangementguaranteesthatwhatever s(ASP)abducesleadsustooverlookedormissedevidencewhichisindispensabletojustifythe treatmentrecommendationinquestion. Thenweposethefollowingquery(theobservation)tothes(ASP)systemwiththeabductive reasoningflagset: recommendation(hydralazine_and_isosorbide_dinitrate, class_1) Withtheabduciblesdeclared,s(ASP)mayabducethemwhenfailureofthequerywouldoth- erwiseoccur.Inthiscase,s(ASP)returnsfalse,whichmeansthereistrulynothingwecandoto makeclassIrecommendationofisordil/hydralazine,giventhepatient’sdata. NextwewanttoknowifitispossibletomakeclassIIarecommendationofisordil/hydralazine. Therelevantrulesintheguideline(Yancyetal.2013)regardingtheclassIIarecommendationof isordil/hydralazineareshownbelow: “Class IIa : A combination of hydralazine and isosorbide dinitrate can be useful to reduce morbidity or mortalityinpatientswithcurrentorpriorsymptomaticHFrEFwhocannot begivenanACEinhibitoror ARBbecauseofdrugintolerance,hypotension,orrenalinsufficiency,unlesscontraindicated.” Next,weposethefollowingquery(theobservation)tos(ASP)runninginabductivemode: recommendation(hydralazine_and_isosorbide_dinitrate, class_2a) Oneoftheanswersetsaswellasthelistofabduciblesgivenbys(ASP)aredisplayedinFig.2. We immediately know from Fig. 2 that two things are abduced by the system: 1) the con- traindicationofARBs and2)thehistoryofangioedema.ItisclearfromtheFig.1thatbothof theabduciblesarenotinthepatient’sprofile.Withsomemedicalknowledge,weknowthatthe historyofangioedemaisanindicationforthecontraindicationofACEinhibitors,whichislisted inthefactsheet.ItisreasonableforustomakeaclassIIarecommendationonceweconfirmthe intoleranceofARBsforthispatient.Inthiscase,thepatient’sprofilesaysnothingaboutherin- toleranceofARBs.Thus,thedoctorcouldlookforthispieceofinformationelsewheretoensure thatshedoesnotmissusefulinformationregardingtherecommendationofisordil/hydralazine.
Description: