Impacts of Sieving and Cultivation on Martian Regolith Simulant By Abdulgadir Ahmad Elnajdi Bachelor of Science, Omar Al Mukhtar University, Libya A thesis Submitted to the Department of Chemistry - Florida Institute of Technology In partial fulfillment of the requirements for the degree of Master of Science In Biochemistry Melbourne, Florida May, 2018 i Impacts of Sieving and Cultivation on Martian Regolith Simulant By Abdulgadir Ahmad Elnajdi A thesis by Abdulgadir Ahmad Elnajdi Approved as to style and content _____________________________________ Mary L. Sohn, Ph.D., Committee Chairperson Professor, Department of Chemistry _____________________________________ Alexander Schoedel, Ph.D. Assistant Professor, Department of Chemistry _____________________________________ Richard B. Aronson, Ph.D. Professor, Department of Biological Sciences ii Abstract Title: Impacts of Sieving and Cultivation on Martian Regolith Simulant Author: Abdulgadir Ahmad Elnajdi Major Advisor: Dr. Mary Sohn The effect of different size particle fractions of JSC-MARS1A on chemical and mineralogical data was examined in this study. The Powder X-ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM) results showed no difference in the presence of elements or minerals of the different grain sizes of (<5mm, <1mm, <125µm, and <63µm), however, differences in abundance were noted. In addition, changes in chemical composition and mineralogy were not detected after the addition of Hoagland’s nutrient solution which had been applied prior to plant growth experiments nor after plant growth. iii Table of Contents 1- Introduction ......................................................................................................... 1 1.1- Martian Regolith. ......................................................................................... 3 1.1.1- Mineralogy. .............................................................................................. 3 1.1.2- Chemical Composition. ........................................................................... 3 1.1- JSC Mars-1A Simulant Mineralogy and Chemical Composition. .............. 5 1.3- The Geological History of Earth and Mars. .................................................... 6 1.4- Effects of Nutrient Supplements on the Mineralogical and Chemical Composition of JSC Mars 1A. ............................................................................. 10 2- Materials and Methodology .............................................................................. 11 2.1- Materials ....................................................................................................... 11 2.2- Analytical Methods ....................................................................................... 11 3- The Chemical Composition and Mineralogy of JSC MARS 1A after a Growth Experiment on Simulant. .......................................................................................... 15 4- Results and Discussion. .................................................................................... 16 4.1- Elemental Composition ................................................................................ 16 4.2- Correlation of Elemental data with Mineralogy. .......................................... 20 5 - Effects of Nutrient Supplements on the Mineralogical and Chemical Composition of JSC Mars 1A. ................................................................................. 40 6- Summary ........................................................................................................... 45 7- References. ........................................................................................................ 47 APPENDIX A .......................................................................................................... 51 APPENDIX B .......................................................................................................... 52 APPENDIX C .......................................................................................................... 53 APPENDIX D .......................................................................................................... 55 APPENDIX E .......................................................................................................... 62 iv List of Figures Figure 1: Martian regolith simulant ........................................................................... 2 Figure 2: Comparison of the geological timescales for Mars and Earth. (Scott M. Mclennan, 2012) ........................................................................................................ 7 Figure 3: X-ray spectra collected by SEM for grain sizes <5mm and <63µm……. ............................................................................................................. 19 Figure 4: SEM images of the morphology of JSC MARS 1A ........................................................................................... ……………………..19 Figure 5: Compositional image and x-ray mapping of the cross sections of JSC MARS 1A, grain size <5mm .................................................................................... 21 Figure 6: Compositional image and x-ray mapping of the cross sections of JSC MARS 1A, grain size <63µm .................................................................................. 21 Figure 7: The observed pattern for grain sizes (<1mm) versus the Albite database. ................................................................................................................... 23 Figure 8: The observed pattern for grain sizes (<5mm) versus the Albite database. ................................................................................................................... 23 Figure 9: The observed pattern for grain sizes (<63µm) versus the Albite database .................................................................................................................... 24 Figure 10: The observed pattern for grain sizes (<125µm) versus the Albite database .................................................................................................................... 24 Figure 11: The observed pattern for grain sizes (<1mm) versus the Andesine database .................................................................................................................... 25 Figure 12: The observed pattern for grain sizes (<5mm) versus the Andesine database .................................................................................................................... 25 Figure 13: The observed pattern for grain sizes (<63µm) versus the Andesine database .................................................................................................................... 26 Figure 14: The observed pattern for grain sizes (<125µm) versus the Andesine database .................................................................................................................... 26 Figure 15: The observed pattern for grain sizes (<1mm) versus the Anorthite database. ................................................................................................................... 27 Figure 16: The observed pattern for grain sizes (<5mm) versus the Anorthite database .................................................................................................................... 27 Figure 17: The observed pattern for grain sizes (<63µm) versus the Anorthite database .................................................................................................................... 28 Figure 18: . The observed pattern for grain sizes (<125µm) versus the Anorthite database. ................................................................................................................... 28 Figure 19: The observed pattern for grain sizes (<1mm) versus the bytownite database. ................................................................................................................... 29 v Figure 20: The observed pattern for grain sizes (<5mm) versus the bytownite database .................................................................................................................... 29 Figure 21: The observed pattern for grain sizes (<63µm) versus the bytownite database .................................................................................................................... 30 Figure 22: The observed pattern for grain sizes (<125µm) versus the bytownite database .................................................................................................................... 30 Figure 23: The observed pattern for grain sizes (<1mm) versus the Labradorite database .................................................................................................................... 31 Figure 24: The observed pattern for grain sizes (<5mm) versus the Labradorite database .................................................................................................................... 31 Figure 25: The observed pattern for grain sizes (<63µm) versus the Labradorite database. ................................................................................................................... 32 Figure 26: The observed pattern for grain sizes (<125µm) versus the Labradorite database. ................................................................................................................... 32 Figure 27: The observed pattern for grain sizes (<1mm) versus the Oligoclase database .................................................................................................................... 33 Figure 28: . The observed pattern for grain sizes (<5mm) versus the Oligoclase database .................................................................................................................... 33 Figure 29: The observed pattern for grain sizes (<63µm) versus the Oligoclase database .................................................................................................................... 34 Figure 30: The observed pattern for grain sizes (<125µm) versus the Oligoclase database. ................................................................................................................... 34 Figure 31: The observed pattern for grain sizes (<1mm) versus the Maghemite database .................................................................................................................... 35 Figure 32: The observed pattern for grain sizes (<5mm) versus the Maghemite database .................................................................................................................... 35 Figure 33: The observed pattern for grain sizes (<63µm) versus the Maghemite database .................................................................................................................... 36 Figure 34: The observed pattern for grain sizes (<125µm) versus the Maghemite database. ................................................................................................................... 36 Figure 35: Structural and magnetic transformation of np iron oxide/oxyhydroxide deposited on clay. ..................................................................................................... 39 Figure 36: Compositional image and x-ray mapping of the cross sections of JSC MARS 1A Mixture (<1mm and <5mm) .................................................................. 41 Figure 37: Compositional image and x-ray mapping of the cross sections of JSC MARS 1A Mixture (<1mm and <5mm) after adding nutrient supplements and crop growth. ............................................................................................................. 41 Figure 38: PXRD data for identified minerals in Mars regolith simulant ............... 46 vi List of Tables Table 1: Major elemental composition of Martian soil (wt. %) ................................. 4 Table 2: Chemical Composition of JSC-Mars-1A ..................................................... 5 Table 3: Comparison of selected common sedimentary mineralogy observed on Earth with known mineralogy on Mars with idealized chemical formulas1 ............. 9 Table 4: Grain Size Distribution of JSC Mars 1A <5mm Sample ........................... 12 Table 5: Minerals that were included in the EVA software for possible detection by Powder X-ray Diffraction ........................................................................................ 13 Table 6: The number of databases that both positively and negatively identified each mineral ............................................................................................................. 17 Table 7: The elementary composition of the JSC Mars A1; <5mm and <63µm ..... 18 Table 8: Minerals identified in Mars regolith simulant. .......................................... 37 Table 9: Composition of the plagioclase minerals. .................................................. 38 Table 10: Elemental Composition (weight %) of JSC Mars 1A mixture (<1mm and <5mm) ...................................................................................................................... 43 Table 11: Elemental Composition (weight %) of JSC Mars 1A mixture (<1mm and <5mm) after growing crops ...................................................................................... 44 vii Acknowledgements. Many thanks to my advisor Professor Mary Sohn for her exemplary guidance and encouragement throughout the project. Special recognition to the thesis committee members Assistant Professor Alexander Schoedel and Professor Richard B. Aronson. Thank you to Dr. Palmar and his research team “RADISH” for providing treated soil samples with the nutrient supplements. Lastly, to my colleagues and school partners with the continuous support throughout my master’s program. viii 1- Introduction Progress in determining the geological history of Mars is derived from measurements conducted on the surface of the planet by robotic measuring devices launched by NASA and other space agencies (Inge L. ten Kate, ASCE 2013). This information has helped scientists identify soil on the Earth's surface similar to the Martian soil and much of the discussion of the chemical composition of Martian regolith is focused on palagonite (J. R. Michalski, 2005). Palagonite is the first stable product of volcanic glass alteration and is typically composed of an amalgamation of all or some of the following materials: residual basaltic glass, zeolites, carbonates, phosphates, hematite, Fe-hydroxides, poorly crystalline aluminosilicate mineraloids, and smectite clays (J. R. Michalski 2005). The regolith simulant used in this study, JSC MARS-1A, consists of palagonitic tephra from Pu’u Nene in Hawaii which NASA believes to be a very representative sample of Martian regolith. Hawaii and Mars both exhibit a history of volcanism. The volcanic deposits in the Ka’u desert, Kilauea Mauna Loa and Manua Kea provide a range of useful chemical analogues showing significant similarities to regional soils on Mars (Carlton C. Allen, Karen M. 1998). Weathered ash from the Pu’u Nene cinder cone in Hawaii is the source of the JSC MARS-1A sample. This Martian regolith simulant was collected and characterized by scientists and engineers at Johnson Space Center in 1993 (Figure1). Interestingly, the study of Hawaiian geology and Martian climate 1 led some researchers to predict the presence of kaolinite on Mars, a prediction that has recently been shown to be true, indicating weathering of igneous rocks to form clays (Karsten Seiferlin, 2008). Figure 1 –A. JSC Mars 1A Figure 2- B. JSC Mars 1A Powder Microscopic Image Figure 1-C; back scattered electron images of JSC-Mars 1A Figure 1: Martian regolith simulant 2
Description: