ebook img

Implementing models in quantitative finance: methods and cases PDF

618 Pages·2008·10.274 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Implementing models in quantitative finance: methods and cases

Springer Finance EditorialBoard M.Avellaneda G.Barone-Adesi M.Broadie M.H.A.Davis E.Derman C.Klüppelberg E.Kopp W.Schachermayer Springer Finance SpringerFinanceisaprogrammeofbooksaimedatstudents,academicsand practitionersworkingonincreasinglytechnicalapproachestotheanalysisof financialmarkets.Itaimstocoveravarietyoftopics,notonlymathematicalfinance butforeignexchanges,termstructure,riskmanagement,portfoliotheory,equity derivatives,andfinancialeconomics. AmmannM.,CreditRiskValuation:Methods,Models,andApplication(2001) BackK.,ACourseinDerivativeSecurities:IntroductiontoTheoryandComputation(2005) BarucciE.,FinancialMarketsTheory.Equilibrium,EfficiencyandInformation(2003) BieleckiT.R.andRutkowskiM.,CreditRisk:Modeling,ValuationandHedging(2002) BinghamN.H.andKieselR.,Risk-NeutralValuation:PricingandHedgingofFinancial Derivatives(1998,2nded.2004) BrigoD.andMercurioF.,InterestRateModels:TheoryandPractice(2001,2nded.2006) BuffR.,UncertainVolatilityModels–TheoryandApplication(2002) CarmonaR.A.andTehranchiM.R.,InterestRateModels:AnInfiniteDimensionalStochastic AnalysisPerspective(2006) DanaR.-A.andJeanblancM.,FinancialMarketsinContinuousTime(2003) DeboeckG.andKohonenT.(Editors),VisualExplorationsinFinancewithSelf-Organizing Maps(1998) DelbaenF.andSchachermayerW.,TheMathematicsofArbitrage(2005) ElliottR.J.andKoppP.E.,MathematicsofFinancialMarkets(1999,2nded.2005) FenglerM.R.,SemiparametricModelingofImpliedVolatility(2005) GemanH.,MadanD.,PliskaS.R.andVorstT.(Editors),MathematicalFinance–Bachelier Congress2000(2001) GundlachM.,LehrbassF.(Editors),CreditRisk intheBankingIndustry(2004) + JondeauE.,FinancialModelingUnderNon-GaussianDistributions(2007) KellerhalsB.P.,AssetPricing(2004) KülpmannM.,IrrationalExuberanceReconsidered(2004) KwokY.-K.,MathematicalModelsofFinancialDerivatives(1998) MalliavinP.andThalmaierA.,StochasticCalculusofVariationsinMathematicalFinance (2005) MeucciA.,RiskandAssetAllocation(2005) PelsserA.,EfficientMethodsforValuingInterestRateDerivatives(2000) PrigentJ.-L.,WeakConvergenceofFinancialMarkets(2003) SchmidB.,CreditRiskPricingModels(2004) ShreveS.E.,StochasticCalculusforFinanceI(2004) ShreveS.E.,StochasticCalculusforFinanceII(2004) YorM.,ExponentialFunctionalsofBrownianMotionandRelatedProcesses(2001) ZagstR.,Interest-RateManagement(2002) ZhuY.-L.,WuX.,ChernI.-L.,DerivativeSecuritiesandDifferenceMethods(2004) ZieglerA.,IncompleteInformationandHeterogeneousBeliefsinContinuous-timeFinance (2003) ZieglerA.,AGameTheoryAnalysisofOptions(2004) Gianluca Fusai · Andrea Roncoroni Implementing Models in Quantitative Finance: Methods and Cases GianlucaFusai AndreaRoncoroni DipartimentodiScienzeEconomiche FinanceDepartment eMetodiQuantitativi ESSECGraduateBusinessSchool FacoltàdiEconomia AvenueBernardHirschBP50105 UniversitàdelPiemonte CergyPontoiseCedex Orientale“A.Avogadro” France ViaPerrone,18 E-mails:[email protected] 28100Novara [email protected] Italy E-mail:[email protected] MathematicsSubjectClassification(2000):35-01,65-01,65C05,65C10,65C20, 65C30,91B28 JELClassification:G11,G13,C15,C22,C63 LibraryofCongressControlNumber:2007931341 ISBN978-3-540-22348-1SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com c Springer-VerlagBerlinHeidelberg2008 (cid:2) Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg TypesettingbytheauthorsandVTEXusingaSpringerLATEXmacropackage Printedonacid-freepaper 41/3100VTEX-543210 To our families To Nicola Contents Introduction....................................................... xv PartI Methods 1 StaticMonteCarlo ............................................. 3 1.1 MotivationandIssues ....................................... 3 1.1.1 Issue1:MonteCarloEstimation........................ 5 1.1.2 Issue2:EfficiencyandSampleSize..................... 7 1.1.3 Issue3:HowtoSimulateSamples ...................... 8 1.1.4 Issue4:HowtoEvaluateFinancialDerivatives ........... 9 1.1.5 TheMonteCarloSimulationAlgorithm ................. 11 1.2 SimulationofRandomVariables.............................. 11 1.2.1 UniformNumbersGeneration.......................... 12 1.2.2 TransformationMethods .............................. 14 1.2.3 Acceptance–RejectionMethods ........................ 20 1.2.4 HazardRateFunctionMethod ......................... 23 1.2.5 SpecialMethods..................................... 24 1.3 VarianceReduction......................................... 31 1.3.1 AntitheticVariables .................................. 31 1.3.2 ControlVariables .................................... 33 1.3.3 ImportanceSampling................................. 35 1.4 Comments ................................................ 39 2 DynamicMonteCarlo .......................................... 41 2.1 MainIssues ............................................... 41 2.2 ContinuousDiffusions ...................................... 45 2.2.1 MethodI:ExactTransition ............................ 45 2.2.2 MethodII:ExactSolution............................. 46 2.2.3 MethodIII:ApproximateDynamics .................... 46 viii 2.2.4 Example:OptionValuationunderAlternativeSimulation Schemes............................................ 48 2.3 JumpProcesses ............................................ 49 2.3.1 CompoundJumpProcesses............................ 49 2.3.2 ModellingviaJumpIntensity .......................... 51 2.3.3 SimulationwithConstantIntensity ..................... 53 2.3.4 SimulationwithDeterministicIntensity ................. 54 2.4 Mixed-JumpDiffusions ..................................... 56 2.4.1 StatementoftheProblem ............................. 56 2.4.2 MethodI:TransitionProbability........................ 58 2.4.3 MethodII:ExactSolution............................. 58 2.4.4 MethodIII.A:ApproximateDynamicswithDeterministic Intensity............................................ 59 2.4.5 MethodIII.B:ApproximateDynamicswithRandomIntensity 60 2.5 GaussianProcesses ......................................... 62 2.6 Comments ................................................ 66 3 DynamicProgrammingforStochasticOptimization................ 69 3.1 ControlledDynamicalSystems ............................... 69 3.2 TheOptimalControlProblem ................................ 71 3.3 TheBellmanPrincipleofOptimality .......................... 73 3.4 DynamicProgramming...................................... 74 3.5 StochasticDynamicProgramming ............................ 76 3.6 Applications............................................... 77 3.6.1 AmericanOptionPricing.............................. 77 3.6.2 OptimalInvestmentProblem........................... 79 3.7 Comments ................................................ 81 4 FiniteDifferenceMethods....................................... 83 4.1 Introduction ............................................... 83 4.1.1 SecurityPricingandPartialDifferentialEquations ........ 83 4.1.2 ClassificationofPDEs................................ 84 4.2 FromBlack–ScholestotheHeatEquation...................... 87 4.2.1 ChangingtheTimeOrigin............................. 88 4.2.2 UndiscountedPrices.................................. 88 4.2.3 FromPricestoReturns ............................... 89 4.2.4 HeatEquation....................................... 89 4.2.5 ExtendingTransformationstoOtherProcesses............ 90 4.3 DiscretizationSetting ....................................... 91 4.3.1 Finite-DifferenceApproximations ...................... 91 4.3.2 Grid ............................................... 93 4.3.3 ExplicitScheme ..................................... 94 4.3.4 ImplicitScheme ..................................... 101 4.3.5 Crank–NicolsonScheme .............................. 103 4.3.6 ComputingtheGreeks................................ 109 ix 4.4 Consistency,ConvergenceandStability ........................ 110 4.5 GeneralLinearParabolicPDEs............................... 115 4.5.1 ExplicitScheme ..................................... 116 4.5.2 ImplicitScheme ..................................... 117 4.5.3 Crank–NicolsonScheme .............................. 118 4.6 AVBACodeforSolvingGeneralLinearParabolicPDEs......... 119 4.7 Comments ................................................ 119 5 NumericalSolutionofLinearSystems ............................ 121 5.1 DirectMethods:TheLUDecomposition ....................... 122 5.2 IterativeMethods........................................... 127 5.2.1 JacobiIteration:SimultaneousDisplacements ............ 128 5.2.2 Gauss–SeidelIteration(SuccessiveDisplacements)........ 130 5.2.3 SOR(SuccessiveOver-RelaxationMethod) .............. 131 5.2.4 ConjugateGradientMethod(CGM)..................... 133 5.2.5 ConvergenceofIterativeMethods ...................... 135 5.3 CodefortheSolutionofLinearSystems ....................... 140 5.3.1 VBACode.......................................... 140 5.3.2 MATLABCode ..................................... 141 5.4 IllustrativeExamples........................................ 143 5.4.1 PricingaPlainVanillaCallintheBlack–ScholesModel (VBA) ............................................. 144 5.4.2 PricingaPlainVanillaCallintheSquare-RootModel(VBA)145 5.4.3 PricingAmericanOptionswiththeCNScheme(VBA) .... 147 5.4.4 PricingaDoubleBarrierCallintheBSModel(MATLAB andVBA) .......................................... 149 5.4.5 PricinganOptiononaCouponBondintheCox–Ingersoll– RossModel(MATLAB) .............................. 152 5.5 Comments ................................................ 155 6 QuadratureMethods ........................................... 157 6.1 QuadratureRules........................................... 158 6.2 Newton–CotesFormulae .................................... 159 6.2.1 CompositeNewton–CotesFormula ..................... 162 6.3 GaussianQuadratureFormulae ............................... 173 6.4 MatlabCode............................................... 180 6.4.1 TrapezoidalRule .................................... 180 6.4.2 SimpsonRule ....................................... 180 6.4.3 RombergExtrapolation ............................... 181 6.5 VBACode ................................................ 181 6.6 AdaptiveQuadrature........................................ 182 6.7 Examples ................................................. 185 6.7.1 VanillaOptionsintheBlack–ScholesModel ............. 186 6.7.2 VanillaOptionsintheSquare-RootModel ............... 188 6.7.3 BondOptionsintheCox–Ingersoll–RossModel .......... 190 x 6.7.4 DiscretelyMonitoredBarrierOptions ................... 193 6.8 PricingUsingCharacteristicFunctions......................... 197 6.8.1 MATLABandVBAAlgorithms........................ 202 6.8.2 OptionsPricingwithLévyProcesses.................... 206 6.9 Comments ................................................ 211 7 TheLaplaceTransform......................................... 213 7.1 DefinitionandProperties .................................... 213 7.2 NumericalInversion ........................................ 216 7.3 TheFourierSeriesMethod................................... 218 7.4 ApplicationstoQuantitativeFinance .......................... 219 7.4.1 Example............................................ 219 7.4.2 Example............................................ 225 7.5 Comments ................................................ 228 8 StructuringDependenceusingCopulaFunctions .................. 231 8.1 CopulaFunctions .......................................... 231 8.2 ConcordanceandDependence................................ 233 8.2.1 Fréchet–HoeffdingBounds ............................ 233 8.2.2 MeasuresofConcordance ............................. 234 8.2.3 MeasuresofDependence.............................. 235 8.2.4 ComparisonwiththeLinearCorrelation ................. 236 8.2.5 OtherNotionsofDependence.......................... 238 8.3 EllipticalCopulaFunctions .................................. 240 8.4 ArchimedeanCopulas....................................... 245 8.5 StatisticalInferenceforCopulas .............................. 251 8.5.1 ExactMaximumLikelihood ........................... 253 8.5.2 InferenceFunctionsforMargins........................ 254 8.5.3 Kernel-basedNonparametricEstimation................. 255 8.6 MonteCarloSimulation..................................... 257 8.6.1 DistributionalMethod ................................ 257 8.6.2 ConditionalSampling ................................ 259 8.6.3 CompoundCopulaSimulation ......................... 263 8.7 Comments ................................................ 265 PartII Problems PortfolioManagementandTrading .................................. 271 9 PortfolioSelection:“Optimizing”anError........................ 273 9.1 ProblemStatement ......................................... 274 9.2 ModelandSolutionMethodology............................. 276 9.3 ImplementationandAlgorithm ............................... 278 9.4 ResultsandComments ...................................... 280 9.4.1 In-sampleAnalysis................................... 281 xi 9.4.2 Out-of-sampleSimulation............................. 285 10 Alpha,BetaandBeyond ........................................ 289 10.1 ProblemStatement ......................................... 290 10.2 SolutionMethodology ...................................... 291 10.2.1 ConstantBeta:OLSEstimation ........................ 292 10.2.2 ConstantBeta:RobustEstimation ...................... 293 10.2.3 ConstantBeta:ShrinkageEstimation.................... 295 10.2.4 ConstantBeta:BayesianEstimation..................... 296 10.2.5 Time-VaryingBeta:ExponentialSmoothing.............. 299 10.2.6 Time-VaryingBeta:TheKalmanFilter .................. 300 10.2.7 Comparingthemodels................................ 304 10.3 ImplementationandAlgorithm ............................... 306 10.4 ResultsandComments ...................................... 309 11 AutomaticTrading:WinningorLosinginakBit .................. 311 11.1 ProblemStatement ......................................... 312 11.2 ModelandSolutionMethodology............................. 314 11.2.1 MeasuringTradingSystemPerformance................. 314 11.2.2 StatisticalTesting .................................... 315 11.3 Code ..................................................... 317 11.4 ResultsandComments ...................................... 322 VanillaOptions .................................................... 329 12 EstimatingtheRisk-NeutralDensity ............................. 331 12.1 ProblemStatement ......................................... 332 12.2 SolutionMethodology ...................................... 332 12.3 ImplementationandAlgorithm ............................... 335 12.4 ResultsandComments ...................................... 338 13 An“American”MonteCarlo.................................... 345 13.1 ProblemStatement ......................................... 346 13.2 ModelandSolutionMethodology............................. 347 13.3 ImplementationandAlgorithm ............................... 348 13.4 ResultsandComments ...................................... 349 14 FixingVolatileVolatility ........................................ 353 14.1 ProblemStatement ......................................... 354 14.2 ModelandSolutionMethodology............................. 356 14.2.1 AnalyticalTransforms ................................ 356 14.2.2 ModelCalibration ................................... 358 14.3 ImplementationandAlgorithm ............................... 360 14.3.1 CodeDescription .................................... 361 14.4 ResultsandComments ...................................... 362

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.