ebook img

Implications of sea-level rise in a modern carbonate ramp setting PDF

2018·5.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Implications of sea-level rise in a modern carbonate ramp setting

Geomorphology304(2018)64–73 ContentslistsavailableatScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Implications of sea-level rise in a modern carbonate ramp setting StephenW.Lokiera,⁎,WesleyM.Courta,TakumiOnumab,AndreasPaula aGeosciencesDepartment,KhalifaUniversityofScienceandTechnology,PetroleumInstitute,P.O.Box2533,AbuDhabi,UnitedArabEmirates bAppliedGeoscienceDepartment,JGI,Inc.,Tokyo,Japan a r t i c l e i n f o a b s t r a c t Articlehistory: Thisstudyaddressesagapinourunderstandingoftheeffectsofsea-levelriseonthesedimentarysystemsand Received10April2017 morphologicaldevelopmentofrecentandancientcarbonaterampsettings.Manyancientcarbonatesequences Receivedinrevisedform13December2017 areinterpretedashavingbeendepositedincarbonaterampsettings.Thesesettingsarepoorly-representedin Accepted16December2017 theRecent.Thestudydocumentsthepresent-daytransgressivefloodingoftheAbuDhabicoastlineatthesouthern Availableonline28December2017 shorelineoftheArabian/PersianGulf,acarbonaterampdepositionalsystemthatiswidelyemployedasaRecent analoguefornumerousancientcarbonatesystems.Fourteenyearsoffield-basedobservationsareintegrated Keywords: withhistoricalandrecenthigh-resolutionsatelliteimageryinordertodocumentandassesstheonsetofflooding. Sealevel Transgression Predictedratesoftransgression(i.e.landwardmovementoftheshoreline)of2.5myr−1(±0.2myr−1)basedon Carbonateramp globalsea-levelrisealonewerefarexceededbythefloodingratecalculatedfromtheback-steppingofcoastalfea- Coastalerosion tures(10–29myr−1).Thisdiscrepancyresultsfromthedynamicnatureofthefloodingwithincreasedwater PersianGulf depthexposingthecoastlinetoincreasederosionand,thereby,enhancingback-stepping.Anon-accretionary transgressiveshorelinetrajectoryresultsfromrelativelyrapidsea-levelrisecoupledwithalow-anglerampgeom- etryandapaucityofsediments.Thefloodingisrepresentedbythelandwardmigrationoffaciesbelts,arangeof erosivefeaturesandtheonsetofbioturbation.EmployingIntergovernmentalPanelonClimateChange(Church etal.,2013)predictionsfor21stcenturysea-levelrise,andallowingforthepost-floodinglagtimethatistypical forthestart-upofcarbonatefactories,itiscalculatedthatthecoastlinewillcontinuetoretrogradefortheforesee- ablefuture.Totalpassiveflooding(withoutconsideringfeedbackinthemodificationoftheshoreline)bytheyear 2100iscalculatedtolikelybebetween340and571mwithafloodingrateof3.40–8.64myr−1.However,adopting theobservationthatglobalsea-levelriseonlyaccountsfor15%oftherecordedshorelineretreat,thisfigurerises dramaticallytoatotallikelydynamicflooding(consideringmodificationstotheshoreline)ofbetween2.3and 3.8km.Lossofmicrobialandmangalhabitatswillsubjecttheexposedshorelinetoincreasingerosion.Shoreline retreatwillthreatenexistingcoastalinfrastructure. ©2017ElsevierB.V.Allrightsreserved. 1.Introduction fortheAbuDhabicoastlineduringtheLateHoloceneregressionand stillstandiswell-documented(Evansetal.,1969;KinsmanandPark, Thepasttwocenturieshavewitnessedariseinglobalsea-levelat 1976; Lokier and Steuber, 2008; Stewart et al., 2011; Lokier et al., anacceleratingrate,with3.2mmyr−1observedfrominstrumentalre- 2015).Yetonlyasmallnumberofpreviousstudieshaveconjectured cordsoverthepasttwodecades(ChurchandWhite,2011;Meyssignac theeffectsofaeustaticsea-levelrise,withthecreationofnewaccom- andCazenave,2012;Churchetal.,2013).Thisindustrial-erasignature modationthatonlyrecentlyoverwhelmedsedimentproductionand of global sea-level rise has been documented in a range of coastal thusinitiatedtheonsetofatransgressivephase(EvansandKirkham, systems(Singh,1997;Leathermanetal.,2000;RankeyandMorgan, 2002;Lokieretal.,2015). 2002;Woodroffe,2008;FordandKench,2015;Romineetal.,2016; Theprimaryobjectiveofthisstudyistoutilisefourteenyearsof Testutetal.,2016).However,todate,therehavenotbeenanystudies field-basedobservationsalongwithhistoricalandrecentsatelliteimag- oftheeffectsofthistransgressiononsedimentarysystemsandshore- erytodocumentandassesstheprocessoftransgressioninanaridcarbon- linemorphology in a carbonate ramp setting. The coastline of Abu ateandevaporitecoastaldepositionalsystemthatismorphologically Dhabi,lyingatthesouthernshoreofthePersian/ArabianGulf,hereafter analogous to numerous ancient carbonate ramp systems. The study referredtoastheGulf,isanidealsettingforstudyingtheprocessof alsoaimstoestablishthediagnosticsedimentaryfeaturesthatcanbe transgressioninsuchasetting.Theoverallprogradationalgeometry employedtoassistintheidentificationoftransgressivesurfacesinancient sedimentary sequences throughout the stratigraphic record. These ⁎ Correspondingauthor. outcomesprovidearesourcewithwhichtointerpretthesequencestrat- E-mailaddresses:[email protected](S.W.Lokier),[email protected](T.Onuma). igraphiccontextinancientcarbonaterampsettingsand,conversely,to https://doi.org/10.1016/j.geomorph.2017.12.023 0169-555X/©2017ElsevierB.V.Allrightsreserved. S.W.Lokieretal./Geomorphology304(2018)64–73 65 considerthelikelyimplicationsofglobalsea-levelriseonfutureshoreline Temperatures measured in the study area regularly exceed 50 °C morphodynamics.Furthermore,predictionsofprobableratesofgeomor- onsummerdaysyetmaydropaslowas7°Cduringwinternights phicchangearefundamentaltoplanningfuturecoastlinemanagement (LokierandFiorini,2016).Theprevailingwindisthenorthwesterly (Pethick,2001;Romineetal.,2016). Shamal.Stormsarerareandtypicallyofrelativelyshortdurationand lowenergy. 2.Setting 3.Methods TheGulfisashallow(average35m)microtidal(1–2m)epeiricsea lyingatthenorthernmarginoftheArabianPlate(Fig.1).Thefloorofthe This study utilised and integrated multiple datasets including almost completely land-locked basin dips gently north-eastward satellite imagery, shoreline transect surveys and long-term repeat towardsthecoastofIran.Thesedimentsoftheseaflooraredominated field observations along a 16 km section of coastline containing a by muddy to fine-grained carbonates (Evans, 1966; Uchupi et al., rangeofsettingsrepresentativeoftheGulfcoastalsystemoftheUAE 1996)andassociatedhardgrounds(Shinn,1969).Thereisageneral (Fig.1).ThestudyemployedQuickbirddatawithaspatialresolution increaseinsiliciclasticcontenttowardstheIranianshoreline(Emery, of 0.6 m/pixel for the Panchromatic Band, acquired in 2003, 2004, 1956). 2005and2007,andWorldView-2datawitha0.5m/pixelresolution TheAbuDhabicoastlineoftheGulfcomprisesanorthward-dipping, for the same band acquired in 2010. Multi-band data covering the low-angle, carbonate ramp characterised by the transition from a visible-nearinfraredregionwithaspatialresolutionof2.4m/pixels supratidalsabkha,throughabroadcarbonate-dominatedintertidal and2.0m/pixel,forQuickbirdandWorldView-2respectively,were environment,intoasubtidalcarbonatesetting(Evansetal.,1964). alsousedalongwithPAN-sharpenedcolourimageswith0.6m/pixel Thecoastislocallyisolatedfromopen-marineconditionsbyacomplex forQuickbirdand0.5m/pixelforWorldView-2data.Multi-banddata ofpeninsulas,shoalsandislandsthatformedasHolocenesedimentsac- wereconvertedtospacereflectanceusingparametersprovidedbythe cretedaroundPleistocenelimestoneassociatedwiththeunderlyingGreat TechnicalNoteofDigitalGlobe,andNormalizedVegetationIndexim- PearlBank(PurserandEvans,1973;Harris,1994).ThesouthernGulf ageswereproducedinordertotracethedistributionchangeofonshore shorelinehasbeentectonicallystablethroughoutthelateQuaternary vegetationaswellasmicrobialmatsintheintertidalzone.Theresultant (Stevensetal.,2014). images were examined and compared in order to trace temporal TheemirateofAbuDhabiexperiencesanaridclimatewithamean morphologicalchangesalongthecoastline. annualrainfallof72mm,concentratedduringFebruaryandMarchas Field-basedobservationshavebeenregularlymadeintheAbuDhabi localised,brief,torrentialrainstorms(Raafat,2007).Meanannualevap- sabkhasincetheyear2000.Thoughnotinitiallyfocusedonthisspecific orationof2.75mexceedsrainfallbyalmost4000%(Bottomley,1996). study, the earlier field observations (prior to 2007) provided an Iraq Kuwait Persian/Arabian Iran Gulf Abu Dhabi Island Bahrain Persian/Arabian Qatar Gulf GOumlfa onf Saudi Arabia United Arab Oman Emirates Khawr Jazirat Abu Qirqishan Kushayshah Al Dabb’iya Abu Al Abyad K h a wr Q a ntur N 10 km Fig.1.SatelliteimageoftheAbuDhabicoastlinebetweenAbuDhabiIslandintheeastandAbualAbyadIslandinthewest,seeinsetmapforregionalcontext.Thelocationofthe16km-long studyareaishighlightedbythewhitebox,theblackarrowindicatesthepositionoftheislandshowninFig.2,thewhitearrowindicatesthelocationofFigs.4and6.LandsatETMimage acquired3rdJuly2002. 66 S.W.Lokieretal./Geomorphology304(2018)64–73 invaluableresourceforselectinglocationsformorerobust,long-term 4.Evidenceofshorelinechange monitoring.Observationswerealsoregularlyundertakenoutsideof thefocusareasinordertoensurethatthewidestpossiblegamutof Shorelinesarehighlydynamicfeaturesinanear-continuousstateof datawasincorporatedintothestudy.Fieldobservationsalsoincluded morphologicalfluxatarangeofspatialandtemporalscales(Woodroffe, surveyingtwotransectsnormaltotheshorelineinordertomeasure 2008;Rankey,2011).ThedGPSsurveyinthisstudyestablishedthat theheightandslopeofthecarbonaterampcoastalsystem.Thesurvey the upper intertidal to supratidal portion of the ramp system dips wasundertakenusinganAltusAPS-3differentialglobalpositioningsys- very gently seawards at an angle of between 0.07° and 0.08°. By tem(dGPS).Ateachmeasurementposition,atleast10measurements employing the Intergovernmental Panel on Climate Change (IPCC) were made and the average of these was used to geolocated the globalmeansealevelriserateof3.2mmyr−1fortheperiodbetween position. 1993and2010(Churchetal.,2013),anaveragetransgressionrateof Aparticularchallengeresultingfromthelow-anglegeometryof 2.5±0.2myr−1canbepredicted.Itcanbeanticipatedthatsucha theAbuDhabicoastalsystemisdemarkingadefinitive‘coastline’. significantrateoftransgressionwouldresultinsubstantialcoastline In this carbonate ramp system the horizontal distance between change.Fieldandremotesensingobservationsofarangeoferosional mean high water and mean low water may locally exceed 4 km, andconstructionalfeaturesfromtheAbuDhabicoastlinearedocumented withahighdegreeofvariabilityresultingfromeventhemildest herein. windsoratmosphericpressurevariations.Intheabsenceofadefin- Anumberofmorphologicalfeaturesweremonitoredinthevicinity itivecoastline,weemploythemicrobialmatbeltasadatum.The ofalow-lyingvegetatedislandinthewestofthestudyarea(Fig.2). landwardandseawardlimitsofmicrobialmatbeltsarestronglycon- Unfortunately,dredgingandlandreclamationactivitydestroyedthis trolledbytheirpositionintheintertidalzone(LokierandSteuber, areain2011therebyabruptlycurtailingmonitoring.Priortothisloss,a 2008).Theseawardextentofthebeltisconstrainedbyabalancebe- seriesofspitsdevelopedatthewesternshoreoftheislandandmigrated tweenmicrobialmatgrowthrateandthepresenceofgrazingorgan- landwards over a monitoring period ofseven years. The spits were isms-particularlygastropods.Themat'slandwardlimitisgoverned composedofcoarsesandtograveldominatedbywholeandfragmented bythelimitsofflooding;microbialmatsmustberegularlyinundated gastropods with subordinate bivalves and other skeletal allochems. toavoiddesiccation. Thesebodiesmigratedtowardsthesoutheastoverapustularmicrobial 5.4.2003 18.6.2004 4.7.2005 A B C B C2 B M S S C S N 100 m 13.2.2007 8.10.2010 D E B B Be S2 S S Fig.2.Seriesofsatelliteimagesovera7-yearperiodshowinggeomorphologicalchangesassociatedwithaspitinthewestofthestudyarea(refertoFig.1forthelocationoftheimages). A)Satelliteimageshowingaseriesofspitslandward(south)ofalow-reliefisland.B)Spitsretrogradeoverthemicrobialmat(S).Inthenorthoftheimagesandbars(B)migratesouth towardsastandofmangroves(M).Acrevassesplaydevelopsinthesouthoftheimage(C).C)Spitsandsandbarscontinuetoretrogradetowardsthesouth.Thespitisbreachedwithanew crevassesplaydevelopingwithaneasterlyorientation(C2).D)Continuedsouthernspitmigration.Sandbarsbegintoburymangrovesandisolatethemfrommarinecirculation.Significant buildingofthebeachonthewesternmarginofthespit(Be).E)Spitscontinuetoretrogradetowardsthesouth-totalmigrationof218min7yearsand7months.Mangrovestandtotally destroyedbymigratingsandbars.Newspitsystemdeveloping(S2).RefertoFig.1forthelocationwithinthestudyarea.AllimagesfromQuickbird2(0.6m/pixelspatialresolutionforthe PanchromaticBand)exceptthoseof10/10/10whichareWorldView-2(0.5m/pixelresolution).Infraredisdisplayedasred,redasgreenandgreenasblue. S.W.Lokieretal./Geomorphology304(2018)64–73 67 mat(Courtetal.,2017)underlainbyananoxic,organic-richmudto Stormeventsresultinlocalisedbreachingofbeachridgestoproduce fine-sandgradesediment.Themigrationwasmonitoredbetween crevassesplayscomprisingcoarse-grainedcarbonatesands(Figs.2C, April2003andAugust2010usingacombinationoffieldobserva- 3C). Onceemplaced, thesesands are not susceptible to reworking, tions(Fig.3A)andremotesensingimagery(Fig.2).Overthisseven thereby contributing to the aggradation of the island surface. andahalfyearperiod,thespitmigrated218mlandwardoverthe Retrogradingsandbodiesalsohaveasignificantimpactonthedevelop- microbialmats,equatingtoanaveragerateof29myr−1.Similar mentofmangals(Fig.3D–F).Wheretheaerialroots(pneumatophores) back-steppinghasbeenobservedinbeachridgeselsewherealong ofmangrovesareburiedbymigratingsands,themangrovetreesdie thecoast(Fig.3B). andbecomevulnerabletosubsequenterosion(Ellison,1999). A Landwards 8/10/2007 27/12/2007 28/2/2008 15/5/2008 30/12/2008 2 m B C 30 cm D E F 13/2/2007 50 m 8/10/2008 50 m 40 cm G H 20 cm Fig.3.FieldphotographsofarangeoferosionalandmigrationalfeaturesobservedattheAbuDhabicoastline.A)Observationsofaspitmigrating17.5mlandwards(southeast)overthe microbialmatsoveraperiodof15months.Arrowsdenotetheobservedlocationofthetipofthespitatthespecifieddates.B)Beachridgeback-stepping(directionofwhitearrow)towards thesouthoveramicrobialsurfacewithfootprints(blackarrows).C)Breachingofabeach-ridgewithassociatedcrevassesplay.Blackarrowsindicatethelimitsofthebreach,blackdashed linedenoteslimitofwashover(personforscaleis1.75mtall).D&E)PairedQuickbird2(left)andWorldview2(right)satelliteimagesshowingtheinundationandlossofmangroves (whitearrow)byretrogradingsandbodiesoveraperiodof20months.F)FieldphotographofthemangroveskilledthroughburialbyretrogradingsandbodiesasindicatedinpanelsD&E. Viewtowardsthenorth.G)HardgrounderosionontheleewardsideofthepeninsulashowninFig.1(bendingpersonforscaleis1.15mhigh,viewtowardsthenorth).H)Erosionof microbially-boundlayersofmuddysandsintheupperintertidalzone,whitearrowsindicatedistinctmicrobialsurfaces,landwards(south)totopofimage. 68 S.W.Lokieretal./Geomorphology304(2018)64–73 Intheintertidalzonetotheseawardandeastoftheislandthereis changesintheamountanddurationoftidalfloodingandanychanges significantexposureanderosionofthehardgrounds(Fig.3G).During inenergywithinthedepositionalsystem. rarehigherenergystormevents,clastsfromthehardgroundarecarried Thearealextentofthemicrobialmatbeltcanbeclearlydefinedfrom landwardontothesurfaceofthesabkhawheretheyareincorporatedas satelliteimagery(Fig.4).Inthefield,itispossibletosub-dividethemi- aminorcomponentintobeachridgesormoremuddyfaciesasangular crobialmatbeltintoanumberofmorphologicalsub-zones(Courtetal., extraclasts.Erosionisalsoobservedatthelandwardlimitoftheinter- 2017).Nobioturbationisobservedwithinthemicrobialmatbeltorin tidalzone.Firmgrounds,formedthroughthebindingofsedimentsby facieslandwardofthemicrobialmats.Duringtheperiodofobservation, interstitialmicrobialgrowth,arebeingeroded(Fig.3H).Fragmentsof avarietyofchangeshavebeenobservedinrelationtothemicrobialmat thefirmgroundareeasilyabradedtoformsub-roundedintraclastsor, belt. iftransportedmoredistally,potentiallyextraclasts. Satelliteandfieldobservationsshowthatboththeseawardand Within the middle to lower intertidal zone, tidal creeks are landward margins of the microbial mats are migrating landwards retrogradingthroughheadwarderosionoftheunderlyinghardground (Fig.4).Theseawardmarginofthematsisbeingburiedbeneaththe facies.Retrogradinglobesoftheintertidalbioclasticandpeloidalsands back-stepping bioclastic and peloidal sands of the intertidal zone locallydivertthemost-landwardportionoftheintertidalcreeks;this (Fig.5A–E).BetweenFebruary2007andSeptember2010theseaward processsometimesdivertsebbtidalflowtoadifferentcreekcatchment marginofthemicrobialmatslocallyretrogradedbybetween60and resultinginabandonmentoftheoldcreeksystem(Fig.4). 100m,equivalenttoarateof16–27myr−1.Theretrogradingbioclastic andpeloidalsandsinitiallycoverthematsurfacewithathinsediment veneer(Fig.5A)thatresultsinamorphologicalchangeinthegrowth 4.1.Migrationoffaciesbelts ofthemats.Low-lyingareasofthematandgapsbetweenpolygons (Fig.5B)arepreferentiallycoveredbysedimenttherebyreducingthe Asmentionedpreviously,theextentofthemicrobialmatbeltis small-scalereliefofthematsurface.Withinweeks,thissedimentis stronglycontrolledbyitspositionwithintheupperpartoftheintertidal colonised and stabilised by interstitial microbial growth (Fig. 5C). zone. The community composition, morphological characteristics Topographicallyhigherareasofthemicrobialmats,suchasmatmargins andresilienceofthemicrobialmatsareparticularlysusceptibletoany continuetogrowbutareincreasinglysusceptibletograzingbybenthic A B C IT IT MM MM IT MM MM P ST P ST ST Road 555...444...222000000333 200 m N 18.6.2004 4.4.2005 D E b a 13.2.2007 8.10.2010 Fig.4.Seriesofsatelliteimagesovera7-yearperiodshowinggeomorphologicalchangesassociatedwiththemicrobialmatbelt,refertoFig.1forthelocationoftheimages.A)Satellite imageshowingthesupratidal(ST),microbialmatbelt(MM)andintertidal(IT)environmentsoftheAbuDhabiSabkha.B)Unusuallyhightidesresultinfloodingandpondingofwaterin thesupratidalzone(P).C)Increasedmicrobialmatdevelopmentinthenorth-westernfloodedarea.Retrogradationofthelandwardsmarginofthemicrobialmatbeltinmuchofthearea (arrow).D)Imagewithfloodingoftidalcreeks,intertidalbioclasticandpeloidalsandfaciesretrogradeoverthemicrobialmatbelt(arrows).E)Intertidalsandshaveback-steppedovera distanceof60mat‘a’and100mat‘b’.Thelandwardmarginofthemicrobialmatshasmigratedlandwardsbyonly35moverthesameperiod.AllimagesfromQuickbird2(0.6m/pixel spatialresolutionforthePanchromaticBand)exceptthoseof8/10/10whichareWorldView-2(0.5m/pixelresolution).Infraredisdisplayedasred,redasgreenandgreenasblue. S.W.Lokieretal./Geomorphology304(2018)64–73 69 A B 1 m 50 cm C D M B F G P 10 cm 10 cm E F R 10 cm 50 cm Fig.5.Fieldphotographsoftransgressivefeaturesassociatedwiththemicrobialmatbelt.A)Viewseawardsshowingthebacksteppingofthelowerintertidalbioclasticandpeloidalsand faciesovermicrobialmatswithapoorly-definedpolygonalmorphology.Theretrogradationalfrontisindicatedbythewhitearrow.Smallstandsofmangrovescanbeseeninthedistance (blackarrow).B)Well-developedleatherypolygonalmicrobialmats(foreground)beingburiedbythebacksteppingbioclasticandpeloidalsandfacies(blackarrow)–viewtowardsthe north(seawards).Notehowthesandsareinfillingareasbetweentheupliftedpolygonmargins(whitearrow),therebyeffectively‘smoothing’thetopography.C)Bioclasticandpeloidal sandfacies(leftofimage,seawards)retrogradingoverspongymicrobialmat(rightofimage,landwards).Thesandsarebeingstabilisedbythedevelopmentofathininterstitialmicrobial growthwithinthesedimentsurface(blackarrow).D)Followingburialbeneaththebioclasticandpeloidalsandfacies,themicrobialmats(M)aresusceptibletodegradation.Surface feedingbygastropods(G)andcrabsproducespeloids(P)andfeedingpellets(F)respectively.InfaunalbioturbationislimitedtodwellingburrowsofScopimeracrabicauda(B).Note thatalloftheburrowingandfeedingisconcentratedinthetopographicallylowareaswherethesemicrobialmatsareabsent.E)Crosssectionshowingthelaminatedbioclasticand peloidalsandfacies(arrow)retrogradingoverthespongymicrobialmat(blackarrow)-thedashedwhitelinedemarksthebaseandfrontofthetransgressingunit.Thesurfaceofthe sandsiscolonisedbyaninterstitialpalegreenmicrobialcommunity.Thedarkgreycolouroftheunderlyingsedimentsreflectstheanoxicconditionsinthesub-surfacewhere microbialmatshavedecayedwithonlyisolatedrelicsremaining(whitearrow).F)Areasofrippeduppustularmat–viewtowardsthesouth(landwards).Areasofmataredislodged duringinundationbyhigher-energyevents,suchasstorms,orthroughsimplefloatingwhengasistrappedbelowtheimpermeablemat.Thedisplacedmaterialmaybeoverturned (blackarrow),piledup(whitearrow)orformelongateroles(R). faunathatresidewithinthenow-adjacentsands.Withincreasingburial, Thelandwardmarginofthemicrobialmatsisalsoback-stepping andovertime,themicrobialmatsbecomesusceptibletodegradation. throughoutthestudyarea,though,atarateofonly10myr−1thisis Increasedfloodingofthemicrobialmats,andthepresenceofhostsed- significantly slower than the retrogradation of the seaward margin iment,facilitatesthepresenceofincreasednumbersofgrazingfauna overthesameobservationperiod(Fig.4).Thedisparityintheretrogra- dominatedbygastropods,ostracodsandcrabs(Fig.5D).Thepresence dationratesbetweentheseawardandlandwardmarginsofthemicrobi- ofasignificantorganiccomponentwithinthesedimentresultsinthe almatbelthasresultedinthebeltbecomingsignificantlynarroweras onsetofanoxicconditionsimmediatelybelowthesedimentsurface canbeclearlyvisualisedfromNormalizedDifferenceVegetationIndex (Fig.5E).Burrowingisabsentfromthemicrobialmatsandsupratidal images(Fig.6).Throughoutthestudyareathelandwardmarginofthe facies.islimitedtosimpleshallowdwellingburrowsconstructedby microbialmatbeltischaracterisedbyathinpustularmatthatisdevelop- crabs(Scopimeracrabicauda).Burrowsareabsent. ingaboveamixedcarbonate-evaporitesequencewithabundantsandto 70 S.W.Lokieretal./Geomorphology304(2018)64–73 4.7.2005 50 m 8.10.2010 50 m Fig.6.PairedNormalizedDifferenceVegetationIndeximagesfrom4/7/2005(Quickbird2)and8/10/2010(Worldview2)showingthattheseawardlimitofthemicrobialmatbelthas movedsignificantlylandwardwhilethelandwardlimithasretrogradedtoalesserextentoverthe5yearsofobservation.Thedashedwhitelineshowstheformerpositionofthe seawardmarginofthemicrobialmat.Distributionofthevegetation,includingmicrobialmats,ishighlightedbythegreentoredcolours.Thetrackwaysseenintheimages(white arrow)arearesultofseismictruckssurveyingtheareaduringthe20thCentury.ThelocationoftheimageisindicatedbythewhitearrowinFig.1. gravelgradegypsum.Thegypsumwasformedthroughtheevaporation retreat,afigurethatisverysimilartothe12%notedfromtheopen ofgroundwaterintheshallowsub-surfaceofthesupratidalsabkha beachesoftheMediterraneancoastofFrance(BrunelandSabatier, (LokierandSteuber,2008). 2009).Thislargediscrepancyarisesfromtheassumptionthatma- Duringfieldwork,largeareasofthemicrobialmatwereobservedto rinetransgressionisapassivesubmersionprocesswithoutmodifica- episodicallyberemovedeitherduringrarehigher-energystormevents tionoftheshoreline.Suchamodelisover-simplifiedbecauseduring ormoregentlythroughraftingresultingwhentrappedgasbelowthe transgressioncoastallandformsareforcedtomigrateinorderto impermeablematsurfacebuoys-upthematduringperiodsofexcessive maintaintheirspecificpositioninrelationtothecoastalenergygra- flooding.Suchdenudationexposestheunderlyingsediment(Fig.5F) dient(Pethick,2001).Itisinferredthatthismodelofdynamicactive either to renewed microbial colonisation or, likely in the case of submersion(BrunelandSabatier,2009)willexposethecoastlineto storm-events,toerosiontoformlocaliseddepressionsthatmaydevelop increasederosion(Leathermanetal.,2000;Woodroffe,2008)and intointertidalponds(Pauletal.,inprep.). resultinshorelinesretreatingatarategreaterthanthatpredicted forsea-levelrisealone.Further,thecarbonatefactoryintheseshal- 5.Discussion lowtointertidalenvironmentsdoesnotproducesufficientsediment tofilltheaccommodationspacenewlycreatedbyrisingsealevel;a Theremotesensingandfieldobservationsdocumentedinthisstudy situationthatiscompoundedbythelackoffluvialsystemsandthe recordashorelinethathasenteredaphaseoferosionandretrograda- prevailingonshore,Shamal,windbothofwhichpreventtheinflux tionconsistentwiththeonsetofmarinetransgression.Thisprovides ofdetritalsedimentfromtheland. anexceptionalopportunitytoestablishthediagnosticsedimentary Itiswidelyacceptedthatthemuch-employedBrunn(1962)model featuresthatwouldprovideevidenceoftransgressionofacarbonate forshorelineretreatisover-simplified,neglectingsite-specificgeomor- rampsystemwithinthegeologicalrecord.Employingtheaxiomthat phologicalandsedimentologicalfactors(CooperandPilkey,2004).The improvedknowledgeofthepastandpresentarekeytomoreaccurate modelisparticularlyinadequateinthevicinityofbarrierislands,capes predictionsofthefuture,weconjecturethelikelyfutureeffectsofshore- and spits (Leatherman et al., 2000). Local-scale variations in the lineretreatandimplicationsthereof. geomorphologicalresponseofthecoastlinetosea-levelchangeare common (Webb and Kench, 2010; Ford and Kench, 2015; Romine 5.1.Calculatedtransgressioncomparedwithmeasuredretrogradation etal.,2016),withadjacentportionsofthecoastlinevariouslydisplaying erosion,accretionornosignificantchange.Thenatureoftheresponseis UnderthetectonicallystableconditionsofthesouthernGulfshore- controlledbytheantecedenttopography(Romineetal.,2016),changes line(Stevensetal.,2014;Lokieretal.,2015;PfefferandAllemand, inboundaryconditions(WebbandKench,2010)andsedimentsupply 2016),relativesealevelcanbeconsideredasequivalenttoeustatic (Carrascoetal.,2016;Testutetal.,2016). sealeveloverthedurationofthestudy.Thepredictedaveragerateof flooding for the Abu Dhabi coastline of 2.5 ± 0.2 m yr−1 is much 5.2.Recognisingtransgressioninthestratigraphicrecord lowerthananyoftheobservedratesofcoastalfeatureretrograda- tion,i.e.10–29myr−1.Consequently,eustaticsea-levelriseaccounts Canthepresent-dayfloodingattheAbuDhabicoastlinebeconsidered for only an average of 15% (8.6–25%) of the observed shoreline as representative of a transgressive event in the true sequence S.W.Lokieretal./Geomorphology304(2018)64–73 71 stratigraphiccontext?Transgressionmaybedefinedasalandwardshift infaunal detrital sedimentfeeders. Burrows are limited to shallow, ofthemarinesysteminitiatedwherebase-levelrisesataratehigher open,dwellingburrowsandbioturbationisunlikelytobesointensive thantheshorelinesedimentationrate(Catuneanuetal.,2009).Thetrans- astodestroyprimarysedimentarystructures.Undertheseconditions, gressivepartofthesequenceliesimmediatelyonthemaximumregres- theonsetofbioturbationlocallyrecordstheonsetoftransgression. sivesurface(transgressivesurface)ofthepreviousregressivephase Locally,microbialmatsarerapidly(hourstoweeks)buriedbeneath (Catuneanuetal.,2011).Presentedwiththesedefinitions,weconclude relatively-thickcoarsegrainedcarbonatesands,associatedwiththeret- thattheobservationsmadeduringthisstudysupporttheinterpretation rogradationofspitsorwashoverdeposits.Underthesecircumstances thattheAbuDhabicoastlinehasenteredaphaseoftransgressionrecord- theburiedmicrobialmatwillbeisolatedfrombioturbationresulting ingthetransitionfromaprogradationaltoaretrogradationalgeometryof inasedimentarysequencecharacterisedbycoarse-grainedsediments thesedimentarybodies. directlyoverlyingfinergrainedfaciesdisplayingamicrobiallamination Thearchitectureoftransgressivedepositsisaproductoftherateof andlackingfaunalbioturbation. sedimentsupply,therateofsea-levelchange,thegeomorphologyof theshorelinesystemandtheenergyregime–asingletransgressive transectcomprisessectorsrecordingdepositionandsectorsoferosion 5.3.Projectionsof21stcenturytransgression (Cattaneo and Steel, 2003). The relatively high rate of relative sea-levelrise,low-anglegeometryandlimitedsedimentsupplyatthe BasedondifferentRepresentativeConcentrationPathways(RCP) AbuDhabicoastlinesupportanon-accretionarytransgressiveshoreline scenarios, the IPCC 5th Assessment Report predicts a likely global trajectory(sensuHelland-HansenandGjelberg,1994).Underthese meansea-levelriseofbetween0.44(0.28–0.61)m(RCP2.6)and0.74 conditions,arapidlandwardshiftintheshorelinewouldbeexpected (0.52–0.98)m(RCP8.5)bytheyear2100(Churchetal.,2013).Given toinitiallyproduceonlythintransgressivedepositswithinsitudrown- thatthereiscurrentlynosignificantverticallandmotion(subsidence ingoftheshoreface(CattaneoandSteel,2003).Thisisparticularly or tectonic uplift) at the southern shore of the Gulf (Pfeffer and thecaseincarbonate-dominatedsystemswherealagtimeofafew Allemand, 2016), these global mean sea-level rise figures can be hundredtoafewthousandyearsiscommonbeforethecarbonatefactory employedtopredicttherangeofthedegreeoflikelyfloodingofthe isfullyfunctioningagain(Tipper,1997;KempandSadler,2014). naturalAbuDhabicoastline. Thepresenceofcohesive,microbially-bound,fine-grainedsediment Basedontheangleofslopeandtheamountofprojectedsealevel furtherinhibitstheformationofatidalravinementsurface,except riseitiscalculatedthatby2100theamountoftotalpassivefloodingis where headward erosion occurs at the thalweg of tidal channels. tobelikelybetween340(216–471)m(RCP2.6)and571(401–756)m Headwarderosionoftidalcreekshasbeendocumentedfromotherset- (RCP8.5)(Fig.7).TherateoffloodingattheAbuDhabicoastlineiscal- tings(Knightonetal.,1991;RankeyandMorgan,2002).Duringhigh culatedtolieintherangebetween3.40(1.54–5.25)myr−1(RCP2.6) tides,seawaterincursion is concentratedwithin slighttopographic and8.64(5.79–12.12)myr−1(RCP8.5)bytheyear2100.Thiswould depressions,thecentreofwhichbecomesincreasinglysusceptibleto resultinasignificantreductioninlandareainnaturalcoastalsystems. tidalscouringandsubsequentdeepening(Knightonetal.,1991).This Theabovefiguresassumepassivefloodingofthecoastlinewithout processisproducinghighlylocalisedtidalravinementsurfaceswhere anydynamicresponsetosea-levelrise,asdiscussedearlier.Adopting tidalcreekserodetheunderlyinghardground. anassumptionthatsea-levelrisewillcontinuetoaccountforonly15% Transgressivelags,occurringaseitherconglomeratic,glauconitic, ofshorelineretreat,wecansignificantlyrevisetheabovefigures.The fossiliferous or geochemical deposits (Kidwell, 1989; Cattaneo and amountoftotaldynamicfloodingby2100wouldbelikelybetween Steel,2003),aretypicallyexpectedwherethereissedimentstarvation 2.26 (1.44–3.14) km (RCP2.6) and 3.81 (2.68–5.04) km (RCP8.5). of the shelf (Swift, 1976) or condensation resulting from dynamic SincemostoftheAbuDhabicoastlineisnotembankedbyacliffor bypass(Kidwell,1989).Lagdepositsarenotobservedinthecurrent scarp,thereisnotheoreticallimittotheamountoflandwardmigration study as there is a paucity of bioclasts, intraclasts or extraclasts. oftheshoreline. Althougherodedfirmgroundandhardgroundclastswereobserved, Ofcourse,theassumptionthatsea-levelrisewillcontinuetocontrib- thesewererelativelyrareandonlylocallyconcentratedin,forexample, uteonly15%ofshorelineregressionfortheremainderofthe21stcentury beachridgesorspits.Carbonatesedimentationrates,thoughlowat ishighlyconjecturalandopentosignificanterror.Localisedvariationsin 13–50cm/ky(Kinsman,1969;LokierandSteuber,2008),aresufficient sedimentavailabilityandtransportpathwaysmakepredictionshighly topreventsedimentstarvation. challenging(Romineetal.,2016).Thecreationofnewaccommodation Ithaspreviouslybeeninferredthat,withintidalflatsystems,new and onset of improved marine circulation may promote a positive accommodationisinitiallyrapidlyfilledbymicrobialmats(Strasser, responsefromthecarbonatefactory(Eberli,2013),withanincreasein 2015)untiltheyaresufficientlyinundatedtopermitgrazingorganisms carbonateproductionthatmaygosomewaytooffsettingthetransgres- todestroythem(Farmer,1992).Duringthepresentstudy,weobservea siveprocess.Conversely,assurfacewatertemperaturesriseandpH distinctnarrowingofthemicrobialmatbeltatthecoastline.Thesuper- decreasesthestressonmarineorganismswillinhibitcarbonateproduc- position of the back-stepping upper intertidal microbial mats over tion.Ashasbeendocumentedelsewhere,thereisnormallyasignificant supratidal-depositedevaporitefaciesformsadistinctstratigraphicrela- lagtimebeforetheorganiccarbonatefactoryisfullyestablished(Kemp tionshipthatisindicativeoftransgression(Lokieretal.,2013).Should andSadler,2014).Inthelow-anglecarbonaterampsetting,thetrans- themicrobialmatsberapidlyburied,increasingthelikelihoodofpreser- portofsedimentswill becontrolledbywavesandtides.Increased vation,thentheymayactasanaquitardpreventingdissolutionofthe water depth will result in greater waveenergy reaching the shore underlyingevaporitefaciesandallowingtheirretentionintotheburial therebyincreasingshorelineerosion(Woodroffe,2008)andsediment regime.Wherethesurfacemicrobialmatbeltisdestroyed,eitherduring reworking; likewise, tidal energy may locally increase or decrease higherenergyeventssuchasstormsorthroughtheheadwarderosion (CattaneoandSteel,2003). oftidalchannels,theunderlyingunlithifiedsedimentisexposedand The sedimentary column in the shallow sub-surface of the Abu issusceptibletoerosion. Dhabicoastlinecontainsasignificantproportionofevaporiteminerals Bioturbationislimitedtotheintertidalandsubtidalfaciesthatlie (LokierandSteuber,2008)thatwillbehighlysusceptibletoinsitudis- seawardofthemicrobialmatbelt.Duringflooding,thesurfacemicrobi- solutionduringmarineflooding.Wherethesesedimentsaremechani- almatbecomesaccessibletoarangeofgrazingandburrowingfauna callyeroded,theirdissolutionwillbeevenmorerapidandtheywill (LokierandSteuber,2008).However,theretrogradingfaciesrapidly notcontributetothesedimentsupply.Thelossoftheseevaporitemin- burytheorganic-richmicrobialmats,resultingintheonsetofanoxic eralswillfurtherlimitthesupplyofreworkedsedimentduringthe conditionsintheshallowsub-surfaceandaconsequentinhibitionof floodingphase. 72 S.W.Lokieretal./Geomorphology304(2018)64–73 800 700 600 m) on (500 P8.5 ssi400 RC e r g ns300 Tra R C P 2.6 200 100 0 2000 2020 2040 2060 2080 2100 Year Fig.7.CalculatedrangesoftransgressionofthenaturalAbuDhabicoastlineforthe21stcenturyforIPCCRCP2.6andRCP8.5scenarios. 5.4.Environmentalandsocietalimplications andenhancingshorelineretreat.Thelow-anglecarbonaterampsetting supportsanon-accretionarytransgressiveshorelinetrajectorywithlit- ThecalculatedfiguresfortransgressionoftheAbuDhabicoastline, tlelikelihoodofawell-developedravinementsurfaceoroftransgres- eventhoseassumingpassiveflooding,havesignificantenvironmental sivelagdeposits.Theonsetoftransgressioninsuchacontextmaybe andsocietalimplications.Naturalecosystemsareunlikelytorespond difficulttorecogniseinthestratigraphicrecord.Identificationwould positivelytosuchrapidinundation,itislikelythatmangalsandmicro- beaidedbytherecognitionofback-steppingofmarinefacies,theburial bialmatswillbemostaffected.Increasingenergyattheshorelinewill ofmicrobialmatsandtheonsetofbioturbationbymarineorganisms. furthererodemicrobialmatswhileincreasedinundationwillinhibit EmployingIPCCRCPscenariosforfuturesea-levelriseandtheangle recolonisation.Floodingwilldrownmangroves,withsedimentsmoth- ofslopeofthecoastalsystem,calculatedlikelytotalpassivefloodingof ering of their aerial pneumatophores resulting in the death of the theAbuDhabicoastlinerangesbetween340mand571mbytheyear trees(Ellison,1999)andthelossofmangals.Thelossofthemangal 2100,atarateofbetween3.40myr−1and8.64myr−1.Thesevalues andmicrobialmatcommunitieswillhavesignificantimpactsonthe increasesignificantlyifitisassumedthatfuturefloodingwillcontinue protectionandstabilisationofcoastalsediments,enhancingerosion tobedynamic,atarateakintothatobservedduringthedurationof andfurtherpromotingshorelineretreat. thecurrentstudy.Underthisscenario,calculatedlikelytotaldynamic Thesocietalimplicationsofsea-levelriseareenormous.Globally,in floodingby2100wouldbebetween2.26kmand3.81km.Allofthese excessof2billionpeople(37%ofglobalpopulation)livewithin100km figures,both passive anddynamic, imply a significantreduction in ofacoastline(Cohenetal.,1997)withover145millionpeopleliving landareawithsubstantialenvironmentalandsocietalconsequences. within1mofpresentdaymeansealevel(Anthoffetal.,2006).Inthe UnitedArabEmiratesc.5millionpeople(85.5%ofthepopulation) Acknowledgments resideinthelow-lyingcitiesoftheGulfcoastline(DESA,2016).Man- agementofthecoastalsystemrequirespredictiveratesoftransgression TheauthorsaregratefultoJapanOilDevelopmentCompanyLtd. andgeomorphicchange(Pethick,2001;BrunelandSabatier,2009). (JODCO) and JGI Inc. for sponsoring the processing of the satellite Moreaccuratepredictionscanbeachievedthroughtheestablishment imagesutilisedinthispaper.WethankAndréStrasserandananonymous of a continuous, long-term, high-frequency, monitoring program reviewer for their insightful and constructive comments. We also recordinginsituoceanicandmeteorologicalparametersintandem acknowledgeEditorAndrewJamesPlaterforhisguidancethroughthe withsatelliteobservationsandregulargeodesicsurveysofcoastline editorialprocess. transects.Theseobservationsshouldbesupportedbysurveysofcoastal sedimentaryfaciesgeometriesandsedimenttransportpathwaysin References ordertounderstandtheroleofsedimentsupplyandlosswithinthe coastalsystem. Anthoff,D.,Nicholls,R.J.,Tol,R.S.,Vafeidis,A.T.,2006.GlobalandRegionalExposure toLargeRisesinSea-level:ASensitivityAnalysis.TyndallCentreforClimateChange Research, p.96workingpaper. Bottomley,N.,1996.RecentclimateofAbuDhabi.In:Osborne,P.E.(Ed.),DesertEcology 6.Conclusions ofAbuDhabi.AReviewandRecentStudies.Pisces,Newbury,pp.36–49. Brunel,C.,Sabatier,F.,2009.Potentialinfluenceofsea-levelriseincontrollingshore- linepositionontheFrenchMediterraneanCoast.Geomorphology107(1–2), Numerouslinesofsedimentologicalandgeomorphologicalobserva- 47–57. tionshavebeenemployedtoconcludethatthepresent-dayAbuDhabi Brunn,P.,1962.Sea-levelriseasacauseofshoreerosion.ProceedingsoftheAmerican coastlinehasenteredaperiodofmarinetransgression.Measuredrates SocietyofCivilEngineers.JournaloftheWaterwaysandHarbourDivisionvol.88, ofretrogradation(10–29myr−1)aresignificantlyhigherthanthelike- pp.117–130. Carrasco,A.R.,Ferreira,Ó.,Roelvink,D.,2016.Coastallagoonsandrisingsealevel:a lyrateoffloodingcalculatedfromIPCCpredictedsea-levelrisealone review.EarthSci.Rev.154,356–368. (2.5±2myr−1).Thisdiscrepancyisreconciledbytheapplicationof Cattaneo,A.,Steel,R.J.,2003.Transgressivedeposits:areviewoftheirvariability.Earth aninferreddynamicfloodingscenarioinwhichrisingsea-levelin- Sci.Rev.62(3–4),187–228. Catuneanu,O.,Abreu,V.,Bhattacharya,J.P.,Blum,M.D.,Dalrymple,R.W.,Eriksson,P.G., creasestheenergyregimeattheshoreline,therebyfacilitatingerosion Fielding,C.R.,Fisher,W.L.,Galloway,W.E.,Gibling,M.R.,Giles,K.A.,Holbrook,J.M., S.W.Lokieretal./Geomorphology304(2018)64–73 73 Jordan,R.,Kendall,C.G.S.C.,Macurda,B.,Martinsen,O.J.,Miall,A.D.,Neal,J.E., Leatherman,S.P.,Zhang,K.,Douglas,B.C.,2000.Sealevelriseshowntodrivecoastal Nummedal,D.,Pomar,L.,Posamentier,H.W.,Pratt,B.R.,Sarg,J.F.,Shanley,K.W., erosion.EOSTrans.Am.Geophys.UnionVol.81(6),55–57. Steel,R.J.,Strasser,A.,Tucker,M.E.,Winker,C.,2009.Towardsthestandardization Lokier,S.W.,Fiorini,F.,2016.Temporalevolutionofacarbonatecoastalsystem,Abu ofsequencestratigraphy.EarthSci.Rev.92(1–2),1–33. Dhabi,UnitedArabEmirates.Mar.Geol.381,102–113. Catuneanu,O.,Galloway,W.E.,Kendall,C.G.S.t.C.,Miall,A.D.,Posamentier,H.W.,Strasser, Lokier, S., Steuber, T., 2008. Quantification of carbonate-ramp sedimentation and A.,Tucker,M.E.,2011.Sequencestratigraphy:methodologyandnomenclature. progradationratesforthelateHoloceneAbuDhabishoreline.J.Sediment.Res.78 Newsl.Stratigr.44(3),173–245. (7–8),423–431. Church,J.A.,White,N.J.,2011.Sea-levelrisefromthelate19thtotheearly21stcentury. Lokier,S.W.,Knaf,A.,Kimiagar,S.,2013.Aquantitativeanalysisofrecentaridcoastal Surv.Geophys.32(4),585–602. sedimentaryfaciesfromtheArabianGulfCoastlineofAbuDhabi,UnitedArab Church,J.A.,Clark,P.U.,Cazenave,A.,Gregory,J.M.,Jevrejeva,S.,Levermann,A.,Merrifield, Emirates.Mar.Geol.346(0),141–152. M.A.,Milne,G.A.,Nerem,R.S.,Nunn,P.D.,Payne,A.J.,Pfeffer,W.T.,Stammer,D., Lokier,S.W.,Bateman,M.D.,Larkin,N.R.,Rye,P.,Stewart,J.R.,2015.LateQuaternary Unnikrishnan,A.S.,2013.Sealevelchange.In:Stocker,T.F.,Qin,D.,Plattner,G.-K., sea-levelchangesofthePersianGulf.Quat.Res.84(1),69–81. Tignor,M.,Allen,S.K.,Boschung,J.,Nauels,A.,Xia,Y.,Bex,V.,Midgley,P.M.(Eds.), Meyssignac,B.,Cazenave,A.,2012.Sealevel:areviewofpresent-dayandrecent-past ClimateChange2013:ThePhysicalScienceBasis:WorkingGroupIContributionto changesandvariability.J.Geodyn.58,96–109. theFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange. Pethick,J.,2001.Coastalmanagementandsea-levelrise.Catena42(2–4),307–322. CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA, Pfeffer,J.,Allemand,P.,2016.Thekeyroleofverticallandmotionsincoastalsealevel pp.1137–1216. variations:aglobalsynthesisofmultisatellitealtimetry,tidegaugedataandGPS Cohen,J.E.,Small,C.,Mellinger,A.,Gallup,J.,Sachs,J.,1997.Estimatesofcoastalpopulations. measurements.EarthPlanet.Sci.Lett.439,39–47. Science278(5341),1209–1213. Purser,B.H.,Evans,G.,1973.RegionalsedimentationalongtheTrucialCoast,SEPersian Cooper,J.A.G.,Pilkey,O.H.,2004.Sea-levelriseandshorelineretreat:timetoabandonthe Gulf.In:Purser,B.H.(Ed.),ThePersianGulf-HoloceneCarbonateSedimentation Bruunrule.Glob.Planet.Chang.43(3–4),157–171. andDiagenesisinaShallowEpicontinentalSea.Springer-Verlag,Berlin,pp.211–231. Court,W.M.,Paul,A.,Lokier,S.W.,2017.Thepreservationpotentialofenvironmentally Raafat,H.,2007.Climate.In:Kumar,A.(Ed.),PhysicalGeographySectorPaper.Environment diagnosticsedimentarystructuresfromacoastalsabkha.Mar.Geol.386,1–8. AgencyAbuDhabi,pp.72–89. DESA,2016.WorldStatisticsPocketbook2016.2016.UnitedNations,NewYourk,USA. Rankey,E.C.,2011.Natureandstabilityofatollislandshorelines:GilbertIslandchain, Eberli,G.P.,2013.Theuncertaintiesinvolvedinextractingamplitudeandfrequency Kiribati,equatorialPacific.Sedimentology58(7),1831–1859. oforbitallydrivensea-levelfluctuationsfromshallow-watercarbonatecycles. Rankey,E.C.,Morgan,J.,2002.Quantifiedratesofgeomorphicchangeonamodern Sedimentology60(1),64–84. carbonatetidalflat,Bahamas.Geology30(7),583–586. Ellison,J.C.,1999.Impactsofsedimentburialonmangroves.Mar.Pollut.Bull.37(8–12), Romine,B.M.,Fletcher,C.H.,Frazer,L.N.,Anderson,T.R.,2016.Beacherosionunderrising 420–426. sea-levelmodulatedbycoastalgeomorphologyandsedimentavailabilityoncarbonate Emery,K.O.,1956.SedimentsandwaterofPersianGulf.AAPGBull.40(10),2354–2383. reef-fringedislandcoasts.Sedimentology63(5),1321–1332. Evans,G.,1966.TherecentsedimentaryfaciesofthePersianGulfregion.Philos.Trans.R. Shinn,E.A.,1969.SubmarinelithificationofHolocenecarbonatesedimentsinthePersian Soc.259,291–298. Gulf.Sedimentology12,109–144. Evans,G.,Kirkham,A.,2002.DistributionofsabkhatwithintheArabianPeninsulaandthe Singh,B.,1997.Climate-relatedglobalchangesinthesouthernCaribbean:Trinidadand adjacentcountries.In:Barth,H.J.,Böer,B.(Eds.),SabkhaEcosystemsVolume1:The Tobago.Glob.Planet.Chang.15(3),93–111. ArabianPeninsulaandAdjacentCountries.TasksforVegetationScience.Springer, Stevens,T.,Jestico,M.J.,Evans,G.,Kirkham,A.,2014.EustaticcontroloflateQuaternary Netherlands,pp.7–20. sea-levelchangeintheArabian/PersianGulf.Quat.Res.82(1),175–184. Evans,G.,Kinsman,D.J.J.,Shearman,D.J.,1964.Areconnaissancesurveyoftheenvironment Stewart,J.R.,Aspinall,S.,Beech,M.,Fenberg,P.,Hellyer,P.,Larkin,N.,Lokier,S.W.,Marx, ofrecentcarbonatesedimentationalongtheTrucialCoast,PersianGulf.In:Van F.G.,Meyer,M.,Miller,R.,Rainbow,P.S.,Taylor,J.D.,Whittaker,J.E.,Al-Mehsin,K., Straaten,L.M.J.U.(Ed.),DeltaicandShallowMarineDeposits:Proceedingsofthe6th Strohmenger,C.J.,2011.Bioticallyconstrainedpalaeoenvironmentalconditionsofa International Sedimentological Congress The Netherlands and Belgium - 1963. mid-HoloceneintertidallagoononthesouthernshoreoftheArabianGulf:evidenceas- DevelopmentsinSedimentology.Elsevier,Amsterdam,pp.129–135. sociatedwithawhaleskeletonatMusaffah,AbuDhabi,UAE.Quat.Sci.Rev.30(25–26), Evans,G.,Schmidt,V.,Bush,P.,Nelson,H.,1969.Stratigraphyandgeologichistoryofthe 3675–3690. sabkha,AbuDhabi,PersianGulf.Sedimentology12,145–159. Strasser,A.,2015.Hiatusesandcondensation:anestimationoftimelostonashallow Farmer,J.,1992.Grazingandbioturbationinmodernmicrobialmats.In:Schopf,J.W.a.K. carbonateplatform.Deposit.Rec.1(2),91–117. (Ed.),TheProterozoicBiosphere.CambridgeUniversityPress,NewYork,pp.295–297. Swift,D.J.P.,1976.Continentalshelfsedimentation.In:Stanley,D.J.,Swift,D.J.P.(Eds.), Ford,M.R.,Kench,P.S.,2015.Multi-decadalshorelinechangesinresponsetosealevelrise MarineSedimentTransportandEnvironmentalManagement.Wiley,NewYork, intheMarshallIslands.Anthropocene11,14–24. pp.311–350. Harris,P.M.,1994.Satelliteimagesanddescriptionofstudyarea.In:Harris,P.M.,Kowalik, Testut,L.,Duvat,V.,Ballu,V.,Fernandes,R.M.S.,Pouget,F.,Salmon,C.,Dyment,J.,2016. W.S.(Eds.),SatelliteImagesofCarbonateDepositionalSettings.MethodsinExploration Shorelinechangesinarisingsealevelcontext:theexampleofGrandeGlorieuse, Series.AmericanAssociationofPetroleumGeologists,pp.29–139. ScatteredIslands,WesternIndianOcean.ActaOecol.72,110–119. Helland-Hansen,W.,Gjelberg,J.G.,1994.Conceptualbasisandvariabilityinsequence Tipper,J.C.,1997.Modelingcarbonateplatformsedimentation—lagcomesnaturally. stratigraphy:adifferentperspective.Sediment.Geol.92(1),31–52. Geology25(6),495–498. Kemp,D.B.,Sadler,P.M.,2014.Climaticandeustaticsignalsinaglobalcompilationof Uchupi,E.,Swift,S.A.,Ross,D.A.,1996.GasventingandlateQuaternarysedimentationin shallowmarinecarbonateaccumulationrates.Sedimentology61(5),1286–1297. thePersian(Arabian)Gulf.Mar.Geol.129,237–269. Kidwell,S.M.,1989.Stratigraphiccondensationofmarinetransgressiverecords:originof Webb,A.P.,Kench,P.S.,2010.Thedynamicresponseofreefislandstosea-levelrise: majorshelldepositsintheMioceneofMaryland.J.Geol.97(1),1–24. evidencefrommulti-decadalanalysisofislandchangeintheCentralPacific.Glob. Kinsman,D.J.J.,1969.Modesofformation,sedimentaryassociations,anddiagnostic Planet.Chang.72(3),234–246. featuresofshallow-waterandsupratidalevaporites.AAPGBull.53(4),830–840. Woodroffe,C.D.,2008.Reef-islandtopographyandthevulnerabilityofatollstosea-level Kinsman,D.J.J.,Park,R.K.,1976.Algalbeltandcoastalsabkhaevolution,TrucialCoast, rise.Glob.Planet.Chang.62(1–2),77–96. PersianGulf.In:Walter,M.H.(Ed.),Stromatolites.DevelopmentsinSedimentology. Elsevier,pp.421–433. Knighton,A.D.,Mills,K.,Woodroffe,C.D.,1991.Tidal-creekextensionandsaltwater intrusioninnorthernAustralia.Geology19(8),831–834.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.