Springer Finance EditorialBoard M.Avellaneda G.Barone-Adesi M.Broadie M.H.A.Davis E.Derman C.Klüppelberg E.Kopp W.Schachermayer Springer Finance SpringerFinanceisaprogrammeofbooksaimedatstudents,academicsand practitionersworkingonincreasinglytechnicalapproachestotheanalysisof financialmarkets.Itaimstocoveravarietyoftopics,notonlymathematicalfinance butforeignexchanges,termstructure,riskmanagement,portfoliotheory,equity derivatives,andfinancialeconomics. AmmannM.,CreditRiskValuation:Methods,Models,andApplication(2001) BackK.,ACourseinDerivativeSecurities:IntroductiontoTheoryandComputation(2005) BarucciE.,FinancialMarketsTheory.Equilibrium,EfficiencyandInformation(2003) BieleckiT.R.andRutkowskiM.,CreditRisk:Modeling,ValuationandHedging(2002) BinghamN.H.andKieselR.,Risk-NeutralValuation:PricingandHedgingofFinancial Derivatives(1998,2nded.2004) BrigoD.andMercurioF.,InterestRateModels:TheoryandPractice(2001,2nded.2006) BuffR.,UncertainVolatilityModels–TheoryandApplication(2002) CarmonaR.A.andTehranchiM.R.,InterestRateModels:AnInfiniteDimensionalStochastic AnalysisPerspective(2006) DanaR.-A.andJeanblancM.,FinancialMarketsinContinuousTime(2003) DeboeckG.andKohonenT.(Editors),VisualExplorationsinFinancewithSelf-Organizing Maps(1998) DelbaenF.andSchachermayerW.,TheMathematicsofArbitrage(2005) ElliottR.J.andKoppP.E.,MathematicsofFinancialMarkets(1999,2nded.2005) FenglerM.R.,SemiparametricModelingofImpliedVolatility(2005) GemanH.,MadanD.,PliskaS.R.andVorstT.(Editors),MathematicalFinance–Bachelier Congress2000(2001) GundlachM.,LehrbassF.(Editors),CreditRisk intheBankingIndustry(2004) + JondeauE.,FinancialModelingUnderNon-GaussianDistributions(2007) KellerhalsB.P.,AssetPricing(2004) KülpmannM.,IrrationalExuberanceReconsidered(2004) KwokY.-K.,MathematicalModelsofFinancialDerivatives(1998) MalliavinP.andThalmaierA.,StochasticCalculusofVariationsinMathematicalFinance (2005) MeucciA.,RiskandAssetAllocation(2005) PelsserA.,EfficientMethodsforValuingInterestRateDerivatives(2000) PrigentJ.-L.,WeakConvergenceofFinancialMarkets(2003) SchmidB.,CreditRiskPricingModels(2004) ShreveS.E.,StochasticCalculusforFinanceI(2004) ShreveS.E.,StochasticCalculusforFinanceII(2004) YorM.,ExponentialFunctionalsofBrownianMotionandRelatedProcesses(2001) ZagstR.,Interest-RateManagement(2002) ZhuY.-L.,WuX.,ChernI.-L.,DerivativeSecuritiesandDifferenceMethods(2004) ZieglerA.,IncompleteInformationandHeterogeneousBeliefsinContinuous-timeFinance (2003) ZieglerA.,AGameTheoryAnalysisofOptions(2004) Gianluca Fusai · Andrea Roncoroni Implementing Models in Quantitative Finance: Methods and Cases GianlucaFusai AndreaRoncoroni DipartimentodiScienzeEconomiche FinanceDepartment eMetodiQuantitativi ESSECGraduateBusinessSchool FacoltàdiEconomia AvenueBernardHirschBP50105 UniversitàdelPiemonte CergyPontoiseCedex Orientale“A.Avogadro” France ViaPerrone,18 E-mails:[email protected] 28100Novara [email protected] Italy E-mail:[email protected] MathematicsSubjectClassification(2000):35-01,65-01,65C05,65C10,65C20, 65C30,91B28 JELClassification:G11,G13,C15,C22,C63 LibraryofCongressControlNumber:2007931341 ISBN978-3-540-22348-1SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springer.com c Springer-VerlagBerlinHeidelberg2008 (cid:2) Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg TypesettingbytheauthorsandVTEXusingaSpringerLATEXmacropackage Printedonacid-freepaper 41/3100VTEX-543210 To our families To Nicola Contents Introduction....................................................... xv PartI Methods 1 StaticMonteCarlo ............................................. 3 1.1 MotivationandIssues ....................................... 3 1.1.1 Issue1:MonteCarloEstimation........................ 5 1.1.2 Issue2:EfficiencyandSampleSize..................... 7 1.1.3 Issue3:HowtoSimulateSamples ...................... 8 1.1.4 Issue4:HowtoEvaluateFinancialDerivatives ........... 9 1.1.5 TheMonteCarloSimulationAlgorithm ................. 11 1.2 SimulationofRandomVariables.............................. 11 1.2.1 UniformNumbersGeneration.......................... 12 1.2.2 TransformationMethods .............................. 14 1.2.3 Acceptance–RejectionMethods ........................ 20 1.2.4 HazardRateFunctionMethod ......................... 23 1.2.5 SpecialMethods..................................... 24 1.3 VarianceReduction......................................... 31 1.3.1 AntitheticVariables .................................. 31 1.3.2 ControlVariables .................................... 33 1.3.3 ImportanceSampling................................. 35 1.4 Comments ................................................ 39 2 DynamicMonteCarlo .......................................... 41 2.1 MainIssues ............................................... 41 2.2 ContinuousDiffusions ...................................... 45 2.2.1 MethodI:ExactTransition ............................ 45 2.2.2 MethodII:ExactSolution............................. 46 2.2.3 MethodIII:ApproximateDynamics .................... 46 viii 2.2.4 Example:OptionValuationunderAlternativeSimulation Schemes............................................ 48 2.3 JumpProcesses ............................................ 49 2.3.1 CompoundJumpProcesses............................ 49 2.3.2 ModellingviaJumpIntensity .......................... 51 2.3.3 SimulationwithConstantIntensity ..................... 53 2.3.4 SimulationwithDeterministicIntensity ................. 54 2.4 Mixed-JumpDiffusions ..................................... 56 2.4.1 StatementoftheProblem ............................. 56 2.4.2 MethodI:TransitionProbability........................ 58 2.4.3 MethodII:ExactSolution............................. 58 2.4.4 MethodIII.A:ApproximateDynamicswithDeterministic Intensity............................................ 59 2.4.5 MethodIII.B:ApproximateDynamicswithRandomIntensity 60 2.5 GaussianProcesses ......................................... 62 2.6 Comments ................................................ 66 3 DynamicProgrammingforStochasticOptimization................ 69 3.1 ControlledDynamicalSystems ............................... 69 3.2 TheOptimalControlProblem ................................ 71 3.3 TheBellmanPrincipleofOptimality .......................... 73 3.4 DynamicProgramming...................................... 74 3.5 StochasticDynamicProgramming ............................ 76 3.6 Applications............................................... 77 3.6.1 AmericanOptionPricing.............................. 77 3.6.2 OptimalInvestmentProblem........................... 79 3.7 Comments ................................................ 81 4 FiniteDifferenceMethods....................................... 83 4.1 Introduction ............................................... 83 4.1.1 SecurityPricingandPartialDifferentialEquations ........ 83 4.1.2 ClassificationofPDEs................................ 84 4.2 FromBlack–ScholestotheHeatEquation...................... 87 4.2.1 ChangingtheTimeOrigin............................. 88 4.2.2 UndiscountedPrices.................................. 88 4.2.3 FromPricestoReturns ............................... 89 4.2.4 HeatEquation....................................... 89 4.2.5 ExtendingTransformationstoOtherProcesses............ 90 4.3 DiscretizationSetting ....................................... 91 4.3.1 Finite-DifferenceApproximations ...................... 91 4.3.2 Grid ............................................... 93 4.3.3 ExplicitScheme ..................................... 94 4.3.4 ImplicitScheme ..................................... 101 4.3.5 Crank–NicolsonScheme .............................. 103 4.3.6 ComputingtheGreeks................................ 109 ix 4.4 Consistency,ConvergenceandStability ........................ 110 4.5 GeneralLinearParabolicPDEs............................... 115 4.5.1 ExplicitScheme ..................................... 116 4.5.2 ImplicitScheme ..................................... 117 4.5.3 Crank–NicolsonScheme .............................. 118 4.6 AVBACodeforSolvingGeneralLinearParabolicPDEs......... 119 4.7 Comments ................................................ 119 5 NumericalSolutionofLinearSystems ............................ 121 5.1 DirectMethods:TheLUDecomposition ....................... 122 5.2 IterativeMethods........................................... 127 5.2.1 JacobiIteration:SimultaneousDisplacements ............ 128 5.2.2 Gauss–SeidelIteration(SuccessiveDisplacements)........ 130 5.2.3 SOR(SuccessiveOver-RelaxationMethod) .............. 131 5.2.4 ConjugateGradientMethod(CGM)..................... 133 5.2.5 ConvergenceofIterativeMethods ...................... 135 5.3 CodefortheSolutionofLinearSystems ....................... 140 5.3.1 VBACode.......................................... 140 5.3.2 MATLABCode ..................................... 141 5.4 IllustrativeExamples........................................ 143 5.4.1 PricingaPlainVanillaCallintheBlack–ScholesModel (VBA) ............................................. 144 5.4.2 PricingaPlainVanillaCallintheSquare-RootModel(VBA)145 5.4.3 PricingAmericanOptionswiththeCNScheme(VBA) .... 147 5.4.4 PricingaDoubleBarrierCallintheBSModel(MATLAB andVBA) .......................................... 149 5.4.5 PricinganOptiononaCouponBondintheCox–Ingersoll– RossModel(MATLAB) .............................. 152 5.5 Comments ................................................ 155 6 QuadratureMethods ........................................... 157 6.1 QuadratureRules........................................... 158 6.2 Newton–CotesFormulae .................................... 159 6.2.1 CompositeNewton–CotesFormula ..................... 162 6.3 GaussianQuadratureFormulae ............................... 173 6.4 MatlabCode............................................... 180 6.4.1 TrapezoidalRule .................................... 180 6.4.2 SimpsonRule ....................................... 180 6.4.3 RombergExtrapolation ............................... 181 6.5 VBACode ................................................ 181 6.6 AdaptiveQuadrature........................................ 182 6.7 Examples ................................................. 185 6.7.1 VanillaOptionsintheBlack–ScholesModel ............. 186 6.7.2 VanillaOptionsintheSquare-RootModel ............... 188 6.7.3 BondOptionsintheCox–Ingersoll–RossModel .......... 190 x 6.7.4 DiscretelyMonitoredBarrierOptions ................... 193 6.8 PricingUsingCharacteristicFunctions......................... 197 6.8.1 MATLABandVBAAlgorithms........................ 202 6.8.2 OptionsPricingwithLévyProcesses.................... 206 6.9 Comments ................................................ 211 7 TheLaplaceTransform......................................... 213 7.1 DefinitionandProperties .................................... 213 7.2 NumericalInversion ........................................ 216 7.3 TheFourierSeriesMethod................................... 218 7.4 ApplicationstoQuantitativeFinance .......................... 219 7.4.1 Example............................................ 219 7.4.2 Example............................................ 225 7.5 Comments ................................................ 228 8 StructuringDependenceusingCopulaFunctions .................. 231 8.1 CopulaFunctions .......................................... 231 8.2 ConcordanceandDependence................................ 233 8.2.1 Fréchet–HoeffdingBounds ............................ 233 8.2.2 MeasuresofConcordance ............................. 234 8.2.3 MeasuresofDependence.............................. 235 8.2.4 ComparisonwiththeLinearCorrelation ................. 236 8.2.5 OtherNotionsofDependence.......................... 238 8.3 EllipticalCopulaFunctions .................................. 240 8.4 ArchimedeanCopulas....................................... 245 8.5 StatisticalInferenceforCopulas .............................. 251 8.5.1 ExactMaximumLikelihood ........................... 253 8.5.2 InferenceFunctionsforMargins........................ 254 8.5.3 Kernel-basedNonparametricEstimation................. 255 8.6 MonteCarloSimulation..................................... 257 8.6.1 DistributionalMethod ................................ 257 8.6.2 ConditionalSampling ................................ 259 8.6.3 CompoundCopulaSimulation ......................... 263 8.7 Comments ................................................ 265 PartII Problems PortfolioManagementandTrading .................................. 271 9 PortfolioSelection:“Optimizing”anError........................ 273 9.1 ProblemStatement ......................................... 274 9.2 ModelandSolutionMethodology............................. 276 9.3 ImplementationandAlgorithm ............................... 278 9.4 ResultsandComments ...................................... 280 9.4.1 In-sampleAnalysis................................... 281 xi 9.4.2 Out-of-sampleSimulation............................. 285 10 Alpha,BetaandBeyond ........................................ 289 10.1 ProblemStatement ......................................... 290 10.2 SolutionMethodology ...................................... 291 10.2.1 ConstantBeta:OLSEstimation ........................ 292 10.2.2 ConstantBeta:RobustEstimation ...................... 293 10.2.3 ConstantBeta:ShrinkageEstimation.................... 295 10.2.4 ConstantBeta:BayesianEstimation..................... 296 10.2.5 Time-VaryingBeta:ExponentialSmoothing.............. 299 10.2.6 Time-VaryingBeta:TheKalmanFilter .................. 300 10.2.7 Comparingthemodels................................ 304 10.3 ImplementationandAlgorithm ............................... 306 10.4 ResultsandComments ...................................... 309 11 AutomaticTrading:WinningorLosinginakBit .................. 311 11.1 ProblemStatement ......................................... 312 11.2 ModelandSolutionMethodology............................. 314 11.2.1 MeasuringTradingSystemPerformance................. 314 11.2.2 StatisticalTesting .................................... 315 11.3 Code ..................................................... 317 11.4 ResultsandComments ...................................... 322 VanillaOptions .................................................... 329 12 EstimatingtheRisk-NeutralDensity ............................. 331 12.1 ProblemStatement ......................................... 332 12.2 SolutionMethodology ...................................... 332 12.3 ImplementationandAlgorithm ............................... 335 12.4 ResultsandComments ...................................... 338 13 An“American”MonteCarlo.................................... 345 13.1 ProblemStatement ......................................... 346 13.2 ModelandSolutionMethodology............................. 347 13.3 ImplementationandAlgorithm ............................... 348 13.4 ResultsandComments ...................................... 349 14 FixingVolatileVolatility ........................................ 353 14.1 ProblemStatement ......................................... 354 14.2 ModelandSolutionMethodology............................. 356 14.2.1 AnalyticalTransforms ................................ 356 14.2.2 ModelCalibration ................................... 358 14.3 ImplementationandAlgorithm ............................... 360 14.3.1 CodeDescription .................................... 361 14.4 ResultsandComments ...................................... 362