Publ.Astron.Soc.Japan(2014)00(0),1–13 1 doi:10.1093/pasj/xxx000 Imprints of Zero-Age Velocity Dispersions and Dynamical Heating on the Age-Velocity dispersion Relation 7 1 0 Jun KUMAMOTO1,2, Junichi BABA2,3, and Takayuki R. SAITOH2 2 1 AstronomicalInstitute,TohokuUniversity,Aramaki,Aoba,Sendai,Miyagi980-8578,Japan. n a 2 Earth-LifeScienceInstitute,TokyoInstituteofTechnology,Ookayama,Meguro,Tokyo J 152–8551,Japan. 3 3 ResearchCenterforSpaceandCosmicEvolution,EhimeUniversity,Bunkyo-cho, 1 Matsuyama,Ehime,790–8577,Japan. A] ∗E-mail:[email protected] G Receivedh13-Sep-2016i;Acceptedh09-Jan-2017i . h Abstract p - Observations of stars in the the solar vicinity show a clear tendency for old stars to have o r larger velocity dispersions. This relation is called the age-velocity dispersion relation (AVR) t s and it is believed to provide insight into the heating history of the Milky Way galaxy. Here, a in order to investigate the origin of the AVR, we performed smoothed particle hydrodynamic [ simulations of the self-gravitating multiphase gas disks in the static disk-halo potentials. Star 1 formationfromcoldanddensegasistakenintoaccount,andweanalyzetheevolutionofthese v 8 star particles. We find that exponents of simulated AVR and the ratio of the radial to vertical 6 velocitydispersionareclosetotheobservedvalues. WealsofindthatthesimulatedAVRisnot 6 asimpleconsequenceofdynamicalheating. Theevolutiontracksofstarswithdifferentepochs 3 0 evolvegraduallyintheage-velocitydispersionplaneasaresultof: (1)thedecreaseinvelocity . dispersion in star forming regions, and (2) the decrease in the number of cold/dense/gas as 1 0 scatteringsources. TheseresultssuggestthattheAVRinvolvesnotonlytheheatinghistoryof 7 astellardisk,butalsothehistoricalevolutionoftheISMinagalaxy. 1 : Keywords:Galaxies:kinematicsanddynamics—Method:numerical v i X r a 1 Introduction asinglepower-lawfunctionforboththeradial(σ )andverti- R cal(σ )directions: z Itiswellknown thatthevelocitydispersion ofstarsintheso- lar vicinity increases with stellar age. This is called the age– σ∝τβ, (1) velocitydispersionrelation(hereafterAVR).Stro¨mberg(1946) andSpitzer&Schwarzschild(1951)werethefirsttoinvestigate whereσ representsσR orσz andτ is theageofthestar. The the association between stellar velocity dispersion and spec- power-lawindex,β,is0.3–0.5withcertainerrors(Seetable8 tral types, and then they discovered this relation. Subsequent of Sharma et al. 2014). The index for the radial direction is observations (Nordstro¨m et al. 2004; Seabroke & Gilmore slightlysmallerthanthatfortheverticaldirection. However,it 2007; Holmberg et al. 2007; Holmberg et al. 2009; Aumer & isnotclearwhetherthisdifferenceisrealornot. σz/σR∼0.5 Binney 2009; Just & Jahreiß 2010; Sharma et al. 2014) con- has also been ascertained by observations (Dehnen & Binney firmed the existence of the AVR with much larger samples. 1998). According to these observations, this relation is well fitted by Somesecularheatingprocessesand/ortimeevolutioninthe (cid:13)c 2014.AstronomicalSocietyofJapan. 2 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 disk play crucial roles in establishing the AVR (e.g., Wielen et al. (2012) carried out N-body/smoothed particle hydrody- 1977; Freeman & Bland-Hawthorn 2002; Bland-Hawthorn & namics (SPH) simulations with the mass and spatial resolu- Gerhard 2016 for reviews), since the older stars tend to have tions of 7300 M⊙ and 155 pc. They showed that old stars larger velocity dispersions. There are a number of scenar- thathavelargervelocitydispersionwerebornatlowerradiiand ios for the origin of the AVR: heating by giant molecu- arekinematicallyhotterthanthosebornatalatertime. Martig lar clouds (GMCs; Spitzer & Schwarzschild 1951; Spitzer et al. (2014) used adaptive mesh refinement code RAMSES & Schwarzschild 1953; Kokubo & Ida 1992), by transient (Teyssier 2002) and they showed that AVR is not determined spiral arms (Carlberg & Sellwood 1985; De Simone et al. bythestellarvelocitydispersionatbirthtime,butistheresult 2004),bythecombinationofGMCsandspiralarms(Carlberg of subsequent heating. Furthermore, House et al. (2011) in- 1987; Jenkins &Binney 1990), by halo black holes (Lacey& vestigatedthevariationsofAVRusingdifferentmodelingtech- Ostriker1985;Ha¨nninen &Flynn2002),orbyminormergers niques. Grandetal.(2016)usedthestate-of-the-artsimulation (Toth&Ostriker 1992;Walker etal.1996;Huang &Carlberg code,AREPO(Springel2010),fortheirzoom-insimulationsand 1997). Until now, there has been no consensus about the pri- reported thatthey obtained anAVRthat is consistent with the mary source of the AVR. In table 1, we summarize the theo- observedAVR.Whileallstudiesshowedpower-law-likeAVRs, reticalpredictionsofvelocitydispersionsinboththeradialand we note that their simulations are insufficient to disclose the verticaldirections. Alloftheaboveprocessesarekeyfeatures originoftheAVRbecauseofthelimitednumericalresolutions ofgalaxyformation.Thus,understandingtheoriginoftheAVR (theforceresolutionis≥100pc),whichislargerthanthethick- isessentialinordertoadvanceourunderstandingofgalaxyfor- ness of the molecular gas disk (48–160 pc)in the Milky Way mation. galaxy (Nakanishi & Sofue 2006). Some models did not di- rectlysolvethelowtemperature(<100K)andhigh-densityre- Here, wemainlyfocusonthecontribution ofGMCstothe ∼ gions(>100cm−3)thatmimicGMCs. Inaddition,theorigin formation of theAVR. Someprevious studies investigated the ∼ oftheAVRisnotwellinvestigatedinthesestudies. effectofgravitational scatteringbyGMCsonthevelocitydis- persionsofstars.Kokubo&Ida(1992)calculatedstellarorbits undertheinfluenceofthegravitationalpotentialofGMCs,and In this paper, we find out the origin of the AVR by us- theyfoundthattheevolutionofvelocitydispersioncouldbedi- inghigh-resolutionN-body/SPHsimulations. Insteadofdoing videdintotwophases. Intheearlyphase,theevolution ofthe the cosmological simulations, we adopt an idealized model in velocity dispersionis proportional toexp(τ),whileinthelate which only gas and stars formedfrom cold and dense gas are phase,itisproportionaltoτ0.25.Ha¨nninen&Flynn(2002)per- solved. The halo and (the main body of) the stellar disk are formedN-bodysimulationsofthestellardiskinvolvingGMCs expressedbystaticpotentials. Thisapproximationallowsusto modeled by spherical mass distributions of uniform density. use high mass and spacial resolutions, such as 6000 M⊙ and Theyfoundthattheradialandverticalvelocitydispersionsare 10pc.Asatrade-off,wecannotincludethecontributionofthe proportional to τ0.21 and τ0.26, respectively. This is consis- spiral arms at present, but this will constitute the next step of tent with the prediction from the simplified model of Kokubo thisstudyandwewillinvestigateitinaforthcomingpaper. & Ida (1992), but the expected values of velocity dispersions aresomehowdifferentfromthoseobtained fromobservations. The structure of this paper is as follows. In §2, we de- Hence, gravitational scattering by GMCs is not considered a scribetheinitialconditionsofoursimulationsandournumeri- primary source of the AVR. However, the models used above calmethods. Wepresenttheevolutionofthesimulatedgalactic showsignificantroomforimprovement. Forinstance,theydid diskandAVRsinour simulation in§3. Heating ratesarealso nottakeintoaccountgasdynamics,theydidnotmodelGMCs discussedinthissection. Finally,in§4,weshowthesummary asrealisticstructures,andtheydidnotconsiderstar-formation ofourresultsanditsimplications forthehistoryoftheforma- processes. Aumeretal.(2016b)andAumeretal.(2016a)per- tionandevolutionoftheMilkyWaygalaxy. formed controlled N-body simulations of disk galaxies to in- vestigatethediskgrowth. Inthesesimulations, theystudy the contribution ofGMCstothediskgrowthbyusingmassiveN- bodyparticleswhichrepresentGMCs. Theyfoundthattheef- 2 Models and Methods ficiencyofGMCheatingdepends onthefractionofdiskmass residingintheGMC.Modelsthataremorerealisticareneces- Our three dimensional (3D) N-body/SPH simulations con- saryto conclude whether or not GMC heating is important in ductedinthisstudywereperformedusingtheASURA-2(Saitoh theestablishmentoftheAVR. &Makino2009;Saitoh&Makino2010). Weinvestigatedthe Recently, some zoom-in cosmological simulations have AVR for stellar particles formed from SPH particles moving beenusedtoderivenumericalestimationsoftheAVRs. Brook withinastatichaloanddiskpotential. PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 3 Table1. Velocitydispersionspredictedbythetheoreticalmodels.WesummarizethemodelsreferringtoAVRsanditsexponents.Note that,inthecaseofminormergers,onlytheamountoftheincreaseofvelocitydispersionsareshown. heatingsource velocitydispersionσ Spitzer&Schwarzschild1953 GMC σ ∝τ1/3 mean Kokubo&Ida1992 GMC σ ∝τ0.25,σ ∝τ0.25 R z Ha¨nninen&Flynn2002 GMC σ ∝τ0.21,σ ∝τ0.26 R z DeSimoneetal.2004 spiralarm σ ∝τ0.20-0.60 R (dependingonspiralproperties) Jenkins&Binney1990 GMC&spiralarm σ ∝τ0.5,σ ∝τ0.3 R z Ha¨nninen&Flynn2002 haloblackhole σ ∝τ0.50,σ ∝τ0.50 R z Walkeretal.1996 minormerger inceasebyδσ∼(10,8,8)kms−1atsolarradius Huang&Carlberg1997 minormerger σ increasebyafew–dozens% z (dependingonsatellitemassandfallingangle) 2.1 GalaxyModel In order to concentrate on the contribution of the clumpy in- terstellar medium (ISM) to the stellar velocity dispersion, we solve the evolution of the gas with high resolutions. For this purpose,hereweassumethatthehaloandthemainbodyofthe stellardiskaredescribedbyfixedpotentials. Thismodelingis identicaltothatofSaitohetal.(2008). We assume that the dark matter halo follows the Navarro- Frenk-White(NFW)profile(Navarroetal.1997),whichisex- pressedas ρ ρ (x)= c , (2) halo x(1+x)2 r x= , (3) r s where ρ and r are the characteristic density and a scale ra- c s dius ofthis profile, respectively. Weassumethat ρ =4.87× c 106M⊙kpc−3andrs=21.5kpc. The potential of the stellar disk is described by the Miyamoto-Nagaimodel(Miyamoto&Nagai1975): Fig.1. Initialrotationalvelocityasafunctionofradius. hvφiistheaverage ρ∗(R,z)= M∗z∗2 × aazwimiduththoaflv0e.1lockiptycotfointhiteialraSdPiaHlbpianrsti.cleslocatedineachradialbin.Weapply 4π R∗R2+(R∗+3 z2+z∗2)(R∗+ z2+z∗2)2,(4) [R2+(R∗+ pz2+z∗2)2]5/2(z2p+z∗2)3/2 2.2 Methods whereM∗,R∗,andz∗arethpestellardiskmass,thescaleradius Wesolvetheevolutionofgasandstarparticlesinthehaloand andthescaleheight,respectively. WeuseM∗=4×1010 M⊙, diskpotentialusingourN-body/SPHcode,ASURA-2(Saitoh& R∗=3.5kpc,andz∗=400pc. Makino 2009; Saitoh & Makino 2010). The numerical tech- Initially, the gas disk has simple exponential and Gaussian niqueisalmostthesameasthoseusedinabovepapers,butwith distributions intheradialandverticaldirections. Thescalera- slightupdates. Wenowbrieflydescribeourmethod. diusandthescaleheightofthegasdistributionaresetto7kpc The self-gravity among the gas and star particles is calcu- and400pc,respectively. Figure1showstheaveragedrotation lated by the tree with the GRAvity PipE (GRAPE) method curveofgasparticlesattheinitialconditions. Thetotalmassof (Makino 1991). The opening angle is set to 0.5 and only thegasdiskis6×109M⊙,andweuse1millionSPHparticles monopole moment is considered. In order to accelerate the toexpressthisgasdisk. Hence,themassofeachSPHparticle computation,weadoptthePhantom-GRAPElibrary(Tanikawa is6000M⊙.Thegravitationalsofteninglengthissetto10pc. etal.2013),whichisasoftwareemulatorofGRAPE. 4 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 The gas dynamics are solved by using SPH (Lucy 1977; 3 Results Gingold & Monaghan 1977; Monaghan 1992). The cubic- WeanalyzetheAVRinthesimulationsandinvestigateitsevo- splinekernelfunctionisutilized. Forthefirstspacederivative lutionin§3.1. WethendiscusstheoriginsofAVRevolutionin ofthekernel,Thomas&Couchman’smodificationisemployed §3.2. (Thomas&Couchman1992). Thenumberofneighboringpar- Beforepresentingthedetails oftheAVRanditsorigin, we ticlesforeachSPHparticleiskeptwithin32±2inthesupport firstexplaintheglobalevolutionofourgalaxies.Figure2shows radiusofthekernel.Theshockishandledwithanartificialvis- the evolution of our simulated galaxies. The upper and lower cositytermproposedbyMonaghan(1997).Theviscositycoef- panels show overviews and close-up views of the gas density ficientissetto1.0. WealsointroducetheBalsaralimiterinor- onthe galactic plane (z=0). Fromtheclose-up views of the dertoreducetheunwantedangularmomentumtransfer(Balsara gas density, we can see rich inhomogeneous structures of the 1995). ISM.Thesestructures areinduced by our modeling with high Thetimeintegrationisconductedbyasecondorderscheme resolution(Saitohetal.2008).Fromt=1–3Gyr,thecontrast (see appendix A in Saitoh & Makino 2016). For SPH parti- ofthegasdensitydecreasesbecauseofthegasconsumptiondue cles, we use the FAST scheme so that we can accelerate the tostarformation. Thisimpliesthattheprimarysourceheating time-integrationinsupernova(SN)-heatedregionsbyusingdif- thediskstarsdecreaseswithincreasingtimeinoursimulation. ferenttime-stepsforgravitationalandhydrodynamicalinterac- Wediscusstherelationbetweenthecontrastofthegasdensity tions(Saitoh&Makino2010)andthetime-steplimitersothat andheatingratein§3.2.2. wecanfollowtheshockedregioncorrectly(Saitoh&Makino The high-density regions exceed the star formation thresh- 2009). olddensity (i.e. n >100cm−3)Therefore,starsareformed H inthesehigh-densityregionswhentheothertwostar-formation Insimulationsinthispaper,weadopttheradiativecooling, conditions are satisfied. Figure 3 shows the evolution of stel- starformation,andtypeIIsupernovae(SNe)feedback. Thera- lar surface density. The stellar surface density distribution diative cooling of the gas is solved by assuming an optically mapsshownostrongspiralarmsdevelopedbystellardynami- thin cooling function, Λ(T,f ,G ), for a wide temperature H2 0 calmechanismssuchastheswing-amplification(Toomre1981) range of 20 K<T <108 K (Wada et al. 2009) For simplic- and non-linear interactions between wakelets (Kumamoto & ity, we fix the molecular hydrogen fraction at f =0.5, and H2 Noguchi 2016). As the skeletal structure of the disk is con- thefar-ultravioletintensityisnormalizedtothesolarneighbor- structed of the smoothed and axisymmetric Miyamoto-Nagai hood G = 1. We do not have to use the artificial pressure 0 potential, itis difficulttoenhance thespiralarmsandabarin floor method, which is highlighted in Saitoh et al. (2006) and thismodel;thus,ithasaflocculentstructure. Robertson&Kravtsov(2008). 1 Starformationismodeledin Figure4showsthestar-formationrateasafunctionoftime. a probabilistic manner following the Schmidt law (e.g., Katz Itischaracterizedbytwophases: theinitialrapidlyincreasing 1992; Saitohetal.2008). AnSPHparticlewhichsatisfies the phase(t<100Myr),andthesucceedingexponentiallydecreas- followingthreeconditions,(1)n >100cm−3;(2)T<100K; H ing phase. The decay time-scale of the star-formation rate is and(3)∇·v<0,spawns astarparticlewiththeSalpeterini- ∼1Gyr. Thistimescaleisrathershortcomparedtotheesti- tialmassfunction(Salpeter1955)andiswithinthemassrange mationofthegalacticchemicalevolution(Larson1972;Yoshii of0.1M⊙<m⋆<100M⊙. Asanearlystellarfeedback,the etal.1996),asoursimulationdoesnotconsiderthesecularevo- H -regionfeedbackusingaStromgrenvolumeapproach(Baba II lutionduetogasaccretionfromthehalo.Thisisalsothereason etal.2017)isemployed.TheenergyfeedbackfromtypeIISNe whywestopoursimulationatt=3Gyr,beforethegasisex- isimplemented. EachSNreleases1051 erg,andthisenergyis hausted. A model incorporating gas accretion will be used in injected into the surrounding ISM. We adopt the probabilistic ourforthcomingpapers. mannerofOkamotoetal.(2008)toevaluatetheinjectiontime. 3.1 AVR Figure5showstheradial,azimuthal,verticalandtotalAVRsin our simulated galaxy at t=2 Gyr. In this AVR analysis, we 1Theideatointroducethepressurefloortosimulationsmightcomefromthe onlyusethestarparticlesformedfromgas.Thereddotsdenote numericalexperimentsshownbyBate&Burkert(1997).Theypointedout forthefirsttimethatartificialfragmentationmightoccur,ifSPHsimulations theresultswhenonlystarswhosegalactocentricdistanceRwas didnothavesufficientmassresolution. Afterthisindication,thepressure intherange8kpc<R<9kpcwereused,whereasthebluetri- floorisintroduced,inparticulartoavoidartificialfragmentations.However, anglesrepresentthecasewhereallregionswereincluded. The Hubberetal.(2006)concludethatundertheinsufficientmassresolution velocitydispersionsasafunctionofstellarage,τ,arecalculated case,thegrowthofgravitationalinstabilityissuppressedwhentheartificial fragmentationdidnottakeplace. byusingthefollowingequations: PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 5 Fig.2. Thegasdensityonthegalacticplane(z=0)att=1,2,and3Gyr. Theupperpanelsshowaregionof−12kpc<x<12kpcand−12kpc< y<12kpc.Thelowerpanelsdisplaythecloseupviewofapartofthediskregionof0.6kpc<x<5.4kpcand0.6kpc<y<5.4kpc. Fig.3. Thestellarsurfacedensityatt=1,2,and3Gyr.Forthestellarsurfacedensity,weusethesumofstellarparticlesformedfromthegasparticlesand staticsurfacedensitycalculatedbytheMiyamoto-Nagaimodel(Miyamoto&Nagai1975). σR(τ)= hvR2iτl<τ<τh−hvRi2τl<τ<τh 1/2, (5) meantheaverageofstellarvR2 whoseageisbetweenτlandτh. We apply the width of age bins in such a way that every bin σφ(τ)= (cid:2)h(vφ−vφ(R))2iτl<τ<τh−hv(cid:3)φ−vφ(R)i2τl<τ<τh 1/2,(6)has equal numbers of stars (2000 stars in each bin). For the distributions ofvelocity dispersions, thesamplingrangeeffect σ (τ)=(cid:2)hv2i −hv i2 1/2, (cid:3)(7) z z τl<τ<τh z τl<τ<τh isinsignificant. σ (τ)=(cid:2) σ (τ)2+σ (τ)2+σ (τ)2(cid:3)1/2, (8) tot R φ z The solid lines in figure 5 represent the fitting results with whereτ an(cid:2)dτ arethetwoedgesofth(cid:3)eagebin. hv2i a power-law function for stellar particles found between R= l h R τl<τ<τh 6 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 Fig.5. Radial(topleft),vertical(topright),azimuthal(bottomleft)andtotal(bottomright)AVRsinoursimulatedgalaxyatt=2Gyr.Thereddotsindicatethe AVRcalculatedwithstellarparticlesfoundbetween8kpcand9kpcfromthegalacticcenter. Thesolidlinesarethefittingresultswithapower-lawfunction forthestellarparticlesinthisregion.Forthisprocedure,weonlyusestarparticlesolderthan0.5Gyr(ontherightsideofthedashedline).Thebluetriangles indicatetheAVRcalculatedwithallstellarparticles. 8kpcand9kpc. Here,weadoptstarsolderthan0.5Gyr. The τ 0.36 σ =25.0 kms−1. (12) functionalformsofthefittedage-radial,azimuthal,vertical,and tot 1Gyr (cid:18) (cid:19) totalvelocitydispersionrelationsare Theexponentsoftheradial,azimuthal,vertical,andtotalAVR 0.37 andtheratiooftheradialtoverticalvelocitydispersionareclose τ σ =19.4 kms−1, (9) R 1Gyr totheobservedvalues (see§1). Theradialtoverticalvelocity (cid:18) (cid:19) dispersionratiobecomes 0.33 τ σφ=13.4 1Gyr kms−1, (10) σz =0.38 τ 0.22. (13) (cid:18) (cid:19) σ 1Gyr R (cid:18) (cid:19) 0.59 σ =7.36 τ kms−1, (11) Observationally, the age dependence on this relation is not z 1Gyr (cid:18) (cid:19) found.Thisweakdependenceonτ inoursimulatedAVRagain PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 7 Fig.4. Star-formationrateasafunctionoftime. Fig.6. σφ2/σR2 (red triangles) and κ2/4Ω2 (blue dots) as a function of favorsobservations(Dehnen&Binney1998). galactocentricradiusatt=2Gyr. Thesetwoparametersareequalwhen epicycleapproximationissatisfied. Thebluetrianglesinfigure5showtheAVRcalculatedwith all stellar samples. Here, we reapply the width of age bins in such away that each bin has 10000 stars. Radial and vertical oursimulatedgalaxies,althoughtheyareregardedasaheating AVRs are similar to the local AVRs shown by the red points sourceofradialvelocity dispersion(Carlberg1987;Jenkins& inspiteofthedifferenceinthesamples.Thisagreementmeans Binney1990). Interestingly,withoutstrongspiralarms,wecan thatradialandverticalvelocitydispersionsareroughlyconstant successfullyreproducetheobservedexponents ofnotonlythe throughoutthediskregion. verticalAVR,but alsotheradialone. Wediscussthis pointin On the other hand, azimuthal velocity dispersion with all §4. stellarsamplesislargerthanthosewithlocalstarsintheouter Figure7showstheAVRsatthethreedifferentepochs. We region(8kpc<R<9kpc). Thatisbecausetheazimuthalve- canseethatthesimulatedAVRsofthethreeepochsdonotover- locity dispersion is determined by the epicycle approximation lap;thereisaclearindicationoftheevolutionoftheAVR.Both (Binney&Tremaine2008), the initial velocity dispersions and heating efficiency evolve. This isinconsistent with theconventional interpretation ofthe σ2 κ2 φ = , (14) AVR, i.e., that it is the evolution track of stars on the age– σ2 4Ω2 R velocitydispersionplane. where κ and Ω are epicycle frequency and angular velocity, Infigure8,weshowtheevolutiontracksofstellargroupsof respectively, and the ratio of κ and Ω changes depending on 26differentepochsontheage–velocitydispersionplanes.Each thegalactocentricdistance. Figure6showsσφ2/σR2 andκ2/Ω2 grouphasadifferentinitialvelocitydispersionandheatingrate. as a function of radius. There is a good agreement between Theslopeofeachevolutionsequenceislesssteepthanthosein then,whichmeansthatstellarmotioniswelldescribedwiththe observations.However,whenwepickupvalues,forinstance,at epicycleapproximation. Weseethatσφ2/σR2 ∼0.5intheouter t=2Gyrforallevolutionsequences(blacktrianglesinfigure region (R>8 kpc) where the rotational velocity becomes al- 8),weobtainAVRsthatareconsistentwiththoseobtainedfrom mostflat(asshowninfigure1),andthisisalsoconsistentwith observations. ThisrevealsthatAVRsareinconsistent withthe thepredictionoftheepicycleapproximation.Intheinnerregion evolutiontracksofstarsontheage-velocitydispersionplane. (R<8kpc), however, the rotational velocity is anincreasing functionofR,andthenσ2/σ2 arelargerthanthoseintheouter φ R 3.2 OriginsofsimulatedAVR region.Here,σ doesnotdependonradiusasmentionedinthe R aboveparagraph,andso,σφ becomesadecreasingfunctionof In the previous section, we showed that the AVR is not just a radiusaccordingtotheepicycleapproximation. Therefore,az- simple evolutionary track of stars on the age–velocity disper- imuthalAVRwithallstellarsamplesdeviatesupwardfromthat sionplane.Inthissection,weinvestigatetwoimportantfactors withlocalstarsbetween8kpcand9kpcasshowninfigure5. thataffecttheevolutionofstarsontheage–velocitydispersion Hereafter, we discuss the radial and vertical AVR with all plane: theinitialvelocitydispersion(i.e. velocitydispersionat stellarparticlesinthegalacticdisktoensuresufficientsamples thebirthtimeofstars)andtheheatingrateasafunctionofage. andsimplification. The evolution of the initial velocity dispersion is discussed in Itis worthnoting that strongspiralarmsdonot develop in §3.2.1,whilethatoftheheatingrateisdiscussedin§3.2.2. 8 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 Fig.7. Evolutiontracksofstellarage-velocitydispersionswithdifferentsampleswhosebirthepochist=1,2,and3Gyr. Differentsymbolsrepresent differentgroups. Fig.8. Dotsshowthetimeevolutionofstellarvelocitydispersion.Theleftandrightpanelsshowtheradialandverticalvelocitydispersion,respectively.Each colorindicatesadifferentbirthtime.TheblacktrianglepointsshowtheAVRatt=2Gyr. 3.2.1 Zero-AgeVelocityDispersion thatsatisfythestar-formationcriteriaasafunctionoftime. We First,wediscussthestellarvelocitydispersionatthebirthtime can see that both velocity dispersions monotonically decrease ofstars. Wecallthis the“zero-agevelocity dispersion”(here- with time and they can be fitted by a power-law function of after,ZAVD).Asshowninfigure8,theZAVDdecreaseswith t. However,theirpower-lawindicesaredifferent;theindexof increasingage. Thisisoneofthekeyreasonsfortheinconsis- the ZAVD for the vertical direction is about twice as steep as tencybetweentheAVRandtheevolutiontracks. thatfortheradialdirection. Gravitationalinteractions,radiative cooling,starformationandfeedbackplaycrucialrolesindeter- The ZAVD is strongly related to the velocity dispersion of miningtheISMstructure,andtheseeffectsdependonthemass thestar-forminggasbecauseitinheritsthevelocitydispersion. ofthegasinthedisk. Therefore,itisnaturalthatthestatusof Figure9showstheradialandverticalvelocitydispersionsofgas PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 9 Fig.9. Velocitydispersionofgasthatsatisfiesthestarformationcriteriaasa functionoftime.Boththeradialandverticalvelocitydispersionsareshown. Bluedotsrepresenttheradial-velocitydispersions, whilereddotsindicate thevertical-velocitydispersions.Thelinesaretheresultsoftheleastsquare Fig.10. Verticalvelocitydispersionasafunctionoftime.Twenty-onegroups fittingwithapower-lawfunction. havebeenselected.Eachsequencerepresentstheevolutionofeachgroup. Solidcurvesareresultsofthefitting(seeEq.(17)). theISMisrelatedtotheoriginoftheAVR.Inotherwords,the AVRinvolvesthehistoricalevolutionoftheISMinagalaxy. Byintegratingthisequation,wefinallyhave −0.33 0.40 t 3.2.2 DynamicalHeatingRate σ =11.8 A− kms−1, (17) z 1Gyr In the previous section, we discussed the ZAVD. Here, we " (cid:18) (cid:19) # investigate the evolution of the dynamical heating rate (i.e. where A is a constant of an integral. The different sequence dσ/dt).Oncethesetwofactorsareunderstood,wecanusethem found in figure 10 can be expressed by choosing a different topredicttheentireevolutionoftheAVR. valueofA. Figure 10 shows the evolutions of vertical velocity disper- In figure 2, the dense gas (n > 100 cm−3) has clumpy H sions, σz, as a function of simulation time. Each sequence is structures,andisexpectedtoplaytheroleofaheatingsource. characterized by two evolution phases: the rapidly increasing Thisclumpyanddensegasisdecreasingwithsimulationtime. phaseintheearlystageandtheasymptoticallyflatteningphase Wesuspectthatthedecreasingheatingratewithincreasingsim- inthelatestage. Latertimeorhighervelocitydispersioncause ulation time may result from the decrease in the dense gas. theheatingratetobelower. Hence,weshowthetimeevolutionofthedensegasmassM dens Figure11showstheverticalheatingrate(dσ /dt)asafunc- infigure12. Here,wedefinethegasabovethestarformation z tionoftandσ . Wechosefourrepresentative epochsandσ . thresholdasthedensegas.Weseethatthemassofthedensegas z z Solidlinesarethefittingresultwithpower-lawfunctionsofσ monotonicallydecreasesanditcanbefittedbyasimplepower- z andt. Wecanseethattheheatingrateobtainedbyoursimula- lawfunctionwiththepower-lawindexof−1.24. Interestingly, tioniswellfittedbypower-lawfunctions. the power-law index is consistent with that for the simulation Usingthefittingresultsshowninfigure11,wecandescribe timefoundinEq. (16). Thisimpliesthatthetimeevolutionof theheatingrateasafunctionoftandσ : theheatingrateinoursimulationiscontrolledbythetotalmass z ofthedensegas. dσ z ∝t−ασ−β. (15) dt z Our result can be reduced to that obtained in the previous We apply this equation to sequences in figure10 and then we study where the contribution of gas is unchanged (Spitzer & obtain the concrete values of α and β. With these values, we Schwarzschild1951;Spitzer&Schwarzschild1953;Kokubo& have Ida1992;Ha¨nninen&Flynn2002).Considerthecaseinwhich the dense gas mass does not evolve; this can be described by dσ dtz ∝t−1.3σz−1.5. (16) lettingα=0inEq.(15),andthenweobtain 10 PublicationsoftheAstronomicalSocietyofJapan,(2014),Vol.00,No.0 Fig.11. Heatingratesasafunctionofσz(left)andasafunctionoftimet.Fourrepresentativeepochs(t=1.0,1.5,2.0and2.5Gyr)andfourrepresentative valuesofσz(σz=5.0,6.0,7.0and8.0kms−1)areemployed.Thesolidlinesrepresenttheresultsoffittingwithpower-lawfunctions. σ ∝(A−t)1/(β+1). (18) z This is consistent with the time evolution of velocity disper- sionshownbyapreviouswork(e.g. Ha¨nninen&Flynn2002), wherethemodelstreatedtheGMCsasatime-independentpo- tential. 4 Discussion and Summary OursimulationshowsthattheAVRisnottheevolutiontrackof stars on the age–velocity dispersion plane. This result means that the AVR can be reproduced even if the heating rate is smaller than the slope of the AVR. The time evolution of the stellarvelocitydispersiondependsuponthecombinationofthe initialvelocitydispersionandtheheatingrate.Inparticular,the AVRisstronglyaffectedbytheevolutionoftheZAVD. The importance of the ZAVD was pointed out by Wielen (1977); however they did not attempt to elucidate the details becauseofthecomplicatednatureofgasdynamics. Recentnu- mericalsimulations ofgalaxy formation alsodemonstrate that the ZAVD has a crucial role in the establishment of the AVR (Birdetal.2013;Grandetal.2016). Theobservations oftur- bulent gas disk athigh redshift(Fo¨rsterSchreiber etal.2009) Fig.12. Timeevolutionofgasmassthatismuchdenserthanthestarfor- mationthresholddensity.Thesolidlineindicatestheresultofthefittingbya supportthepresenceoftheevolutionofZAVD. power-lawfunctionanditsexponentis−1.24. TheotherkeyprocessforestablishingtheAVRisthesecular heating duetodensegas. Thisisconsistent with Aumeretal. (2016a),whoshowsthattheevolutionofheatinghistoryshapes anAVR.Oursimulationcansuccessfullyderivethecontribution ofthisprocess.Wepointoutthatthesufficientspatialresolution