ebook img

Improved Bonferroni Inequalities via Abstract Tubes: Inequalities and Identities of Inclusion-Exclusion Type PDF

122 Pages·2003·0.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Improved Bonferroni Inequalities via Abstract Tubes: Inequalities and Identities of Inclusion-Exclusion Type

Lecture Notes in Mathematics 1826 Editors: J.--M.Morel,Cachan F.Takens,Groningen B.Teissier,Paris 3 Berlin Heidelberg NewYork HongKong London Milan Paris Tokyo Klaus Dohmen Improved Bonferroni Inequalities via Abstract Tubes Inequalities and Identities of Inclusion-Exclusion Type 1 3 Author KlausDohmen DepartmentofMathematics MittweidaUniversityofAppliedSciences Technikumplatz17 09648Mittweida Germany e-mail:[email protected] http://www.dohmen.htwm.de Cataloging-in-PublicationDataappliedfor BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetathttp://dnb.ddb.de MathematicsSubjectClassification(2000): primary:05A19,05A20,60C05,60E15 secondary:05A15,05B35,05C15,06A15,62N05,68M15,68R10,90B15,90B25 ISSN0075-8434 ISBN3-540-20025-8Springer-VerlagBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9,1965, initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violationsare liableforprosecutionundertheGermanCopyrightLaw. Springer-VerlagBerlinHeidelbergNewYorkamemberofBertelsmannSpringer Science+BusinessMediaGmbH springer.de (cid:1)c Springer-VerlagBerlinHeidelberg2003 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:Camera-readyTEXoutputbytheauthors SPIN:10957806 41/3142/du-543210-Printedonacid-freepaper Preface This workis basedonmy habilitationthesis whichI preparedatBerlin’s Hum- boldt-University while I was an assistant professor at the computer science de- partment in the years 1994–2000. The material has been re-arranged, some parts have been significantly shortened, while other parts have been expanded. I am especially grateful to Professor Egmar R¨odel at Humboldt-University for giving me the opportunity to work on this subject. Special thanks go to the referees of my habilitation thesis as well as to the anonymous referees of Springer-Verlagfortheirworthysuggestionsthatresultedinanimprovementof themanuscript. ParticularthanksareowedtoProfessorDouglasShier(Clemson University) for his valuable comments. Finally, I would like to thank my wife Imke and my children Sophie, Emily and Justus for their never-ending patience. Mittweida, Germany Klaus Dohmen July, 2003 Contents 1 Introduction and Overview 1 2 Preliminaries 5 2.1 Graphs and posets . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Bonferroni Inequalities via Abstract Tubes 9 3.1 An outline of abstract tube theory . . . . . . . . . . . . . . . . . 9 3.1.1 The notion of an abstract tube . . . . . . . . . . . . . . . 9 3.1.2 Two fundamental theorems on abstract tubes . . . . . . . 11 3.1.3 An importance sampling scheme . . . . . . . . . . . . . . 13 3.2 Examples of abstract tubes . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Abstract tubes for convex polyhedra . . . . . . . . . . . . 14 3.2.2 Abstract tubes for unions of balls and spherical caps . . . 15 4 Abstract Tubes via Closure and Kernel Operators 19 4.1 Abstract tubes via closure operators . . . . . . . . . . . . . . . . 19 4.1.1 Closure operators. . . . . . . . . . . . . . . . . . . . . . . 19 4.1.2 How closure operators lead to abstract tubes . . . . . . . 21 4.2 Abstract tubes via kernel operators . . . . . . . . . . . . . . . . . 25 4.2.1 Kernel operators . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 How kernel operators lead to abstract tubes . . . . . . . . 26 4.3 Alternative proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 Improved identities via closure operators. . . . . . . . . . 28 4.3.2 Improved inequalities via kernel operators . . . . . . . . . 33 4.3.3 Additional proofs of identities . . . . . . . . . . . . . . . . 35 4.4 The chordal graph sieve . . . . . . . . . . . . . . . . . . . . . . . 37 5 Recursive Schemes 44 5.1 Recursive schemes for semilattices . . . . . . . . . . . . . . . . . 44 5.2 Dynamic programming approach . . . . . . . . . . . . . . . . . . 45 VIII Contents 6 Reliability Applications 47 6.1 System reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.2 Abstract tubes for system reliability . . . . . . . . . . . . 48 6.1.3 Shier’s pseudopolynomial algorithm . . . . . . . . . . . . 49 6.1.4 Inclusion-exclusion and domination theory . . . . . . . . . 52 6.2 Special reliability systems . . . . . . . . . . . . . . . . . . . . . . 53 6.2.1 Communications networks . . . . . . . . . . . . . . . . . . 53 6.2.2 k-out-of-n systems . . . . . . . . . . . . . . . . . . . . . . 66 6.2.3 Consecutive k-out-of-n systems . . . . . . . . . . . . . . . 70 6.3 Reliability covering problems . . . . . . . . . . . . . . . . . . . . 75 6.3.1 The hypergraph model . . . . . . . . . . . . . . . . . . . . 75 6.3.2 Abstract tubes and polynomial algorithms . . . . . . . . . 75 6.4 Chapter notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7 Combinatorial Applications and Related Topics 82 7.1 Inclusion-exclusion on partition lattices . . . . . . . . . . . . . . 82 7.2 Chromatic polynomials and broken circuits . . . . . . . . . . . . 83 7.2.1 The usual chromatic polynomial . . . . . . . . . . . . . . 84 7.2.2 The generalized chromatic polynomial . . . . . . . . . . . 86 7.3 Sums over partially ordered sets. . . . . . . . . . . . . . . . . . . 89 7.3.1 A general theorem on sums . . . . . . . . . . . . . . . . . 89 7.3.2 Application to inclusion-exclusion . . . . . . . . . . . . . 90 7.4 Matroid polynomials and the β invariant . . . . . . . . . . . . . . 91 7.4.1 The Tutte polynomial . . . . . . . . . . . . . . . . . . . . 91 7.4.2 The characteristic polynomial . . . . . . . . . . . . . . . . 93 7.4.3 The β invariant . . . . . . . . . . . . . . . . . . . . . . . . 94 7.5 Euler characteristics and M¨obius functions . . . . . . . . . . . . . 95 7.5.1 Euler characteristics . . . . . . . . . . . . . . . . . . . . . 95 7.5.2 Mo¨bius functions . . . . . . . . . . . . . . . . . . . . . . . 96 Bibliography 100 Author Index 111 Subject Index 113 1 Introduction and Overview Many problems in combinatorics, number theory, probability theory, reliabil- ity theory and statistics can be solved by applying a unifying method, which is known as the principle of inclusion-exclusion. The principle of inclusion- exclusion expressesthe indicator function of a union of finitely many sets as an alternating sum of indicator functions of their intersections. More precisely, for anyfinite family ofsets{Av}v∈V the principleofinclusion-exclusionstatesthat (cid:1) (cid:3) (cid:1) (cid:3) (cid:2) (cid:4) (cid:5) (1.1) χ Av = (−1)|I|−1χ Ai , v∈V I⊆V i∈I I(cid:2)=∅ where χ(A) denotes the indicator function of A with respect to some universal setΩ,thatis,χ(A)(ω)=1(cid:6)if(cid:7)ω ∈A,an(cid:8)dχ((cid:9)A)(ω)=0ifω(cid:6)∈(cid:7)Ω\A. E(cid:8)quivalently, (1.1)canbe expressedasχ v∈V Av =(cid:7) I⊆V(−1)|I|χ i∈IAi ,where Av denotes the complement of Av in(cid:0)Ω and i∈∅Ai = Ω. A proof by induc(cid:0)tion on the number of sets is a common task in undergraduate courses. Usually, the Av’s are measurable with respect to some finite measure µ on a σ-field of subsets of Ω. Integration of the indicator function identity (1.1) with respect to µ then gives (cid:1) (cid:3) (cid:1) (cid:3) (cid:2) (cid:4) (cid:5) (1.2) µ Av = (−1)|I|−1µ Ai , v∈V I⊆V i∈I I(cid:2)=∅ whichnowexpressesthemeasureofaunionoffinitelymanysetsasanalternat- ing sum of measures of their intersections. The step leading from (1.1) to (1.2) is referred to as the method of indicators [GS96b]. Naturally, two special cases are of particular interest, namely the case where µ is the counting measure on thepowersetofΩ,andthecasewhereµisaprobabilitymeasureonaσ-fieldof subsets of Ω. These special cases are sometimes attributed to Sylvester (1883) and Poincar´e (1896), although the second edition of Montmort’s book “Essai d’Analyse sur les Jeux de Hazard”, which appeared in 1714, already contains animplicituse ofthe method, basedona letter byN.Bernoulliin1710. A first K.Dohmen:LNM1826,pp.1–4,2003. (cid:1)c Springer-VerlagBerlinHeidelberg2003

Description:
This introduction to the recent theory of abstract tubes describes the framework for establishing improved inclusion-exclusion identities and Bonferroni inequalities, which are provably at least as sharp as their classical counterparts while involving fewer terms. All necessary definitions from grap
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.