ebook img

Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts PDF

0.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

Astronomy&Astrophysicsmanuscriptno.lvemfollowup (cid:13)c ESO20121 13January2012 Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts TheLIGOScientificCollaborationandVirgoCollaboration:J.Abadie1,B.P.Abbott1,R.Abbott1,T.D.Abbott2,M.Abernathy3,T.Accadia4,F.Acernese5ac,C.Adams6, R.Adhikari1,C.Affeldt7,8,P.Ajith1,B.Allen7,9,8,G.S.Allen10,E.AmadorCeron9,D.Amariutei11,R.S.Amin12,S.B.Anderson1,W.G.Anderson9,K.Arai1,M.A.Arain11, M.C.Araya1,S.M.Aston13,P.Astone14a,D.Atkinson15,P.Aufmuth8,7,C.Aulbert7,8,B.E.Aylott13,S.Babak16,P.Baker17,G.Ballardin18,S.Ballmer19,D.Barker15, F.Barone5ac,B.Barr3,P.Barriga20,L.Barsotti21,M.Barsuglia22,M.A.Barton15,I.Bartos23,R.Bassiri3,M.Bastarrika3,A.Basti24ab,J.Batch15,J.Bauchrowitz7,8, Th.S.Bauer25a,M.Bebronne4,B.Behnke16,M.G.Beker25a,A.S.Bell3,A.Belletoile4,I.Belopolski23,M.Benacquista26,J.M.Berliner15,A.Bertolini7,8,J.Betzwieser1, N.Beveridge3,P.T.Beyersdorf27,I.A.Bilenko28,G.Billingsley1,J.Birch6,R.Biswas26,M.Bitossi24a,M.A.Bizouard29a,E.Black1,J.K.Blackburn1,L.Blackburn30,D.Blair20, B.Bland15,M.Blom25a,O.Bock7,8,T.P.Bodiya21,C.Bogan7,8,R.Bondarescu31,F.Bondu32b,L.Bonelli24ab,R.Bonnand33,R.Bork1,M.Born7,8,V.Boschi24a,S.Bose34, L.Bosi35a,B. Bouhou22,S.Braccini24a,C.Bradaschia24a,P.R.Brady9,V.B.Braginsky28,M.Branchesi36ab,J.E.Brau37,J.Breyer7,8,T.Briant38,D.O.Bridges6,A.Brillet32a, M.Brinkmann7,8,V.Brisson29a,M.Britzger7,8,A.F.Brooks1,D.A.Brown19,A.Brummit39,T.Bulik40bc,H.J.Bulten25ab,A.Buonanno41,J.Burguet–Castell9,O.Burmeister7,8, 2 D.Buskulic4,C.Buy22,R.L.Byer10,L.Cadonati42,G.Cagnoli36a,E.Calloni5ab,J.B.Camp30,P.Campsie3,J.Cannizzo30,K.Cannon44,B.Canuel18,J.Cao45,C.D.Capano19, 1 F.Carbognani18,S.Caride46,S.Caudill12,M.Cavaglia`43,F.Cavalier29a,R.Cavalieri18,G.Cella24a,C.Cepeda1,E.Cesarini36b,O.Chaibi32a,T.Chalermsongsak1,E.Chalkley13, 0 P.Charlton47,E.Chassande-Mottin22,S.Chelkowski13,Y.Chen48,A.Chincarini49,A.Chiummo18,H.Cho50,N.Christensen51,S.S.Y.Chua52,C.T.Y.Chung53,S.Chung20, 2 G.Ciani11,F.Clara15,D.E.Clark10,J.Clark54,J.H.Clayton9,F.Cleva32a,E.Coccia55ab,P.-F.Cohadon38,C.N.Colacino24ab,J.Colas18,A.Colla14ab,M.Colombini14b, n A.Conte14ab,R.Conte56,D.Cook15,T.R.Corbitt21,M.Cordier27,N.Cornish17,A.Corsi1,C.A.Costa12,M.Coughlin51,J.-P.Coulon32a,P.Couvares19,D.M.Coward20, a D.C.Coyne1,J.D.E.Creighton9,T.D.Creighton26,A.M.Cruise13,A.Cumming3,L.Cunningham3,E.Cuoco18,R.M.Cutler13,K.Dahl7,8,S.L.Danilishin28,R.Dannenberg1, J S.D’Antonio55a,K.Danzmann7,8,V.Dattilo18,B.Daudert1,H.Daveloza26,M.Davier29a,G.Davies54,E.J.Daw57,R.Day18,T.Dayanga34,R.DeRosa5ab,D.DeBra10, G.Debreczeni58,J.Degallaix7,8,W.DelPozzo25a,M.delPrete59b,T.Dent54,V.Dergachev1,R.DeRosa12,R.DeSalvo1,V.Dhillon57,S.Dhurandhar60,L.DiFiore5a, 2 A.DiLieto24ab,I.DiPalma7,8,M.DiPaoloEmilio55ac,A.DiVirgilio24a,M.D´ıaz26,A.Dietz4,J.DiGuglielmo7,8,F.Donovan21,K.L.Dooley11,S.Dorsher61,M.Drago59ab, 1 R.W.P.Drever62,J.C.Driggers1,Z.Du45,J.-C.Dumas20,S.Dwyer21,T.Eberle7,8,M.Edgar3,M.Edwards54,A.Effler12,P.Ehrens1,G.Endro˝czi58,R.Engel1,T.Etzel1, K.Evans3,M.Evans21,T.Evans6,M.Factourovich23,V.Fafone55ab,S.Fairhurst54,Y.Fan20,B.F.Farr63,W.Farr63,D.Fazi63,H.Fehrmann7,8,D.Feldbaum11,I.Ferrante24ab, M] F.Fidecaro24ab,L.S.Finn31,I.Fiori18,R.P.Fisher31,R.Flaminio33,M.Flanigan15,S.Foley21,E.Forsi6,L.A.Forte5a,N.Fotopoulos1,J.-D.Fournier32a,J.Franc33, S.Frasca14ab,F.Frasconi24a,M.Frede7,8,M.Frei64,Z.Frei65,A.Freise13,R.Frey37,T.T.Fricke12,J.K.Fridriksson21,D.Friedrich7,8,P.Fritschel21,V.V.Frolov6,P.J.Fulda13, I M.Fyffe6,M.Galimberti33,L.Gammaitoni35ab,M.R.Ganija66,J.Garcia15,J.A.Garofoli19,F.Garufi5ab,M.E.Ga´spa´r58,G.Gemme49,R.Geng45,E.Genin18,A.Gennai24a, h. L.A´.Gergely67,S.Ghosh34,J.A.Giaime12,6,S.Giampanis9,K.D.Giardina6,A.Giazotto24a,C.Gill3,E.Goetz7,8,L.M.Goggin9,G.Gonza´lez12,M.L.Gorodetsky28, p S.Goßler7,8,R.Gouaty4,C.Graef7,8,M.Granata22,A.Grant3,S.Gras20,C.Gray15,N.Gray3,R.J.S.Greenhalgh39,A.M.Gretarsson68,C.Greverie32a,R.Grosso26,H.Grote7,8, - S.Grunewald16,G.M.Guidi36ab,C.Guido6,R.Gupta60,E.K.Gustafson1,R.Gustafson46,T.Ha69,B.Hage8,7,J.M.Hallam13,D.Hammer9,G.Hammond3,J.Hanks15, o C.Hanna1,70,J.Hanson6,J.Harms62,G.M.Harry21,I.W.Harry54,E.D.Harstad37,M.T.Hartman11,K.Haughian3,K.Hayama71,J.-F.Hayau32b,T.Hayler39,J.Heefner1, r A.Heidmann38,M.C.Heintze11,H.Heitmann32,P.Hello29a,M.A.Hendry3,I.S.Heng3,A.W.Heptonstall1,V.Herrera10,M.Hewitson7,8,S.Hild3,D.Hoak42,K.A.Hodge1, st K.Holt6,J.Homan21,T.Hong48,S.Hooper20,D.J.Hosken66,J.Hough3,E.J.Howell20,B.Hughey9,S.Husa72,S.H.Huttner3,T.Huynh-Dinh6,D.R.Ingram15,R.Inta52, a T.Isogai51,A.Ivanov1,K.Izumi71,M.Jacobson1,H.Jang73,P.Jaranowski40d,W.W.Johnson12,D.I.Jones74,G.Jones54,R.Jones3,L.Ju20,P.Kalmus1,V.Kalogera63, [ I.Kamaretsos54,S.Kandhasamy61,G.Kang73,J.B.Kanner41,30,E.Katsavounidis21,W.Katzman6,H.Kaufer7,8,K.Kawabe15,S.Kawamura71,F.Kawazoe7,8,W.Kells1, D.G.Keppel1,Z.Keresztes67,A.Khalaidovski7,8,F.Y.Khalili28,E.A.Khazanov75,B.Kim73,C.Kim76,D.Kim20,H.Kim7,8,K.Kim77,N.Kim10,Y.-M.Kim50,P.J.King1, 2 M.Kinsey31,D.L.Kinzel6,J.S.Kissel21,S.Klimenko11,K.Kokeyama13,V.Kondrashov1,R.Kopparapu31,S.Koranda9,W.Z.Korth1,I.Kowalska40b,D.Kozak1,V.Kringel7,8, v S.Krishnamurthy63,B.Krishnan16,A.Kro´lak40ae,G.Kuehn7,8,R.Kumar3,P.Kwee8,7,M.Laas-Bourez20,P.K.Lam52,M.Landry15,M.Lang31,B.Lantz10,N.Lastzka7,8, 8 C.Lawrie3,A.Lazzarini1,P.Leaci16,C.H.Lee50,H.M.Lee78,N.Leindecker10,J.R.Leong7,8,I.Leonor37,N.Leroy29a,N.Letendre4,J.Li45,T.G.F.Li25a,N.Liguori59ab, 9 P.E.Lindquist1,N.A.Lockerbie79,D.Lodhia13,M.Lorenzini36a,V.Loriette29b,M.Lormand6,G.Losurdo36a,J.Luan48,M.Lubinski15,H.Lu¨ck7,8,A.P.Lundgren31, 4 E.Macdonald3,B.Machenschalk7,8,M.MacInnis21,D.M.Macleod54,M.Mageswaran1,K.Mailand1,E.Majorana14a,I.Maksimovic29b,N.Man32a,I.Mandel21,V.Mandic61, 3 M.Mantovani24ac,A.Marandi10,F.Marchesoni35a,F.Marion4,S.Ma´rka23,Z.Ma´rka23,A.Markosyan10,E.Maros1,J.Marque18,F.Martelli36ab,I.W.Martin3,R.M.Martin11, 9. J.N.Marx1,K.Mason21,A.Masserot4,F.Matichard21,L.Matone23,R.A.Matzner64,N.Mavalvala21,G.Mazzolo7,8,R.McCarthy15,D.E.McClelland52,P.McDaniel21, 0 S.C.McGuire80,G.McIntyre1,J.McIver42,D.J.A.McKechan54,G.D.Meadors46,M.Mehmet7,8,T.Meier8,7,A.Melatos53,A.C.Melissinos81,G.Mendell15,D.Menendez31, 1 R.A.Mercer9,S.Meshkov1,C.Messenger54,M.S.Meyer6,H.Miao20,C.Michel33,L.Milano5ab,J.Miller52,Y.Minenkov55a,V.P.Mitrofanov28,G.Mitselmakher11, 1 R.Mittleman21,O.Miyakawa71,B.Moe9,P.Moesta16,M.Mohan18,S.D.Mohanty26,S.R.P.Mohapatra42,D.Moraru15,G.Moreno15,N.Morgado33,A.Morgia55ab,T.Mori71, S.Mosca5ab,K.Mossavi7,8,B.Mours4,C.M.Mow–Lowry52,C.L.Mueller11,G.Mueller11,S.Mukherjee26,A.Mullavey52,H.Mu¨ller-Ebhardt7,8,J.Munch66,D.Murphy23, : v P.G.Murray3,A.Mytidis11,T.Nash1,L.Naticchioni14ab,R.Nawrodt3,V.Necula11,J.Nelson3,G.Newton3,A.Nishizawa71,F.Nocera18,D.Nolting6,L.Nuttall54,E.Ochsner41, i J.O’Dell39,E.Oelker21,G.H.Ogin1,J.J.Oh69,S.H.Oh69,R.G.Oldenburg9,B.O’Reilly6,R.O’Shaughnessy9,C.Osthelder1,C.D.Ott48,D.J.Ottaway66,R.S.Ottens11, X H.Overmier6,B.J.Owen31,A.Page13,G.Pagliaroli55ac,L.Palladino55ac,C.Palomba14a,Y.Pan41,C.Pankow11,F.Paoletti24a,18,M.A.Papa16,9,M.Parisi5ab,A.Pasqualetti18, r R.Passaquieti24ab,D.Passuello24a,P.Patel1,M.Pedraza1,P.Peiris82,L.Pekowsky19,S.Penn83,C.Peralta16,A.Perreca19,G.Persichetti5ab,M.Phelps1,M.Pickenpack7,8, a F.Piergiovanni36ab,M.Pietka40d,L.Pinard33,I.M.Pinto84,M.Pitkin3,H.J.Pletsch7,8,M.V.Plissi3,R.Poggiani24ab,J.Po¨ld7,8,F.Postiglione56,M.Prato49,V.Predoi54, L.R.Price1,M.Prijatelj7,8,M.Principe84,S.Privitera1,R.Prix7,8,G.A.Prodi59ab,L.Prokhorov28,O.Puncken7,8,M.Punturo35a,P.Puppo14a,V.Quetschke26,F.J.Raab15, D.S.Rabeling25ab,I.Ra´cz58,H.Radkins15,P.Raffai65,M.Rakhmanov26,C.R.Ramet6,B.Rankins43,P.Rapagnani14ab,S.Rapoport52,92,V.Raymond63,V.Re55ab, K.Redwine23,C.M.Reed15,T.Reed85,T.Regimbau32a,S.Reid3,D.H.Reitze11,F.Ricci14ab,R.Riesen6,K.Riles46,N.A.Robertson1,3,F.Robinet29a,C.Robinson54, E.L.Robinson16,A.Rocchi55a,S.Roddy6,C.Rodriguez63,M.Rodruck15,L.Rolland4,J.Rollins23,J.D.Romano26,R.Romano5ac,J.H.Romie6,D.Rosin´ska40cf,C.Ro¨ver7,8, S.Rowan3,A.Ru¨diger7,8,P.Ruggi18,K.Ryan15,H.Ryll7,8,P.Sainathan11,M.Sakosky15,F.Salemi7,8,A.Samblowski7,8,L.Sammut53,L.SanchodelaJordana72, V.Sandberg15,S.Sankar21,V.Sannibale1,L.Santamar´ıa1,I.Santiago-Prieto3,G.Santostasi86,B.Sassolas33,B.S.Sathyaprakash54,S.Sato71,P.R.Saulson19,R.L.Savage15, R.Schilling7,8,S.Schlamminger87,R.Schnabel7,8,R.M.S.Schofield37,B.Schulz7,8,B.F.Schutz16,54,P.Schwinberg15,J.Scott3,S.M.Scott52,A.C.Searle1,F.Seifert1, D.Sellers6,A.S.Sengupta1,D.Sentenac18,A.Sergeev75,D.A.Shaddock52,M.Shaltev7,8,B.Shapiro21,P.Shawhan41,D.H.Shoemaker21,A.Sibley6,X.Siemens9,D.Sigg15, A.Singer1,L.Singer1,A.M.Sintes72,G.Skelton9,B.J.J.Slagmolen52,J.Slutsky12,J.R.Smith2,M.R.Smith1,N.D.Smith21,R.J.E.Smith13,K.Somiya48,B.Sorazu3, J.Soto21,F.C.Speirits3,L.Sperandio55ab,M.Stefszky52,A.J.Stein21,E.Steinert15,J.Steinlechner7,8,S.Steinlechner7,8,S.Steplewski34,A.Stochino1,R.Stone26,K.A.Strain3, S.Strigin28,A.S.Stroeer26,R.Sturani36ab,A.L.Stuver6,T.Z.Summerscales88,M.Sung12,S.Susmithan20,P.J.Sutton54,B.Swinkels18,M.Tacca18,L.Taffarello59c, D.Talukder34,D.B.Tanner11,S.P.Tarabrin7,8,J.R.Taylor7,8,R.Taylor1,P.Thomas15,K.A.Thorne6,K.S.Thorne48,E.Thrane61,A.Thu¨ring8,7,C.Titsler31, K.V.Tokmakov79,A.Toncelli24ab,M.Tonelli24ab,O.Torre24ac,C.Torres6,C.I.Torrie1,3,E.Tournefier4,F.Travasso35ab,G.Traylor6,M.Trias72,K.Tseng10,D.Ugolini89, K.Urbanek10,H.Vahlbruch8,7,G.Vajente24ab,M.Vallisneri48,J.F.J.vandenBrand25ab,C.VanDenBroeck25a,S.vanderPutten25a,A.A.vanVeggel3,S.Vass1,M.Vasuth58, R.Vaulin21,M.Vavoulidis29a,A.Vecchio13,G.Vedovato59c,J.Veitch54,P.J.Veitch66,C.Veltkamp7,8,D.Verkindt4,F.Vetrano36ab,A.Vicere´36ab,A.E.Villar1,J.-Y.Vinet32a, S.Vitale68,S.Vitale25a,H.Vocca35a,C.Vorvick15,S.P.Vyatchanin28,A.Wade52,S.J.Waldman21,L.Wallace1,Y.Wan45,X.Wang45,Z.Wang45,A.Wanner7,8,R.L.Ward22, M.Was29a,P.Wei19,M.Weinert7,8,A.J.Weinstein1,R.Weiss21,L.Wen48,20,S.Wen6,P.Wessels7,8,M.West19,T.Westphal7,8,K.Wette7,8,J.T.Whelan82,S.E.Whitcomb1,20, D.White57,B.F.Whiting11,C.Wilkinson15,P.A.Willems1,H.R.Williams31,L.Williams11,B.Willke7,8,L.Winkelmann7,8,W.Winkler7,8,C.C.Wipf21,A.G.Wiseman9, H.Wittel7,8,G.Woan3,R.Wooley6,J.Worden15,J.Yablon63,I.Yakushin6,H.Yamamoto1,K.Yamamoto7,8,H.Yang48,D.Yeaton-Massey1,S.Yoshida90,P.Yu9,M.Yvert4, A.Zadroz´ny40e,91,M.Zanolin68,J.-P.Zendri59c,F.Zhang45,L.Zhang1,W.Zhang45,Z.Zhang20,C.Zhao20,N.Zotov85,M.E.Zucker21,J.Zweizig1, C.Akerlof46,M.Boer93,R.Fender74,N.Gehrels30,A.Klotz94,E.O.Ofek62,95,M.Smith31,M.Sokolowski91,B.W.Stappers96,I.Steele97,J.Swinbank98,R.A.M.J.Wijers98, andW.Zheng46 (Affiliationscanbefoundafterthereferences) ABSTRACT Aims. A transientastrophysicaleventobservedin both gravitationalwave (GW) and electromagnetic(EM) channelswouldyield richscientificrewards.AfirstprograminitiatingEMfollow-upstopossibletransientGWeventshasbeendevelopedandexercised bytheLIGOandVirgocommunityinassociationwithseveralpartners.Inthispaper,wedescribeandevaluatethemethodsusedto promptlyidentifyandlocalizeGWeventcandidatesandtorequestimagesoftargetedskylocations. Methods.Duringtwoobservingperiods(Dec172009toJan82010andSep2toOct202010),alow-latencyanalysispipelinewas usedtoidentifyGWeventcandidatesandtoreconstructmapsofpossibleskylocations.AcatalogofnearbygalaxiesandMilkyWay globularclusterswasusedtoselectthemostpromisingskypositionstobeimaged,andthisdirectionalinformationwasdeliveredto EMobservatorieswithtimelagsofaboutthirtyminutes.AMonteCarlosimulationhasbeenusedtoevaluatethelow-latencyGW pipeline’sabilitytoreconstructsourcepositionscorrectly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees,while neutronstar/neutronstar inspiralsand neutronstar/blackhole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above thresholdandoriginatingfromnearbygalaxiesmaybeobservedwith∼50%orbetterprobabilitywithafewpointingsofwide-field telescopes. Keywords.gravitationalwaves-methods:observational LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 3 1. Introduction consisting of two neutron stars (NS-NS) or a neutron star and a stellar-mass black hole (NS-BH), the inspiral stage produces The Laser Interferometer Gravitational-Wave Observatory the most readily detectable GW signal. The energyflux reach- (LIGO) (Abbottetal. 2009a) and Virgo (Accadiaetal. 2011) ing Earth depends on the inclination angle of the binary orbit have taken significant steps toward gravitational wave (GW) relative to the line of sight. The initial LIGO-Virgonetwork is astronomy over the past decade. The LIGO Scientific sensitivetooptimallyorientedNS-NSmergersfromasfaraway Collaboration operates two LIGO observatories in the U.S. as30Mpc,andmergersbetweenaNSanda10M⊙ blackhole alongwiththeGEO600detector(Lu¨cketal.2010)inGermany. outto70Mpc(Abadieetal.2010c).Modelsofthestellarcom- Together with Virgo,located in Italy, they form a detector net- pactobjectpopulationin thelocaluniverseestimatethe rateof work capable of detecting GW signals arriving from all direc- NS-NS mergers detectable with initial detectors to be between tions.TheirmostrecentjointdatatakingrunwasbetweenJuly 2×10−4and0.2peryear.Withadvanceddetectors,theserange 2009andOctober2010.GEO600andVirgoarecurrentlyoper- limitsareexpectedtoincreaseto440and930Mpc,respectively. atingduringsummer2011,whiletheLIGOinterferometershave TheenergeticsofthesesystemssuggestthatanEMcounter- been decommissioned for the upgrade to the next-generation partislikely.Thefinalplungeradiatesoforder1053ergsofgrav- Advanced LIGO detectors (Harryetal. 2010), expected to be itationalbindingenergyas gravitationalwaves. If evena small operational around 2015. Virgo will also be upgraded to be- fractionofthisenergyescapesasphotonsintheobservingband, comeAdvancedVirgo(Acerneseetal. 2008).Additionally,the theresultingcounterpartcouldbeobservabletolargedistances. newLCGTdetector(Kuroda&TheLCGTCollaboration2010) TheEMtransientsthatarelikelytofollowaNS-BHorNS-NS isplannedinJapan.These“advancedera”detectorsareexpected mergeraredescribedbelow. to detect compact binary coalescences, possibly at a rate of Short-hardgamma-raybursts(SGRBs),whichtypicallyhave dozensper year,after reachingdesign sensitivity (Abadieetal. durations of 2 seconds or less, may be powered by NS-NS 2010c). or NS-BH mergers (Nakar 2007; Me´sza´ros 2006; Piran 2004). Detectable, transient GW signals in the LIGO/Virgo fre- Afterglows of SGRBs have been observed in wavelengths quencybandrequirebulkmotionof mass onshorttime scales. from radio to X-ray, and out to Gpc distances (Nakar 2007; Emissioninotherchannelsisalsopossibleinmanysuchrapidly Gehrelsetal. 2009). Optical afterglows have been observed changingmassivesystems.Thisleadstotheprospectthatsome fromafewtensofsecondstoafewdaysaftertheGRBtrigger transientGWsourcesmayhavecorrespondingelectromagnetic (see, for example, Klotzetal. (2009a)), and fade with a power (EM)counterpartswhichcouldbediscoveredwithalowlatency lawt−α,whereαisbetween1and1.5.At1dayafterthetrigger response to GW triggers (Sylvestre 2003; Kanneretal. 2008; time, theapparentopticalmagnitudewouldbebetween12 and Stubbs2008;Kulkarni&Kasliwal2009;Bloometal.2009). 20forasourceat50Mpc(Kannetal.2011),comparabletothe Finding these EM counterparts would yield rich scientific distancetowhichLIGOandVirgocoulddetectthemerger. rewards(see Sect. 2), but is technically challengingdue to im- Even if a compact binary coalescence is not observable in perfect localization of the gravitationalwave signal and uncer- gamma-rays,thereisreasontoexpectitwillproduceanobserv- tainty regarding the relative timing of the GW and EM emis- ableopticalcounterpart.Li&Paczyn´ski(1998) suggestedthat, sions.Thispaperdetailsourrecentefforttoconstructaprompt during a NS-NS or NS-BH merger, some of the neutron star’s search for joint GW/EM sources between the LIGO/Virgo de- mass is tidally ejected. In their model, the ejected neutron-rich tectornetworkandpartnerEM observatories(see Sect. 3).The matter produces heavy elements through r-process nucleosyn- searchwasdemonstratedduringtwoperiodsofliveLIGO/Virgo thesis, whichsubsequentlydecayandheattheejecta,powering running:the “winter” observing period in December 2009 and anopticalafterglowknownasakilonova.Thepredictedoptical January2010andthe“autumn”observingperiodinSeptember emissionisroughlyisotropic,andsoisobservableregardlessof andOctober2010.Wefocushereonthedesignandperformance the orientation of the original binary system. This emission is of software developed for rapid EM follow-ups of GW candi- expectedto peakafteraboutoneday,aroundmagnitude18 for dateevents,aswellastheproceduresusedtoidentifysignificant asourceat50Mpc(Metzgeretal.2010),andthenfadeoverthe GW triggersand to communicatethe mostlikely sky locations courseofafewdaysfollowingthemerger. to partner EM observatories. The analysis of the observational dataisinprogress,andwillbethesubjectoffuturepublications. 2.1.2. StellarCoreCollapse Beyondthecompactobjectmergersdescribedabove,someother 2. Motivation astrophysicalprocessesareplausiblesourcesofobservableGW 2.1.Sources emission.GWtransientswithunknownwaveformsmaybedis- coveredbysearchingtheLIGOandVirgodataforshortperiods AvarietyofEMemissionmechanisms,bothobservedandthe- of excess power (bursts). The EM counterparts to some likely oretical,mayoccurinassociationwithobservableGWsources. sourcesofGWburstsignalsaredescribedbelow. Characteristicsofafewscenarioshelpedinformthedesignand Core-collapsesupernovaearelikelytoproducesomeamount executionofthissearch.Here,somelikelymodelsarepresented, of gravitational radiation, though large uncertainties still exist alongwithcharacteristicsoftheassociatedEMemission. intheexpectedwaveformsandenergetics.Mostmodelspredict GWspectrathatwouldbeobservablebyinitialLIGOandVirgo from distanceswithin some fractionof the Milky Way, but not 2.1.1. CompactBinaryCoalescence from the Mpc distances needed to observe GWs from another Compactbinarysystemsconsistingofneutronstarsand/orblack galaxy(Ott2009).NeutrinodetectorssuchasSuperKamiokande holesarethoughttobethemostcommonsourcesofGWemis- andIceCubeshouldalsodetectalargenumberofneutrinosfrom siondetectablewithground-basedinterferometers.Radiationof aGalacticsupernova(Beacom&Vogel1999;Halzen&Raffelt energy and angular momentum causes the orbit to decay (in- 2009;Leonoretal.2010).Galacticsupernovaenormallywould spiral)untiltheobjectsmerge(Cutleretal.1993).Forasystem beverybrightintheopticalband,butcouldbelessthanobvious LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 4 ifobscuredbydustorbehindtheGalacticcenter.Opticalemis- (Cutleretal.1993;Vallisneri2000;Flanagan&Hinderer2008; sion wouldfirst appearhoursafter the GW and neutrinosignal Anderssonetal. 2011; Pannaraleetal. 2011; Hindereretal. and would peak days to weeks later, fading over the course of 2010). weeksormonths. Observing EM counterparts of NS-NS and NS-BH merger Long-softgamma-raybursts(LGRBs)arebelievedtobeas- eventswill give strong evidenceas to which class of source, if sociatedwiththecorecollapseofmassivestars(Woosley1993; either,isthesourceofSGRBs(Bloometal.2009).Inaddition, MacFadyen&Woosley 1999; Piran 2004; Woosley&Bloom ifsomeneutronstarmergersarethesourcesofSGRBs,acollec- 2006; Metzgeretal. 2011). A large variety of possible GW tion of joint EM/GW observations would allow an estimate of emitting mechanisms within these systems have been pro- theSGRBjetopeninganglebycomparingthenumberofmerger posed, with some models predicting GW spectra that would events with and without observable prompt EM emission, and be observable from distances of a few Mpc with initial LIGO some informationwouldbeobtainableevenfroma single loud and Virgo (Fryeretal. 2002; Kobayashi&Me´sza´ros 2003a; event(Kobayashi&Me´sza´ros2003b;Seto2007). Corsi&Me´sza´ros 2009; Piro&Pfahl 2007; Korobkinetal. An ensemble of these observations could provide a novel 2011; Kiuchietal. 2011). The afterglows of LGRBs, like the measurementofcosmologicalparameters.Analysisofthewell- afterglows of SGRBs, typically show power law fading with modeled GW signal will provide a measurement of the lumi- α = 1−1.5. However, the peak isotropic equivalent luminos- nositydistancetothesource,whiletheredshiftdistanceismea- ityofLGRBafterglowsistypicallyafactorof10brighterthan surable from the EM data. Taken together, they provide a di- SGRBafterglows(Nakar2007;Kannetal.2010). rect measurement of the local Hubble constant (Schutz 1986; Anoff-axisorsub-energeticLGRBmayalsobeobservedas Markovic1993;Dalaletal.2006;Nissankeetal.2010). anorphanafterglowordirtyfireball(Granotetal.2002;Rhoads Finally,alloftheaboveassumethatgeneralrelativityisthe 2003).Thesetransientsbrightenoverthecourseofseveraldays correcttheoryof gravity on macroscopicscales. Joint EM/GW orevenweeks,dependingontheobservingbandandviewingan- observationscanalsobeusedtotestcertainpredictionsofgen- gle.Identifyingorphanafterglowsinlargeareasurveys,suchas eralrelativity,suchasthepropagationspeedandpolarizationsof Rykoffetal.(2005),hasprovendifficult,butaGWtriggermay GWs(Will2005;Yunesetal.2010;Kahya2011). helpdistinguishorphanafterglowsfromotherEMvariability. In the case that the transient GW source is not a binary mergerevent,thecombinationofGWandEMinformationwill again prove very valuable. In this scenario, the gravitational 2.1.3. OtherPossibleSources waveform will not be known a priori. Any distance estimate would be derived from the EM data, which would then set the Cosmic string cusps are another possible joint source of overallscalefortheenergyreleasedasGWs. GW (Siemensetal. 2006; Damour&Vilenkin 2000) and EM As in the merger case, the linking of a GW signal with a (Vachaspati 2008) radiation. If present, their distinct GW sig- known EM phenomenonwill provide insight into the underly- nature will distinguish them from other sources. On the other ingphysicalprocess.Forexample,thedetailsofthecentralen- hand,evenunmodeledGWemissionscanbedetectedusingGW ginethatdrivesLGRBsareunknown.TheGWsignalcouldgive burstsearchalgorithms,andsucheventsmayinsomecasespro- crucial clues to the motion of matter in the source, and poten- duceEMradiationeither throughinternaldynamicsorthrough tially distinguish between competingmodels. A similar insight interactionwiththesurroundingmedium.Thus,ourjointsearch into the source mechanism could be achieved for an observa- methodsshouldallowforawiderangeofpossiblesources. tionofGWemissionassociatedwithasupernova.Rapididenti- fication may also allow observation of a supernova in its ear- liest moments, an opportunity that currently depends on luck 2.2.InvestigationsenabledbyjointGW/EMobservations (Soderbergetal.2008). A variety of astrophysicalinformationcould potentially be ex- tracted from a joint GW/EM signal. In understanding the pro- 2.3.ExtendGWDetectorReach genitor physics, the EM and GW signals are essentially com- plementary.TheGWtimeseriesdirectlytracesthebulkmotion FindinganEMcounterpartassociatedwithaLIGO/Virgotrigger ofmassinthesource,whereasEMemissionsarisingfromout- would increase confidence that a truly astrophysical event had flowsortheirinteractionwiththeinterstellarmediumgiveonly beenobservedintheGWdata.UsingEMtransientstohelpdis- indirect information requiring inference and modeling. On the tinguish low amplitude GW signals fromnoise eventsallows a otherhand,observinganEMcounterparttoaGWsignalreduces loweringofthedetectionthreshold,aswasdoneinsearchessuch the uncertainty in the source position from degrees to arcsec- asAbbottetal.(2010).Kochanek&Piran(1993)estimatedthat onds.Thisprecisedirectionalinformationcanleadtoidentifica- thedetectableamplitudecouldbereducedbyasmuchasafac- tionofahostgalaxy,andameasurementofredshift.Somespe- torof1.5,increasingtheeffectivedetectorhorizondistance(the cific questionsthatmay be addressedwith a collection of joint maximum distance at which an optimally oriented and located GW/EMsignalsarediscussedbelow. system couldbe detected)by the same factorand thusincreas- IftheGWsourceisidentifiedasaNS-NSorNS-BHmerger, ingthedetectionratebyafactorof3.Inpractice,theactualim- additional investigations are enabled with an EM counterpart. provementin GW sensitivity achievedby pairingEM and GW The observation of the EM signal will improve the estimation observationsdependsonmanyfactorsuniquetoeachsearch,in- ofastrophysicalsourceparameters.Forexample,whenattempt- cludingdetailsofthesourcemodelanddataset,andsoisdiffi- ing parameter estimation with a bank of templates and a sin- culttopredictinadvance. gle data stream, the source’s distance, inclination angle, and InthecaseofacoincidencebetweenaGWsignalandadis- angular position are largely degenerate. A precise source po- covered EM transient, the joint significance may be calculated sition from an EM counterpartwould help break this degener- byassumingthatthebackgroundsoftheEMandGWsearchare acy(Dalaletal.2006;Nissankeetal.2010).Highprecisionpa- independent. The False Alarm Rate (FAR) of a GW/EM coin- rameterestimationmayevenconstraintheNSequationofstate cidenceistheFARoftheGWsignal,asdescribedinSect.4.2, LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 5 timesα,theexpectedfractionofobservationsassociatedwitha The problem may be partially mitigated by making use of falseorunrelatedEMtransient.Thefalsealarmfractionαmay theknownmassdistributioninthenearbyuniverse.Asearchfor beestimatedusingfieldsfromsurveysnotassociatedwithGW GW counterpartscan dramatically reduce the needed sky cov- triggers. The measured value of α will depend heavily on the erage by focusing observationson galaxieswithin the distance telescopebeingused,thecutsselectedinimageanalysis,galac- limitsoftheGWdetectors(Kanneretal.2008;Nuttall&Sutton ticlatitudeofthesourceandotherfactors.Forexample,surveys 2010). Limiting the search area to known galaxies may also withthePalomarTransientFactoryrequireasophisticatedclas- improve the feasibility of identifying the true counterpart sificationmechanismforrejectingcontaminants.Eachsetofim- from among other objects with time-varying EM emissions agesubtractionscovering100-200squaredegreesyields∼105 (Kulkarni&Kasliwal 2009). Even within the Milky Way, a candidates.Ofthese,30-150sourcesareselectedafterimpos- search may emphasize known targets by seeking counterparts ing cuts optimized for the detection of fast evolving transients within globular clusters, where binary systems of compact ob- (Bloometal. 2011). Using classification software designed for jectsmayformefficiently(O’Learyetal.2007). PTFdata(Oarical)(Bloometal.2011),theselectedsourcesun- An emphasis on extragalactic and globular-cluster sources dergoanautomaticclassificationastype“transient”or“variable hasthepotentialdrawbackthatanycounterpartsintheplaneof star” based on time-domain and context properties. Promising the MilkyWay may be missed. Also, neutronstar mergersthat candidates are selected for additional, spectroscopic observa- occuratlargedistancesfromtheirhostgalaxiesmaynotbeob- tion.Ofthesourcesthatareclassifiedastransients,andthenfol- served,thoughthe populationwith large kicksshouldbe small lowedupspectroscopically,∼82%aresupernovae(Bloometal. (Berger2010;Kelleyetal.2010). 2011). To use EM transience to improve confidence in a GW Ourselectionoffieldstoobservewasweightedtowardsar- signal, the time-domainsky in the wavelength of interest must eascontainingknowngalaxieswithin50Mpc.Theutilizedcata- bewellunderstood.Transientsthatarefoundindirectionaland logofnearbygalaxiesandglobularclusters,andtheprocessfor time coincidence with GW triggers would increase confidence selectingfieldstoobserve,isdescribedinSect.5. intheGWsignalonlyifthechanceofasimilar,incidentalcoin- cidenceisunderstoodtobelow(Kulkarni&Kasliwal2009). 3. GWandEMInstruments 3.1.GravitationalWaveDetectorNetwork 2.4.ImplicationsforSearchDesign The LIGO and Virgo detectors are based on Michelson-type Characteristicsofthetargetsourceshelpeddeterminewhenand interferometers, with Fabry-Perot cavities in each arm and a wheretoseektheEMcounterpartstoGWeventcandidates.For power recycling mirror between the laser and beamsplitter to reasons discussed in this section, the search strategy presented dramaticallyincreasethepowerinthearmsrelativetoasimple in this paper emphasizes capturing images as soon as possible Michelsondesign.TheGEO600detectorusesafoldedinterfer- after the GW trigger, along with follow-upimages over subse- ometerwithoutFabry-Perotarmcavitiesbutwith anadditional quentnights.Theratesofstellarcore-collapseandcompactob- recyclingmirrorattheoutputtoresonantlyenhancetheGWsig- jectmergerswithin ourowngalaxyaremuchless thanoneper nal.Asagravitationalwavepassesthrougheachinterferometer, year, and so field selection was strongly weighted towards re- itinducesa“strain”(aminusculechangeinlengthontheorder gionscontainingnearbygalaxies. of1partin 1021 orless) oneacharmoftheinterferometerdue The observations and theoretical models of EM transients tothequadrupolarperturbationofthespacetimemetric.Thein- discussed aboveprovidedguidance when choosingthe observ- terferometersare designed to measure the differential strain on ing cadence. GRB optical afterglows have been observed dur- the two arms through interference of the laser light when the ing the prompt emission phase (Klotzetal. 2009b) and up to two beams are recombined at the beam splitter, with the rela- manyhoursafterthetrigger.Forthissearch,thefirstattemptto tive optical phase modulated by the passing gravitationalwave image the source position was made as soon as possible after (Abbottetal.2009a). validating a GW trigger. In both the kilonova (Li&Paczyn´ski In 2009–2010 there were two operating LIGO interfer- 1998) and supernova (Ott 2009) models, some time lag exists ometers, each with 4-km arms: H1, located near Hanford, betweenthe release ofGW andEM emission,primarilydueto Washington, and L1, located in Livingston Parish, Louisiana.1 thetimeittakestheoutflowingmaterialtobecomeopticallythin. Virgo(V1)hasarmsoflength3kmandislocatednearCascina, This time lag may be from several hours for a kilonova, up to Italy.GEO600datawasnotusedintheonlinesearchdescribed days for a core-collapsesupernova.Furthermore,Cowardetal. inthispaper,butwasavailableforofflinereanalysisofpromis- (2011)showthatforGRBsthatareoff-axis,theopticalafterglow ingeventcandidates.Thelargephysicalseparationbetweenthe maynotbe visible untildaysafter theburst. Forthese reasons, instrumentsmeansthattheeffectsoflocalenvironmentalback- repeatedobservationsoverseveralnightsaredesirable.Also,the groundcanbemitigatedbyrequiringacoincidentsignalinmul- lightcurvesobtainedbyobservingthesamefieldsovermultiple tiple interferometers. Each interferometer is most sensitive to nightsarecriticalcluesfordiscoveringandclassifyingtransient GW signals traveling parallel or anti-parallelto zenith, but the sources. antennapatternvariesgraduallyoverthesky,sothatthe detec- torsareessentiallyall-skymonitors. Knowing where to look for the counterpart to a GW trig- TheEMfollow-upprogramdescribedinthispaperwasexer- ger is challenging.Directionalestimates of low signal to noise cisedduringthe2009–2010scienceruns.Whilesingle-detector ratio(SNR)binaryinspiralsourceswiththe2009–10GWdetec- triggershad been generatedwith low latency in earlier science tornetworkhaveuncertaintiesofseveraltensofsquaredegrees (Fairhurst2009). Thissuggestsusing telescopeswith a field of 1 Earlierscience runsincluded asecond interferometer at Hanford, view (FOV) of at least a few square degrees if possible. Even calledH2,with2-kmarms.H2willreappearaspartofAdvancedLIGO, withsucha“widefield”instrument,thereisastrikingmismatch either as a second 4-km interferometer at Hanford or else at a sitein betweenthelargeareaneedingtobesearched,andthesizeofa WesternAustralia.Thelatteroptionwouldgreatlyimprovethesource singleFOV. localizationcapabilitiesofthenetwork(Fairhurst2011;Schutz2011). LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 6 runs for diagnostic and prototyping purposes, 2009–2010 was the first time that a systematic search for GW transients using the full LIGO-Virgo network was performedwith low latency, andthefirsttimethatalertsweresenttoexternalobservatories. 3.2.OpticalandOtherElectromagneticObservatories Inanefforttoexplorevariousapproaches,thetelescopenetwork used in 2009–10 was intentionally heterogeneous. However, most of instruments had large fields of view to accommodate the imprecise GW position estimate. The approximatelocation ofeachEMobservatoryisshownin Fig.1, andTables1and2 Fig.1.A mapshowingthe approximatepositionsoftelescopes showsomeofthepropertiesofeachobservatory. thatparticipatedintheproject.TheSwiftsatelliteobservatoryis notedatanarbitrarylocation.Theimageisadaptedfromablank 3.2.1. OpticalInstruments worldmapplacedinthepublicdomainbyP.Dlouhy´. The Palomar Transient Factory (PTF) (Lawetal. 2009; Rauetal. 2009) operates a 7.3 square degree FOV camera ZadkoTelescope(Cowardetal.2010)isa1mtelescopelo- mountedonthe1.2mOschinTelescopeatPalomarObservatory. cated in Western Australia. The current CCD imager observes A typical 60 s exposure detects objects with a limiting magni- fields of 0.15 square degrees down to magnitude ∼ 20 in the tudeR = 20.5.Fortheautumnobservingperiod,thePTFteam R band for a typical 180 s exposure.For each accepted trigger devotedtenfieldsoverseveralnightsatatargetrateof1trigger in theautumnrun,Zadkorepeatedlyobservedthefive galaxies foreverythreeweeks. consideredmostlikelytohostthesourceoverseveralnights.The Pi of the Sky (Maleketal. 2009) observed using a camera targettriggerrateforZadkowasonetriggerperweek. with a 400 square degree FOV and exposuresto limiting mag- The Liverpool telescope (Steeleetal. 2004) is a 2 m nitude 11–12. It was located in Koczargi Stare, near Warsaw. robotictelescopesituatedattheObservatoriodelRoquedeLos The camera was a prototype for a planned system that will si- Muchachoson La Palma. For this project the RATCam instru- multaneously image two steradians of sky. The target rate was ment,with a 21squarearcminutefield ofview, wasused. This approximately1perweek inthe autumnrun,followedupwith instrumentation allows a five minute exposure to reach magni- hundredsof10sexposuresoverseveralnights. tude r′ = 21. This project was awarded 8 hours of target-of- TheQUEST camera(Baltayetal.2007),currentlymounted opportunitytime,whichwassplitinto8observationsof1hour on the 1 m ESO Schmidt Telescope at La Silla Observatory, each,withatargetrateof1triggerperweek. views9.4squaredegreesofskyineachexposure.Thetelescope is capable of viewing to a limiting magnitude of R ∼ 20. The QUESTteamdevotedtwelve60sexposuresoverseveralnights 3.2.2. RadioandX-rayInstruments for each trigger in both the winter and autumn periods, with a LOFAR (Fenderetal. 2006; deVosetal. 2009; Stappersetal. targetrateof1triggerperweek. 2011)isadipolearrayradiotelescopebasedintheNetherlands ROTSEIII(Akerlofetal.2003)isacollectionoffourrobotic but with stations across Europe. The array is sensitive to fre- telescopesspreadaroundtheworld,eachwitha0.45maperture quenciesintherangeof30to80MHzand110to240MHz,and and 3.4 square degree FOV. No filters are used, so the spectral can observemultiple simultaneousbeams, each with a FWHM responseisthatoftheCCDs, spanningroughly400to900nm. varyingwithfrequencyuptoamaximumofaround23o.During TheequivalentRbandlimitingmagnitudeisabout17ina20s the autumn run, LOFAR accepted triggers at a target rate of 1 exposure.TheROTSEteamarrangedforaseriesofthirtyimages perweekandfollowedupeachwithafour-hourobservationin for the first night, and several images on following nights, for its higher frequencyband, providinga ∼25 square degree field eachautumnruntrigger,withatargetrateof1triggerperweek. ofview. SkyMapper(Kelleretal.2007)isasurveytelescopelocated Although not used in the prompt search during the science at Siding Spring observatory in Australia. The mosaic camera run, the Expanded Very Large Array (Perleyetal. 2011) was covers 5.7 square degrees of sky in each field, and is mounted used to follow up a few triggers after the run with latencies of on a 1.35 m telescope with a collecting area equivalent to an 3and5weeks. unobscured 1.01 m aperture. It is designed to reach a limiting TheSwift satellite (Gehrelsetal. 2004) carriesthree instru- magnitudeg ∼ 21(>7sigma)ina 110sexposure.SkyMapper ments, each in different bands. Swift granted several target of accepted triggers in the autumn run with a target rate of 1 per opportunityobservationswithtwoofthese,theX-rayTelescope week,withseveralfieldscollectedforeachtrigger. (XRT) and UV/Optical Telescope (UVOT), for the winter and autumn observing periods. The XRT is an imaging instrument TAROT(Klotzetal.2009a)operatestworobotic25cmtele- witha0.15squaredegreeFOV,sensitivetofluxesaround10−13 scopes,oneatLaSillainChileandoneinCalern,France.Like ergs/cm2/sinthe0.5-10keVband.Afewfieldswereimagedfor theROTSEIIIsystem,eachTAROTinstrumenthasa3.4square eachtriggerthatSwiftaccepted. degreeFOV. A 180 second image with TAROT in ideal condi- tionshasalimitingRmagnitudeof17.5.Duringthewinterrun, TAROT observed a single field during one night for each trig- 4. TriggerSelection ger. In the autumn run, the field selected for each trigger was observed over several nights. TAROT accepted triggers with a TheonlineanalysisprocesswhichproducedGWcandidatetrig- targetrateof1perweek. gerstobesenttotelescopesisoutlinedinFig.2.Afterdataand LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 7 cWBandρ forMBTA arerelatedtotheamplitudeSNR combined ofthesignalacrossallinterferometerswhileΩisrelatedtothe BayesianlikelihoodofaGWsignalbeingpresent.Triggerswith adetectionstatisticaboveanominalthreshold,andoccurringin times where all three detectors were operating normally, were recorded in the Gravitational-wave Candidate Event Database (GraCEDb). The trigger generators also produced likelihood maps over thesky(skymaps),indicatingthelocationfromwhichthesignal wasmostlikelytohaveoriginated.Abriefintroductiontoeach triggergeneratorispresentedinSects.4.1.1–4.1.3. Fig.2.Asimplifiedflowchartoftheonlineanalysiswithapprox- imate time requirements for each stage. Data and information on dataquality were generatedatthe Hanford,Livingston,and 4.1.1. CoherentWaveBurst Virgo interferometers (H1, L1, and V1) and copied to central- CoherentWaveBursthasbeenusedinprevioussearchesforGW izedcomputercenters.Theonlineeventtriggergeneratorspro- bursts, such as Abbottetal. (2009b) and Abadieetal. (2010b). ducedcoincidenttriggerswhichwerewrittenintotheGraCEDb Thealgorithmperformsatime-frequencyanalysisofdatainthe archive.TheLUMINandGEMalgorithmsselectedstatistically waveletdomain.Itcoherentlycombinesdatafromalldetectors significant triggers from the archive and chose pointing loca- to reconstruct the two GW polarization waveforms h (t) and tions. Significant triggers generated alerts, and were validated + h (t) and the source coordinates on the sky. A statistic is con- × manually. If no obvious problem was found, the trigger’s esti- structedfromthecoherenttermsofthemaximumlikelihoodra- mated coordinateswere sentto telescopesfor potentialfollow- tiofunctional(Flanagan&Hughes1998;Klimenkoetal.2005) up. for each possible sky location, and is used to rank each lo- cation in a grid that covers the sky (skymap). A detailed de- scriptionofthelikelihoodanalysis,theskylocalizationstatistic and the performance of the cWB algorithm is published else- informationon data quality were copied from the interferome- where(Klimenkoetal.2011). tersitestocomputingcenters,threedifferentdataanalysisalgo- The search was run in two configurations which differ in rithms identified triggers and determined probability skymaps. their assumptions about the GW signal. The “unconstrained” Theprocessofdownselectingthislargecollectionoftriggersto searchplacesminimalassumptionsontheGWwaveform,while thefeweventcandidatesthatreceivedEMfollow-upisdescribed the“linear”searchassumesthesignalisdominatedbyasingle inthissection. GWpolarizationstate(Klimenkoetal.2011).Whiletheuncon- Aftereventcandidateswereplacedinacentralarchive,addi- strainedsearchismoregeneral,andistheconfigurationthatwas tionalsoftwareusedthelocationsofnearbygalaxiesandMilky usedinpreviousburstanalyses,thelinearsearchhasbeenshown Wayglobularclusterstoselectlikelysourcepositions(Sect.5). to better estimate source positions for some classes of signals. Triggers were manually vetted, then the selected targets were Fortheonlineanalysis,thetwosearcheswereruninparallel. passed to partnerobservatorieswhich imaged the sky in an at- tempttofindanassociatedEMtransient.Studiesdemonstrating theperformanceofthispipelineonsimulatedGWsarepresented 4.1.2. OmegaPipeline inSect.7. In the Omega Pipeline search (Abadieetal. 2010b), triggers are first identified by performing a matched filter search with 4.1.TriggerGeneration a bank of basis waveforms which are approximately (co)sine- Gaussians.ThesearchassumesthataGWsignalcanbedecom- SendingGWtriggerstoobservatorieswithlessthananhourla- tencyrepresentsamajorshiftfrompastLIGO/Virgodataanal- posed into a small numberof these basis waveforms,and so is most sensitive to signals with a small time-frequency volume. yses, which were reported outside the collaboration at soonest Coincidence criteria are then applied, requiring a trigger with several monthsafter the data collection. Reconstructing source consistent frequency in another interferometer within a physi- positions requires combiningthe data streams from the LIGO- callyconsistenttimewindow.AcoherentBayesianpositionre- Virgo network using either fully coherentanalysis or a coinci- construction code (Searleetal. 2008, 2009) is then applied to denceanalysisofsingle-detectortriggertimes.Akeystepinla- remainingcandidates.ThecodeperformsBayesianmarginaliza- tencyreductionwastherapiddatareplicationprocess,inwhich tionoverallparameters(timeofarrival,amplitudeandpolariza- datafromallthreeGWobservatorysiteswerecopiedtoseveral tion)otherthandirection.Thisresultsinaskymapprovidingthe computingcenterswithinaminuteofcollection. probabilitythatasignalarrivedatanytime,withanyamplitude For the EM follow-up program,three independentGW de- andpolarization,asafunctionofdirection.Furthermarginaliza- tection algorithms (trigger generators), ran promptly as data tionisperformedoverthisentireprobabilityskymaptoarriveat became available, generating candidate triggers with latencies a single number,the estimated probabilitythat a signal arrived between five and eight minutes. Omega Pipeline and coherent fromanydirection.TheΩstatisticisconstructedfromthisnum- WaveBurst (cWB), which are both described in Abadieetal. berandothertriggerproperties. (2010b), searched for transients (bursts) with only loose as- sumptions regarding waveform morphology. The Multi-Band Template Analysis (MBTA) (Marion 2004), searched for sig- 4.1.3. MBTA nalsfromcoalescingcompactbinaries.Triggerswererankedby their “detection statistic”, a figure of merit for each analysis, The Multi-Band Template Analysis (MBTA) is a low-latency known as Ω, η, and ρ , respectively. The statistics η for implementationofthematchedfiltersearchthatistypicallyused combined LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 8 to search for compact binary inspirals (Marion 2004; Buskulic 4.3.OnlineDataQuality 2010). In contrast to burst searches which do not assume any Anumberofcommonoccurrencesmaymakeastretchofinter- particularwaveformmorphology,MBTAspecificallytargetsthe ferometerdataunsuitableforsensitiveGWsearches.Examples waveforms expected from NS-NS, NS-BH and BH-BH inspi- include times of large seismic disturbance, non-standard inter- rals.Inthiswayitprovidescomplementarycoveragetotheburst ferometer configurations, and temporary saturations of various searchesdescribedabove. photodiodes in the interferometer sensing and control system. The search uses templates computed from a second order Tomarksuchtimes,monitorprogramsanalyzeauxiliarydatato post-Newtonian approximation for the phase evolution of the producelistsofabnormaltimesegmentswithlowlatency.When signal,withcomponentmassesintherange1–34M⊙andatotal a trigger was identified, it was automatically checked against mass of < 35M⊙. However,triggersgeneratedfromtemplates theselists;triggerswhichoccurredinstretchesofunacceptable withbothcomponentmasseslargerthantheplausiblelimitofthe data were automatically rejected. During this search, all three NS mass—conservatively taken to be 3.5M⊙ for this check— GW detectors were simultaneously collecting science quality were not considered for EM follow-up, since the optical emis- dataforroughly45%ofthetime. sionisthoughttobeassociatedwiththemergeroftwoneutron stars or with the disruption of a neutron star by a stellar-mass blackhole. 4.4.ManualEventValidation Triggersfromeachinterferometerareclusteredandusedto Inadditiontoautomatedchecksondataquality,significanttrig- searchforcoincidenceamongthe individualdetectors.To gen- gersweremanuallyvetted.Triggeralertswerebroadcasttocol- erate a candidate event for follow-up, triggers with consistent laborationmembersvia e-mail,textmessage,a website, andin physicalparametersmustbepresentinallthreeLIGO/Virgoin- theinterferometercontrolroomsasaudioalarms.Foreachalert, terferometers.Foreachtriplecoincidenttrigger,theskylocation alow-latencypipelineexpertconferredwithpersonnelateachof was estimated using the time delay between detector sites and thethreeobservatorysitestovalidatetheevent.Pipelineexperts theamplitudeofthesignalmeasuredineachdetector(Fairhurst andscientistsmonitoringdataon-siteprovided24/7coveragein 2009). Before the observingperiod, a set of simulated gravita- 8hourshifts.Assignedpersonnelconfirmedtheautomateddata tional wave signals was used to measure the distribution of er- qualityresults,checkedplotsforobviousabnormalities,andver- rors in recovering the time delays and signal amplitudes. The ified thatthere were no knowndisturbancesat any of the three skylocalizationalgorithmthenusesthesedistributionstoassign observatorysites. probabilitiestoeachpixelonthesky. Theintentionofmanualeventvalidationwasto vetospuri- ouseventscausedbyknownnon-GWmechanismsthathavenot beencaughtbylow-latencydataqualitycuts,nottoremoveev- 4.2.EstimatingFalseAlarmRates ery non-GWtrigger.In fact, atcurrentsensitivities, most orall ofthetriggersareunlikelytorepresenttrueastrophysicalevents. Theprimaryquantityusedtodecidewhetheraneventshouldbe Thetrade-offforthisadditionalcheckonthequalityofthetrig- consideredacandidateforfollow-upswasitsFAR,theaverage gerswasaddedlatency(usually10to20minutes)betweentrig- rate at which noise fluctuations create events with an equal or ger identification and reporting to the EM observatories. It is greatervalueofthedetectionstatistic.Forthewinterrun,aFAR possiblethatasthesearchmaturesintheAdvancedLIGO/Virgo oflessthan1eventperdayoflivetimewasrequiredtosendan erathevalidationprocesscanbefullyautomated. imaging request to the ground-based telescopes, with a higher thresholdforSwift.Fortheautumnrun,theFARthresholdwas 0.25eventsperdayoflivetimeformosttelescopes,withstricter 5. ChoosingFieldstoObserve requirementsforsendingtriggersto PalomarTransientFactory andSwift.Livetimeisheredefinedastimeallthreeinterferom- The uncertainty associated with GW position estimates, ex- etersweresimultaneouslycollectingusablesciencedata. pected to be severaltens of square degrees(Fairhurst2009), is large compared to the FOV of most astronomical instruments. As in previous all-sky burst searches, e.g. Abbottetal. Moreover,thelikelyskyregionscalculatedfrominterferometer (2009b) and Abadieetal. (2010b), the FAR for the two burst datamaybeirregularlyshaped,orevencontainseveraldisjoint pipelines was evaluated using the time-shift method. In this regions. It is impractical to image these entire regions given a method,artificialtimeshifts,betweenonesecondandafewhun- limitedamountofobservingtimeforagiveninstrument.There dredseconds,areappliedtothestrainseriesofoneormorein- isthusaneedtocarefullyprioritizefields,ortiles,ofaninstru- terferometers,andtheshifteddatastreamsareanalyzedwiththe menttooptimizethelikelihoodofimagingthetruegravitational regular coherent search algorithm. The shifted data provide an wavesource. estimate of the background noise trigger rate without any true The LUMIN software package was created to gather GW coincident gravitational wave signals. During the online anal- triggersfrom the threetrigger generators,anduse the skymaps ysis, at least 100 time shifts were continuously evaluated with and locations of known galaxies to select fields for each opti- latencies between 10 minutes and several hours. The FAR of calorradioinstrumenttoobserve.Inaddition,LUMINincludes each eventcandidatewas evaluatedwith the most recentavail- toolsthatwereusedtofacilitatetriggervalidation(Sect.4.4)and abletimeshifts. communication with robotic telescopes. Fields for observation TheMBTApipelineevaluatedtheFARanalyticallybasedon withtheSwiftXRT andUVOTwereselectedwithslightlydif- singleinterferometertriggerrates,ratherthanusingtimeshifts. ferentcriteriabyaseparatesoftwarepackage,theGravitational Thisiscomputationallysimplerthantheburstmethod.Itisvalid to Electro-Magnetic Processor (GEM). During the testing pro- sinceMBTAisacoincidentratherthanacoherentanalysis,and cess, GEM also appliedthe tilingcriteriaforopticaltelescopes allowstheFARtobeevaluatedwithdatafromtheminutesim- tosimulatedskymaps,andsoprovidedanimportantconsistency mediatelyprecedingthetriggertime(Marion2004). checkbetweenLUMINandGEM. LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 9 5.1.GalaxyCatalog Unliketheburstalgorithms,MBTAassumestheGWsource isamergingbinary,andestimatessomeofthesource’sphysical The GravitationalWave GalaxyCatalog (GWGC) (Whiteetal. parametersforeachtrigger.Thisallowsthegalaxycatalogtobe 2011)wascreatedtohelpthisandfuturesearchesquicklyiden- appliedinaslightlydifferentway.Eachinterferometermeasures tifynearbygalaxies. aquantityknownaseffectivedistance The catalogcontainsup-to-dateinformationcompiledfrom the literature on sky position, distance, blue magnitude, ma- jor and minor diameters, position angle and galaxy type for 1+cos2ι 2 −1/2 53,225galaxiesranging out to 100 Mpc, as well as 150 Milky D =D F2 +F2cos2ι , (2) eff + 2 × Wayglobularclusters.Whiteetal.(2011)comparedthecatalog  !  wanidthcaonnecxlupdeecdtedthbaltuteheligGhWtdGisCtribisutnioenardlyercivoemdpflreotme oSuDtStoSd∼a4t0a   where D istheactualdistancetothesource,ιistheinclination Mpc. The catalog improveson the issue of multiple entries for anglebetweenthedirectiontotheobserverandtheangularmo- the same galaxy suffered by previous catalogs by creating the mentumvectorofthebinary,andF andF aretheantennare- + × GWGC from a subset of 4 large catalogs, each of which lists sponsefunctionsoftheparticularinterferometer.Theimportant a unique Principal Galaxy Catalogue (PGC) number for every featureoftheeffectivedistanceisthatitisalwaysgreaterthanor galaxy(Patureletal.1989).Thecatalogsusedwere:anupdated equaltothetruedistancetothesource.ForeachMBTAtrigger versionoftheTullyNearbyGalaxiesCatalog(Tully1987),the thegalaxycatalogisthenonlyconsideredouttothesmallestef- CatalogofNeighboringGalaxies(Karachentsevetal.2004),the fectivedistancemeasuredforthattrigger,withamaximumpos- V8kcatalog(Tullyetal. 2009), andHyperLEDA(Patureletal. sibleeffectivedistanceof50Mpc.Afterthecatalogisdownse- 2003).Alsoincludedisalistof150knownMilkyWayglobular lectedinthisway,eachpixelis weightedbythefractionofthe clusters(Harris1996).Theseareallavailablefreelyonline,buta catalog’stotalmasscontainedinthatpixel,i.e. local,homogeneouslistisessentialforrapidfollow-uppurposes. P= MfracL, (3) 5.2.WeightingandTilingAlgorithm i i X Tomakeuseofthegalaxycatalog,andchoosetilesforeachGW trigger,similar algorithmshavebeen implementedin the GEM with the sum over all galaxies associated with the pixel, and andLUMINsoftwarepackages. Mfrac =1forasumoverthedownselectedcatalog. The position information from the trigger generators (see k k Theseproceduresrequireapixel’scoordinatestobeconsis- Sect.4.1)isencodedinskymapsthatassignalikelihoodtoeach P tentwithaknowngalaxy’slocationtobetargetedbytelescopes. 0.4◦ × 0.4◦ pixel in a grid covering the sky. In practice, only However, in the case that the skymap does not intersect with the1000mostlikelypixelsareretained,limitingtheskyareato anygalaxiesinthecatalog,thelikelihoodfromtheGWskymap roughly160 square degrees. The search volume is further lim- aloneisusedaseachpixel’slikelihood(P= L).Inpractice,this itedbykeepingonlyobjectsinthecatalogwithanestimateddis- isaveryrareoccurrenceandonlyhappensinthecaseofavery tanceof lessthan50Mpc, asthecurrentsensitivityofthe GW well-localizedskymap. detectorsmakesitunlikelythatbinariescontaininganeutronstar wouldbedetectablebeyondthisdistance.Approximately8%of Theactualpointingcoordinatesrequestedforeachtelescope thepixelsinanaverageskymapcontainalocalgalaxyorglobu- areselectedtomaximizethetotalcontainedPsummedoverpix- larclusterlistedintheGWGCcatalog. els within the FOV. If multiple pointings are allowed with the For bursttriggers, the tiling algorithmstreatthe luminosity same instrument, additional tiles with the next highest ranking of each galaxy or globular cluster as a prior for its likelihood arethenselected.ThetileselectionprocessisillustratedinFig. to host a GW emitting event.The blue lightluminosityis used 3. as a proxy for star formation, indicating the presence of mas- sivestarsthatmaybeGWburstprogenitorsthemselvesandmay 5.3.GalaxyTargetingforSmall-FieldInstruments evolveintocompactbinariesthateventuallymerge.Inaddition, weak sources of GWs are assumed to be more numerous than ThelogicusedforselectingpointingsfortheSwiftsatellitewas strongsources,so thata closergalaxyshouldcontainmorede- similartothatofground-basedtelescopes,exceptthat,because tectable sources than a more distant galaxy of the same mass the narrower Swift FOV required greater precision, care was (Nuttall&Sutton 2010). This leads to assigning the following takentoensurethetargetgalaxieswerewithintheselectedfield. likelihoodtoeachpixel: The coordinates supplied to Swift for follow-up were those of ML thematchedgalaxyitselfincaseswheretherewasonlyasingle P∝ i (1) galaxyin a pixel,butthe center ofthe 0.4◦×0.4◦ pixelin cases D i i wherethecentralcoordinatesofanextendedsourcewereoutside X where L is the likelihood based only on the GW data, and M thepixelorthereweremultiplegalaxiesinthepixel.Sincefewer andDarethebluelightluminosity(aroughproxyformass)and follow-upswere allowed using Swift than with other scopes, a distanceoftheassociatedgalaxyorglobularcluster.Thesumis minimum requirement was placed on the statistic P contained overalltheobjectsassociatedwithaparticularpixel(whichwill withinthepixelsselectedforX-rayobservation. be 0 or 1 galaxy for the majority of pixels). Extended nearby Zadkoand LiverpoolTelescope also have relativelynarrow sourceswhichhaveamajoraxislargerthanthepixelsize have fields.Forthesetelescopes,noattemptwasmadetocapturemul- their mass dividedevenly overeach pixelfalling within the el- tiplegalaxiesinasinglefield.Instead,theweightingschemein lipse of the disk defined by their major and minor axes. Once Eqn.1wasappliedtoeachgalaxyratherthaneachpixel,andthe thiscalculationisperformedforeachpixel,theentireskymapis centercoordinatesofthetoprankedgalaxieswerepassedtothe renormalizedtoatotallikelihoodequaltounity. observatories. LSC+Virgo+others:FirstpromptsearchforGWtransientswithEMcounterparts 10 30 30 20 20 10 10 0 0 s) s) ee−10 ee−10 gr gr e−20 e−20 D D c (−30 c (−30 e e D D −40 −40 −50 −50 −60 −60 −70 −70 125 120 115 110 105 100 95 90 85 125 120 115 110 105 100 95 90 85 RA (Degrees) RA (Degrees) Fig.3.TheweightingandtilingprocessforasimulatedsignalreconstructedbycWB.Theskymapisshownintheleftpanelwith thehighestlikelihoodregionsinred,andlowerrankedpixelsinblue,alongwithgalaxylocationsmarkedasblackcircles.Theright panelshowsthelocationandapproximatesizeofthethreechosenQUESTtiles,alongwiththelocationsofpixelsthatareretained afterweightingbythegalaxycatalog.Theinjectionlocationiscaughtbythesouthernmosttile,andismarkedwithanasterisk. 6. ObservingStrategy humanintervention.Inafewcasesthisallowedresponsetimes of less than a minute after an alert was sent, though response 6.1.Communication timesofafewhoursweremoretypicalduetowaittimefortar- getstobeoverhead. Afteraneventcandidatepassedmanualinspection,ascriptwas launched to pass the GPS time and selected field center loca- tions to the QUEST, ROTSE III, SkyMapper, TAROT, Zadko, Duringthe winterrun, QUEST respondedto three triggers, LiverpoolTelescope,andLOFARobservatories.Duringtheau- making 2 exposures of each field on the night of the request. tumnrun,a totalof fivesuch alerts weresent. Duringthe (ear- TAROT respondedto one winter run trigger,takingsix images lier) winter run,8 eventcandidateswere passed to the TAROT onthe nightoftherequest.Swiftalso respondedto onetrigger andQUESTobservatories.Thenumberoffieldlocationspassed inthewinterrun,takingoneexposureofeachfieldfollowingthe to each telescope for each GW event candidate are listed as request,andthenasecondsetofexposuresonalaterdatetobe the “Tiles per Trigger” in Table 2. During the autumn run, in usedasreferenceimages. caseswhere the fieldsselected fora particularinstrumentwere unobservable due to daylight or latitude, no alert was sent to the observatory. In most cases, alerts were sent via a direct Formostobservatoriesinthesummerrun,theobservingplan socket connection from a LIGO computing center at Caltech calledforcapturingafirstimageoftheselectedfieldsasrapidly with IP mask protection. Alerts to ROTSE III, SkyMapper, as possible, with follow-up observations every night or every TAROT, and Zadko used the format of GCN notices. Alerts to other night out to five days after the trigger time. For the op- LOFARandtheLiverpoolTelescopeusedtheVOEventformat tical observatories, any night’s observation included 2 or more (Williams&Seaman2006).ForQUEST,theGPStimeandfield exposures for each field, to help eliminate asteroids, CCD ar- positions were posted as ASCII tables to a password protected tifacts, and other contaminants from the data set. In addition, websitewhichwasregularlypolledbytheQUESTscheduler. some fieldswereimagedat latertimes, up to a monthafter the The Palomar TransientFactory received field locationsand triggertime,toprovidereferenceimages,orpossiblytocapture GPS times using the VOEvent formatvia a socket connection, alightcurvewithalatebrighteningtime.TAROT,Zadko,PTF, butwithamorerestrictiveFARthresholdthantheotheroptical QUEST,andPioftheSkyallfollowedthisrecipe.ROTSEexe- telescopes,and so triggerswere onlysent to PTF if the on-call cutedamoreaggressiveobservingplan,collectingasetof30im- teamexecutedaseparatescript.AlertstoSwiftalsorequiredex- agesinrapidsuccessiononthefirstnight,andthensetsofeight tra actionby theon-callteam, whoenteredfield coordinatesin imagesoneachof15nightsfollowingthetriggerwithintervals an online form. The Pi of the Sky prototypetelescope was en- of two days on average. As in the winter run, Swift made one gagedthroughautomatede-mailsandmanualchecksofapass- exposureof each field followingthe trigger,and then collected wordprotectedwebpage. a reference image after a lag of several weeks. The Liverpool Telescopedevotedroughlyonehourofobservationuponreceiv- 6.2.TelescopeResponse ing a trigger,and then collected reference images a few weeks afterthetriggertime.TheLOFARresponsewasnotautomated. The wide variety of telescopes involved in the search led to a A telescope operator made a single, four hour observation one diversityofobservingstrategies,witheachpartneringgroupap- tofourdaysafterdeliveryofatrigger.SkyMapperalsorequired plyingadifferentcadence.Bydesign,mostofthetelescopesin manualinterventiontorespondtoatrigger,andsorespondedon the network were robotic, and could respond to alerts without abesteffortbasis.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.