ebook img

Importance of molecular packing at interfaces as well as in pre-micellar and micellar aggregates for controlling various technological processes PDF

187 Pages·2002·7.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Importance of molecular packing at interfaces as well as in pre-micellar and micellar aggregates for controlling various technological processes

IMPORTANCEOFMOLECULARPACKINGATINTERFACESASWELLASIN PRE-MICELLARANDMICELLARAGGREGATESFORCONTROLLING VARIOUSTECHNOLOGICALPROCESSES By JAMESRENEKAN1CKY ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2002 Idedicatethisdissertationtomyparents,whohavewaited solongtoseemegetarealjob! ACKNOWLEDGMENTS I would liketo express my sinceregratitude and appreciation to my advisor. Professor Dinesh 0. Shah, chairman ofmy supervisory committee, for hisguidance, enthusiasm, and motivation throughout my career at the University ofFlorida. His philosophicallessonsonlifeandhappinesshavebeenofgreatinspirationtome. Iam alsoverythankfultomyothergraduatecommitteemembers.ProfessorsBrij Moudgil, GarHoflund,andAnujChauhanfortheirvaluabletimeandsuggestions,andtotheUF DepartmentofChemicalEngineeringfortheirkindsupport. IwishtothankmycolleaguesfromtheDepartmentofChemicalEngineeringand theCenterforSurfaceScienceandEngineeringfortheirhelpandcooperation: Dr.Alex Patist, Dr. PeterKang,Dr. SteveTruesdail, Dr. ByronPalla, Dr. P. K. Patanjali,Dr. Brajesh Jha, Dr. Dibakar Dhara, Dr. Rahul Bagwe, Juan-Carlos Lopez-Montilla, Dr. TapanJain,SamirPandey,Dr.ManojVarshney,andMonicaJames. Iwouldalsoliketo thankallofmyundergraduatestudentassistants,especiallyAdamPoniatowski,fortheir experimentalcontributionstothisthesis. IwouldalsoliketoexpressmygratitudetoProf.KristerHolmbergforproviding mewithGeminisurfactantsamples,andtotheEngineeringResearchCenter(ERC)for ParticleScienceandTechnologyattheUniversityofFloridaforsponsoringmyresearch aswell asfortrainingmeformynewcareerin industry. I alsowishtothankERC colleagueDr.YakovRabinovichforhishelpwiththeAFMmeasurements,aswellasDr. JoshuaAdler,Dr.PankajSingh,Dr.BaharBasim,MadhavanEsayanur,andScottBrown 111 for their help with various aspects of my research and for very enlightening conversations. Finally,butmostimportantly,myheartfeltgratitudegoestoElkeMichalak,who hasbroughtnewmeaningtomylife,andtomyparents,Anne-MarieandJamesKanicky, towhomIoweeverything. IV TABLEOFCONTENTS page ACKNOWLEDGMENTS iii LISTOFTABLES viii LISTOFFIGURES ix ABSTRACT xvi CHAPTER INTRODUCTION 1 1 1.1 Surfactants 1 1.2 SurfactantAdsorption 4 1.3 Micellization 6 1.4 StructureofaMicelle 9 1.5 DynamicPropertiesofSurfactantSolutions 13 1.6 ImportanceofMicellarRelaxationTimeonTechnologicalProcesses....26 1.7 Long-ChainFattyAcidsandSoaps 35 1.8 RationaleoftheProposedResearch 44 2 DETERMINATIONOFFATTYACIDpHFOROPTIMAL PERFORMANCEINVARIOUSINTERFACIALPHENOMENA 47 2.1 Introduction 47 2.2 MaterialsandMethods 49 2.3 EffectofpHonPerformanceofFattyAcidinVarious InterfacialPhenomena 55 2.4 EffectofChainLengthonFattyAcidpKa 67 2.5 Conclusions 70 v 3 EFFECTOFCHAINLENGTHCOMPATIBILITYANDDEGREEOF UNSATURATIONONTHEpKaOFLONG-CHAINFATTY ACIDSOAPS 71 3.1 Introduction 71 3.2 MaterialsandMethods 74 3.3 EffectofDegreeofUnsaturationonpKa 75 3.4 EffectofChainLengthCompatibilityonpKaofMixedFatty AcidSolutions 81 3.5 Conclusons 84 4 EFFECTOFPREMICELLARAGGREGATIONONTHEpKaOF FATTYACIDSOAPSOLUTIONS 86 4.1 Introduction 86 4.2 MaterialsandMethods 87 4.3 EffectofChainLengthonpKa 87 4.4 EffectofSurfactantConcentrationonpKa 90 4.5 Conclusions 92 5 KINETICSOFGEMINIANDMIXEDSURFACTANTMICELLES 94 5.1 Introduction 94 5.2 MethodstoMeasureMicelleStability 96 5.3 MaterialsandMethods 102 5.4 KineticsofMicelleswithAddedFattyAcid 104 5.5 KineticsofMixedSurfactantMicelles 109 5.6 KineticsofGeminiSurfactantMicelles 110 5.7 Conclusions 119 6 CORRELATIONOFPARTICULATEDISPERSIONSTABILITY WITHTHESTRENGTHOFSELF-ASSEMBLEDGEMINI SURFACTANTFILMS 120 6.1 Introduction 120 6.2 MaterialsandMethods 126 6.3 StructuresofGeminiSurfactantMicellesAdsorbedatthe Solid/LiquidInterface 128 6.4 Conclusions 133 vi 7 SUMMARYANDRECOMMENDATIONSFORFUTUREWORK 135 7.1 EffectofpHonMolecularInteractionsofLong-ChainFattyAcids 135 7.2 EffectofChainLengthCompatibilityandDegreeof UnsaturationonFattyAcidpKa 135 7.3 EffectofPremicellarAggregationonFattyAcidpKa 136 7.4 KineticsofMixedandGeminiMicelles 136 7.5 DispersionofParticlesUsingGeminiSurfactants 137 7.6 RecommendationsforFutureWork 138 7.7 Publications 141 APPENDICES A DETERMINATIONOFAREA/MOLECULEOFANADSORBED SURFACTANTMONOLAYERUSINGTHEGIBBS ADSORPTIONISOTHERM 142 B AREA/MOLECULECALCULATIONSOFVARIOUSGEMINI SURFACTANTS 149 C CALCULATIONOFGEMINISURFACTANTMONOLAYER DESORPTIONRATES 153 REFERENCES 156 BIOGRAPHICALSKETCH 168 Vll LISTOFTABLES Table page 21--1 Physicalpropertiesofselectedfattyacids 37 32--1 pKavaluesofselectedcarboxylicacids 49 2-2 CalculatedparametersofGibbsadsorptionequationusedindetermination ofarea/moleculeof0.05wt%sodiumlauratesolutionvs.pH 66 3 ComparisonbetweenexperimentallydeterminedpKavaluesandobserved phenomenaforfattyacidsaltsof(C8-Ci6)chainlengths 69 1 SelectedphysicalpropertiesofC!8fattyacids 80 5-1 Comparisonofexperimentalandliteraturevaluesof12-2-12,12-3-12, and12-4-12Geminisurfactantcmc 113 5-2 Equilibriumsurfacetension,initialdesorptionrate,andequilibrationtime ofC12TABandvariousGeminisurfactants 117 B-l Tabulatedvaluesofareapermoleculeandintermoleculardistanceof 12-2-12,12-3-12,and12-4-12quaternaryammoniumbromide Geminisurfactantsadsorbedattheair/waterinterfaceatconcentrations belowcmc(C~1mM) 152 viii LISTOFFIGURES Figure page 1-1 Schematicrepresentationofatypicalsurfactantmolecule 1 1-2 Effectoftotalsurfactantconcentrationontheconcentrationsofspecies presentinsolution 7 1-3 Schematicrepresentationofthepossiblestatesinwhichasurfactant monomercanexistinwater(freemonomers,anadsorbedlayer attheair/waterorsolid/waterinterface,andmicelles) 8 1-4 Severalofthedifferenttypesofmicellarshapesencounteredina surfactantsolution 12 1-5 Packingparameteranditsrelationtomicellestructure 14 1-6 Mechsoalnuitisomnsafboorvtehecmtwcorelaxationtimes,nandx2,forasurfactant 15 1-7 Typicalsizedistributioncurveofaggregatesinamicellarsolutionaccording totheAniannson-Wallmodelofstep-wisemicellarassociation. Region (I)correspondstomonomersandoligomers;Region(III)toabundant micelleswithaGaussiandistributionaroundthemeanaggregation number,W;andRegion(II)totheconnecting“wire”(heattransfer analogy)or“tube”(masstransferanalogy)betweenRegions(I)and(III) 16 1-8 Schematicrepresentationofthetwopossiblereactionpathsforthe formationofmicelles(a),andthecorrespondingresistances(b). (1)Formationbyincorporationofmonomers(Equation1.8); (2)Formationbyreversecoagulationofsubmicellaraggregates (Equation1.13) 21 1-9 Schematicrepresentationofadsorptionofsurfactantontothenewly createdair/waterinterfaceduetodisintegrationofmicellesduring foamgeneration 28 1-10 Schematicrepresentationofadsorptionofsurfactantontofabricdueto disintegrationofmicellesduringwetting 29 IX 1-11 Schematicdiagramfortheadsorptionofsurfactantmonomersfromthe bulktotheoil/waterinterfaceduringemulsification 30 1-12 Theslowrelaxationtime,X2,ofSDSmicellesatvarioussurfactant concentrations 31 1-13 SchemmaMtiScDdSiacgornacmesntsrhatoiwoinngmicellarpackingat50,100,200and250 32 1-14 Liquid/gasinterfacialphenomenaexhibitingminimaandmaximaat200mM SDSconcentration 34 1-15 Liquid/liquidandsolid/liquidinterfacialphenomenaexhibitingminimaand 1- maximaat200mMSDSconcentration 35 1-16 Molecularstateoffattyacidbelowcmcinaqueoussolution 40 2- 1-17 Speciesdistributionofpotassiumoleate(3x10'5M)asafunctionofpH 41 1-18 Speciesdistributionofpotassiumoleate(3x10'5M)asafunctionofpH usingdifferentestimatesofthermodynamicconstantsthanin Figure1-17. TheR2H'curveisadashedline 43 19 Flowchartillustratinghowprinciplesofmicellekineticscanbecombined withfattyacidadsorptionstudiesinordertotailorthekineticsofa micelle. Gray-filledboxesindicatethescopeofthisdissertation 45 1 Setupforthemeasurementofdynamicsurfacetensionbythemaximum bubblepressuremethod 51 2-2 Schematicdiagramoffoamcolumnusedforfoamabilityandfoam stabilitystudies 53 2-3 Schematicdiagramoftheexperimentalsetupforevaporation measurements. ThedessicantusedwasCaCU 54 2-4 Surfacetension(y)vs.pHof0.05wt%sodiumlauratesolution 57 2-5 Dynamicsurfacetension(DST,2seclifetime)andequilibriumsurface tensionmeasurementsfor0.05wt%sodiumlauratesolutionvs.pH 57 2-6 Foamheightof0.05wt%sodiumlauratesolutionvs.pHinfoamcolumn preparedbysingle-capillaryinjectionofair 58 2-7 Maximumfoamstabilityof0.05wt%sodiumlauratesolutionvs.pHin foamcolumnpreparedbysingle-capillaryinjectionofair 59 x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.