ebook img

Impacts of different SNLS3 light-curve fitters on cosmological consequences of interacting dark energy models PDF

1.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impacts of different SNLS3 light-curve fitters on cosmological consequences of interacting dark energy models

Astronomy&Astrophysicsmanuscriptno. light-curve-fitters (cid:13)cESO2016 May24,2016 Impacts of different SNLS3 light-curve fitters on cosmological consequences of interacting dark energy models ShuangWang1,YazhouHu1,2,3,MiaoLi1,andNanLi1,2,3 1 SchoolofPhysicsandAstronomy,SunYat-SenUniversity,Guangzhou510275,P.R.China e-mail:[email protected],[email protected], [email protected], [email protected] 2 KavliInstituteforTheoreticalPhysicsChina,ChineseAcademyofSciences,Beijing100190,P.R.China 3 StateKeyLaboratoryofTheoreticalPhysics,InstituteofTheoreticalPhysics,ChineseAcademyofSciences,Beijing100190,P.R. 6 China 1 0 May24,2016 2 y ABSTRACT a M Weexplorethecosmologicalconsequencesofinteractingdarkenergy(IDE)modelsusingtheSNLS3supernovasamples. Inpartic- ular,wefocusontheimpactsofdifferentSNLS3light-curvefitters(LCF)(correspondingto“SALT2”,“SiFTO”,and“Combined” 3 sample). Firstly,makinguseofthethreeSNLS3datasets,aswellasthePlanckdistancepriorsdataandthegalaxyclusteringdata, 2 weconstraintheparameterspacesofthreeIDEmodels. Then,westudythecosmicevolutionsofHubbleparameterH(z),decelera- tiondiagramq(z),statefinderhierarchyS(1)(z)andS(1)(z),andcheckwhetherornotthesedarkenergydiagnosiscandistinguishthe ] differencesamongtheresultsofdifferent3SNLS3LCF4.Atlast,weperformhighredshiftcosmicagetestusingthreeoldhighredshift O objects(OHRO),andexplorethefateoftheUniverse.Wefindthat,theimpactsofdifferentSNLS3LCFarerathersmall,andcannot C bedistinguishedbyusingH(z),q(z),S(1)(z),S(1)(z),andtheagedataofOHRO.Inaddition,weinfer,fromthecurrentobservations, 3 4 howfarwearefromacosmicdoomsdayintheworstcase,andfindthatthe“Combined”samplealwaysgivesthelargest2σlower . h limitofthetimeintervalbetween“bigrip”andtoday,whiletheresultsgivenbythe“SALT2”andthe“SiFTO”samplearecloseto p eachother. Theseconclusionsareinsensitivetoaspecificformofdarksectorinteraction. Ourmethodcanbeusedtodistinguishthe - differencesamongvariouscosmologicalobservations. o r Keywords. cosmology:darkenergy,observations,cosmologicalparameters t s a [ 1. Introduction and “Combined”, which consists of 472 SN. It should be men- 4 tioned that, in the cosmology fits, the SNLS group treated two vTypeIasupernovaisasub-categoryofcataclysmicvariablestars important quantities, stretch-luminosity parameter α and color- 2thatresultsfromtheviolentexplosionofawhitedwarfstarina luminosityparameterβofSNeIa,asfreemodelparameters.No- 6binarysystem(Hillebrandt,&Niemeyer2000). Nowithasbe- ticethatαandβareparametersfortheluminositystandardiza- 9comeoneofthemostpowerfulprobestoilluminatethemystery tion. Inaddition,theintrinsicscatterσ arefixedtoensurethat 6ofcosmicacceleration(Riessetal.1998;Perlmutteretal.1999), χ2/dof =1. int 0which may be due to an unknown energy component that can 1.produceananti-gravitationaleffect,i.e.,darkenergy(DE),ora thesAysmteomstatcircituicnaclecrthaainllteinesgeofotfySpNeIcaossumpeorlnoogvyaies(tShNeecoIna)tr.oOlnoef 0modification of general relativity, i.e., modified gravity (MG). ofthemostimportantfactorsisthepotentialSNevolution. For 51 Along with the rapid progress of supernova (SN) cosmology, examples, previousstudiesontheUnion2.1Mohlabeng&Ral- 1several high quality SN datasets were released in recent years, ston(2013)andthePan-STARRS1datasetsScolnicetal.(2014) :such as “SNLS” Astier et al. (2006), “Union” Kowalski et al. v allindicatedthatβshouldevolvealongwithredshiftz. Besides, i(2008), “Constitution” Hicken et al. (2009), “SDSS” Kessler itwasfoundthattheintrinsicscatterσ hasthehintofredshift- Xet al. (2009), “Union2” Amanullah et al. (2010), “Union2.1” dependencethatwillsignificantlyaffecitnttheresultsofcosmology rSuzukietal.(2012),and“Pan-STARRS1”Scolnicetal.(2014). a fits (Marriner et al. 2011). In addition to the SN evolution, an- In 2010, the Supernova Legacy Survey (SNLS) group released otherimportantfactoristhechoiceofLCF(Kessleretal.2009). their three years data Guy et al. (2010). Soon after, combining Forinstance,ithasbeenprovedthatevenforthesameSNsam- theseSNsampleswithvariouslow-ztomid-zsamplesandmak- ples,using“MLCS2k2”(Jhaetal.2007)and“SALT2”(Guyet inguseofthreedifferentlight-curvefitters(LCF)2,Conleyetal. al.2007)LCFwillleadtocompletelydifferentfittingresultsfor presentedthreeSNLS3datasetsConleyetal.(2011):“SALT2”, various cosmological models (Sollerman et al. 2009; Sanchez whichconsistsof473SN;“SiFTO”,whichconsistsof468SN; etal.2009;Pigozzoetal.2011;Smale&Wiltshire2011;Ben- gochea2011;Bengochea&DeRossi2014). 1 Forrecentreviews,seeFrieman,Turner,&Huterer(2008);Caldwell Oneofthepresentauthorshasalsodoneaseriesofresearch &Kamionkowski(2009);Uzan(2010);Wang(2010);Li,Li,Wang,& Wang(2011,2013);Weinbergetal.(2013). workstostudythesystematicuncertaintiesofSNeIa. Byusing 2 ALCFisamethodtomodelthelightcurvesofSN;byusingitone theSNLS3dataset,wefoundthatαisstillconsistentwithacon- canestimatethedistanceinformationofeachSN. stant, but β evolves along with z at very high confidence level Articlenumber,page1of12 (CL) Wang & Wang (2013a). Soon after, we showed that this 2.1. TheoreticalModels resulthassignificanteffectsontheparameterestimationofstan- This work is a sequel to the previous studies of our group, and dardcosmology(Wang,Li&Zhang2014),andtheintroduction thus we study the same IDE models considered in (Wang, et ofatime-varyingβcanreducethetensionbetweenSNeIaand al. 2014). It must be mentioned that, here we consider a flat othercosmologicalobservations. Moreover,weprovedthatour Universe and treat the present fractional density of radiation as conclusionholdstrueforvariousDEandMGmodels(Wang,et a model parameter, which is a little different from the case of al. 2014; Wang, Wang & Zhang 2014; Wang, et al. 2015). Be- (Wang,etal.2014). InaflatUniverse3,theFriedmannequation sides,theevolutionofαhasalsobeenfoundfortheJLAsampls (Li et al. 2016). In addition, by using three different SNLS3 is LCF,including“SALT2”,“SiFTO”and“Combined”,webriefly 3M2H2 =ρ +ρ +ρ +ρ , (1) discussed the effects of different LCF on the parameter estima- pl c de r b tion of the Λ-cold-dark-matter (ΛCDM) model Wang & Wang where H ≡ a˙/a is the Hubble parameter, a = (1+z)−1 is the (2013a) and the holographic dark energy (HDE) model (Wang, scale factor of the Universe (we take today’s scale factor a = 0 et al. 2015). It must be emphasized that in these two papers, 1), the dot denotes the derivative with respect to cosmic time onlythefittingresultsgivenbydifferentSNLS3LCFareshown, t, M2 = (8πG)−1 is the reduced Planck mass, G is Newtonian and the corresponding cosmological consequences are not dis- p gravitationalconstant,ρ ,ρ ,ρ andρ aretheenergydensities cussed. Therefore,theimpactsofdifferentLCFarenotstudied c de r b of CDM, DE, radiation and baryon, respectively. The reduced in details in our previous works. The main scientific objective HubbleparameterE(z)≡ H(z)/H satisfies 0 of the current work is presenting a comprehensive and system- aticinvestigationontheimpactsofdifferentSNLS3LCF.Todo E2 =Ω ρc +Ω ρde +Ω ρr +Ω ρb , (2) this,boththecosmology-fitresultsandthecosmologicalconse- c0ρ de0ρ r0ρ b0ρ c0 de0 r0 b0 quenceresultsareshowninthiswork. Asmentionedabove,theeffectsofdifferentSNLS3LCFon where Ωc0, Ωde0, Ωr0 and Ωb0 are the present fractional den- theΛCDMmodelhasbeenbrieflydiscussedin(Wang&Wang sities of CDM, DE, radiation and baryon, respectively. As mentioned above, we treat Ω as a model parameter in this 2013a). To obtain new scientific results, new elements need to r0 be taken into account. Since the interaction between different work. In addition, ρr = ρr0(1 + z)4, ρb = ρb0(1 + z)3. Since Ω =1−Ω −Ω −Ω ,Ω isnotanindependentparame- componentswidelyexistinnature,andtheintroductionofain- de0 c0 b0 r0 de0 ter. teractionbetweenDEandCDMcanprovideanintriguingmech- In an IDE scenario, the energy conservation equations of anismtosolvethe“cosmiccoincidenceproblem”(Guo,Ohta,& CDMandDEsatisfy Tsujikawa2007;Lietal.2009a,b;Heetal.2010)andalleviate the“cosmicageproblem”(Wang&Zhang2008;Wang,Li&Li ρ˙ +3Hρ = Q, (3) c c 2010;Cui&Zhang2010;Duran&Pavon2011),itisinteresting to study the effect of different LCF on interacting dark energy ρ˙de+3H(ρde+pde)=−Q, (4) (IDE) model. Here we adopt the w-cold-dark-matter (wCDM) wherep =wρ isthepressureofDE,Qistheinteractionterm, de de model with a direct non-gravitational interaction between dark which describes the energy transfer between CDM and DE. So sectors. It must be emphasized that, if our conclusions are de- far, the microscopic origin of interaction between dark sectors pendent on the specific form of dark sector interaction, these is still a puzzle. To study the issue of interaction, one needs to conclusions will not be reliable at all. So in this work, three write down the possible forms of Q by hand. In this work we kinds of interaction terms are taken into account to ensure that considerthefollowingthreecases: our study is insensitive to a specific interaction form. In addi- tion,tomakeacomparison,wealsoconsiderthecaseofwCDM Q =3γHρ , (5) 1 c modelwithoutinteractionterm. Q =3γHρ , (6) 2 de According to the previous studies on the potential SN evo- ρ ρ lution, we adopt a constant α and a linear β(z) = β0 + β1z in Q3 =3γHρ c+dρe , (7) thiswork. MakinguseofthethreeSNLS3datasets,aswellas c de thelatestPlanckdistancepriordata(Wang&Wang2013b),the whereγisadimensionlessparameterdescribingthestrengthof galaxyclustering(GC)dataextractedfromSloandigitalskysur- interaction,γ>0meansthatenergytransfersfromDEtoCDM, vey (SDSS) data release 7 (DR7) (Hemantha, Wang & Chuang γ<0impliesthatenergytransfersfromCDMtoDE,andγ=0 2014)anddatarelease9(DR9)(Wang 2014),weconstrainthe denotesthecasewithoutdarksectorinteraction,i.e. thewCDM parameterspacesofthewCDMmodelandthethreeIDEmodels, model. Notice that these three kinds of interaction form have andinvestigatetheimpactsofdifferentSNLS3LCFonthecos- been widely studied in the literature (Guo, Ohta, & Tsujikawa mologyfits. Moreover,basedonthefittingresults,westudythe 2007;Lietal.2009b;Heetal.2010;Li&Zhang2014).Forsim- possibilityofdistinguishingtheimpactsofdifferentLCFbyus- plicity,hereafterwecallthemIwCDM1model,IwCDM2model, ingvariousDEdiagnosistoolsandcosmicagedata,anddiscuss andIwCDM3model,respectively. thepossiblefateoftheUniverse. ForthewCDMmodel,wehave WepresentourmethodinSection2,ourresultsinSection3, andsummarizeandconcludeinSection4. E(z)=(cid:16)Ω (1+z)4+(Ω +Ω )(1+z)3+Ω (1+z)3(1+w)(cid:17)1/2. (8) r0 b0 c0 de0 FortheIwCDM1model,thesolutionsofEqs. (3)and(4)are 2. Methodology ρ =ρ (1+z)3(1−γ), (9) Inthissection,firstlywereviewthetheoreticalframeworkofthe c c0 IDEmodels,thenwebrieflydescribetheobservationaldataused 3 Theassumptionofflatnessismotivatedbytheinflationscenario.For in the present work, and finally we introduce the background adetaileddiscussionoftheeffectsofspatialcurvature,see(Clarkson, knowledgeaboutDEdiagnosisandcosmicage. Cortes,&Bassett2007) Articlenumber,page2of12 Wangelal.:ImpactsofdifferentSNLS3LCFoncosmologicalconsequencesofIDEmodels 2.2.1. SNeIaData ρ = γρc0 (cid:0)(1+z)3(1+w)−(1+z)3(1−γ)(cid:1)+ρ (1+z)3(1+w). (10) As mentioned above, we use all the three SNLS3 data sets. In de w+γ de0 the following, we briefly introduce how to include these three datasetsintotheχ2analysis. Adoptingaconstantαandalinearβ(z) = β +β z,thepre- Thenwehave 0 1 dictedmagnitudeofanSNbecomes (cid:16) E(z)= Ωr0(1+z)4+Ωb0(1+z)3+Ωde0(1+z)3(1+w) mmod =5log10DL(z)−α(s−1)+β(z)C+M. (19) +Ωc0(cid:0)wγ+γ(1+z)3(1+w)+ ww+γ(1+z)3(1−γ)(cid:1)(cid:17)1/2. (11) TheluminositydistanceDL(z)isdefinedas D (z)≡ H (1+z )r(z), (20) L 0 hel FortheIwCDM2model,thesolutionsofEqs. (3)and(4)are wherezandzhelaretheCMBrestframeandheliocentricredshifts ofSN,and ρde =ρde0(1+z)3(1+w+γ), (12) r(z)= H−1(cid:90) z dz(cid:48) . (21) 0 E(z(cid:48)) 0 Here sandCarestretchmeasureandcolormeasurefortheSN γρ γρ lightcurve,Misaparameterrepresentingsomecombinationof ρ =ρ (1+z)3+ de0(1+z)3− de0(1+z)3(1+w+γ). (13) c c0 w+γ w+γ SNabsolutemagnitudeMandHubbleconstantH0. Forasetof N SNewithcorrelatederrors,theχ2 functionis givenby Thenweget χ2 =∆mT ·C−1·∆m, (22) (cid:16) SN E(z)= Ω (1+z)4+(Ω +Ω )(1+z)3 r0 c0 b0 where∆m≡m −m isavectorwithN components,andm B mod B +Ω (cid:0) γ (1+z)3+ w (1+z)3(1+w+γ)(cid:1)(cid:17)1/2. (14) is the rest-frame peak B-band magnitude of the SN. The total de0 w+γ w+γ covariancematrixCcanbewrittenasConleyetal.(2011) C=D +C +C . (23) stat stat sys For the IwCDM3 model, Eqs. (3) and (4) still have analytical HereD denotesthediagonalpartofthestatisticaluncertainty, solutions stat C and C denote the statistical and systematic covariance stat sys ρc =ρc0(1+z)3(cid:0)ρ ρ+c0ρ + ρ ρ+deρ0 (1+z)3(w+γ)(cid:1)−wγ+γ, (15) manacterimceast,rrixesCpe,csteiveeClyo.nFleoyrtehteald.e(t2a0il1s1o)f.constructingthecovari- c0 de0 c0 de0 It must be emphasized that, in order to include host-galaxy information in the cosmological fits, Conley et al. split the ρde =ρde0(1+z)3(1+w+γ)(cid:0)ρ ρ+c0ρ SanNdLmS3adseamMplteobbaeseddiffoenrehnotsfto-rgathlaexytwsoteslalamrpmleasssCoantl1ey01e0tMa(cid:12)l., c0 de0 +ρ ρ+deρ0 (1+z)3(w+γ)(cid:1)−wγ+γ. (16) (S2N0L11S)3. Sdaotath.erMeoarreeotvweor,vCalounelseyofeMt al(.i.er.emMo1veadndMM12a)nfdorMthe2 c0 de0 from cosmology-fits by analytically marginalizing over them (for more details, see the appendix C of Conley et al. (2011)). Thenweobtain In the present work, we just follow the recipe of Conley et al. E(z)=(cid:0)Ω (1+z)4+Ω (1+z)3+Ω C(z)(1+z)3 (2011),anddonottreatMasmodelparameter. r0 b0 c0 +Ω C(z)(1+z)3(1+w+γ)(cid:1)1/2. (17) de0 2.2.2. CMBData where For CMB data, we use the distance priors data extracted from Planckfirstdatarelease(Wang&Wang2013b)4. CMBgiveus Ω Ω C(z)=(cid:0)Ω +c0Ω + Ω +deΩ0 (1+z)3(w+γ)(cid:1)−wγ+γ. (18) 4 Itshouldbementionedthat,inthispaperwejustusethepurelyge- c0 de0 c0 de0 ometricmeasurementsofCMB,i.e. thedistancepriordata. Thereare someothermethodsofusingCMBdata. Forexamples, theobserved Foreachmodel,theexpressionofE(z)willbeusedtocalculate positionofthefirstpeakoftheCMBanisotropiesspectrumcanbeused theobservationalquantitiesappearinginthenextsubsection. toperformcosmology-fits(Carneiroetal.2008;Pigozzoetal.2011). In addition, the CMB full data can also be used to constrain cosmo- logicalmodelsviatheglobalfittechnique. Tomakeacomparison,we 2.2. ObservationalData constraintheparameterspacesofIwCDM1modelbyusingthesethree Inthissubsection,wedescribetheobservationaldata. Herewe methods of using CMB data. We find that the differences among the fitting results given by different method are very small (For example, use the SNe Ia, CMB, and GC data, which is same with our thedifferencesonDEEoSwareonlytheorderof1%).Inotherwords, previouspaper(Wang,Li&Zhang2014). Itshouldbeempha- OurresultsareinsensitivetothemethodofusingCMBdata.Thiscon- sizedthat,inthisworkweuseallthethreeSNLS3datasets(i.e. clusionalsoholdstrueforotherDEmodels(suchasHDEmodel(Liet “SALT2”, “SiFTO”, and “Combined” sample), while only the al.2013)),showingthattheCMBdatacannotputstrictconstraintson “combined”dataareusedin(Wang,Li&Zhang2014). inaddi- thepropertiesofDE.SincethemainpurposeofusingCMBdataisto tion,theGCdataarealsoupdatedinthiswork,comparedtothat putstrictconstraintsonΩ andΩ ,wethinkthattheuseofthePlanck c0 b0 usedin(Wang,Li&Zhang2014). distancepriorissufficientenoughforourwork. Articlenumber,page3of12 the comoving distance to the photon-decoupling surface r(z )5, &Chuang2014),usingthetwo-dimensionalmatterpowerspec- ∗ and the comoving sound horizon at photon-decoupling epoch trumofSDSSDR7samples,Hemantha,Wang,andChuanggot r (z ). WangandMukherjeeshowedthattheCMBshiftparam- s ∗ H(z=0.35)r (z )/c = 0.0431±0.0018, eters(Wang&Mukherjee 2007) s d D (z=0.35)/r (z ) = 6.48±0.25. (30) A s d l ≡ πr(z )/r (z ), a ∗ s ∗ (cid:113) In a similar work (Wang 2014), using the anisotropic two- R ≡ Ω H2r(z )/c, (24) m 0 ∗ dimensionalgalaxycorrelationfunctionofSDSSDR9samples, Wangobtained togetherwithω ≡Ω h2,provideanefficientsummaryofCMB b b data as far as dark energy constraints go. The comoving sound H(z=0.57)r (z )/c = 0.0444±0.0019, s d horizonisgivenby(Wang&Wang2013b) D (z=0.57)/r (z ) = 9.01±0.23. (31) A s d rs(z)=cH0−1(cid:90)0a (cid:113)3(1+Rbdaa(cid:48)(cid:48))a(cid:48)4E2(z(cid:48)), (25) χGG2CC2d,awtaitahrezGinCc1lu=de0d.3i5naonudr azGnCal2ys=is0b.y57a,dtdointgheχχG22Co=f aχG2gCiv1e+n model. Notethat where a is the scale factor of the Universe, Rb = χ2 =∆q (cid:104)C−1 (q,q )(cid:105)∆q , ∆q =q −qdata, (32) 31500Ω h2(T /2.7K)−4,andT =2.7255K. GCi i GCi i j j i i i b cmb cmb UsingthePlanck+lensing+WPdata,themeanvaluesand1σ whereq = H(z )r (z )/c,q = D (z )/r (z ),andi = 1,2. 1 GCi s d 2 A GCi s d errorsof{la,R,ωb}areobtained(Wang&Wang2013b), BasedonRefs. (Hemantha,Wang&Chuang2014)and(Wang (cid:104)l (cid:105)=301.57,σ(l )=0.18, 2014),wehave a a (cid:104)R(cid:105)=1.7407,σ(R)=0.0094, (cid:32) 0.00000324 −0.00010728 (cid:33) C = , (33) (cid:104)ω (cid:105)=0.02228,σ(ω )=0.00030. (26) GC1 −0.00010728 0.0625 b b Defining p = l (z ), p = R(z ), and p = ω , the normalized 1 a ∗ 2 ∗ 3 b (cid:32) (cid:33) covariancematrixNormCovCMB(pi,pj)canbewrittenas(Wang C = 0.00000361 0.0000176111 . (34) &Wang2013b) GC2 0.0000176111 0.0529  1.0000 0.5250 −0.4235   0.5250 1.0000 −0.6925 . (27) 2.2.4. Totalχ2 Function −0.4235 −0.6925 1.0000 Nowthetotalχ2functionis Then,thecovariancematrixfor(l ,R,ω )isgivenby a b χ2 =χ2 +χ2 +χ2 . (35) Cov (p,p )=σ(p)σ(p )NormCov (p,p ), (28) SN CMB GC CMB i j i j CMB i j We perform an MCMC likelihood analysis using the “Cos- wherei, j = 1,2,3. TheCMBdataareincludedinouranalysis moMC”package(Lewis&Bridle2002). byaddingthefollowingtermtotheχ2function: (cid:104) (cid:105) χ2 =∆p Cov−1 (p,p ) ∆p , ∆p = p −pdata, (29) 2.3. DarkEnergyDiagnosisandCosmicAge CMB i CMB i j j i i i Sincepreviousworkspointedoutthatthedifferencesamongthe where pdiataarethemeanvaluesfromEq. (26). cosmological results given by the three different SNLS3 LCF arerathersmall,weneedmoretoolstodistinguishtheeffectsof 2.2.3. GCData differentLCF.Inthepresentwork,weusetheHubbleparameter H(z), the deceleration parameter q(z), the statefinder hierarchy To improve the cosmological constraints, we also use the GC S(1)(z) and S(1)(z) (Arabsalmani & Sahni 2009; Zhang, Cui & dataextractedfromSDSSsamples. In(Chuang&Wang 2013), 3 4 Zhang 2014), and the cosmic age t(z) as our diagnosis tools to Chuang and Wang measured the Hubble parameter H(z) and distinguishtheeffectsofdifferentLCF.Thissubsectionconsists the angular-diameter distance D (z) separately 6 by scaling the A of two parts. Firstly, we introduce the tools of DE diagnosis, model galaxy two-point correlation function to match the ob- includingtheHubbleparameterH(z),thedecelerationparameter served galaxy two-point correlation function. Since the scal- q(z),andthestatefinderhierarchy{S(1),S(1)}. Then,wediscuss ing is measured by marginalizing over the shape of the model 3 4 theissuesaboutcosmicage,includingthehigh-redshiftcosmic correlation function, the measured H(z) and D (z) are model- A agetestandthefateoftheUniverse. independent and can be used to constrain any cosmological LetusintroducetheDEdiagnosistoolsfirst.Thescalefactor model(Chuang&Wang 2013). oftheUniverseacanbeTaylorexpandedaroundtoday’scosmic It should be mentioned that, compared with using H(z) and aget asfollows: D (z),usingH(z)r (z )/candD (z)/r (z )7cangivebettercon- 0 A s d A s d straints on various cosmological models. In (Hemantha, Wang (cid:88)∞ A a(t)=1+ n[H (t−t )]n, (36) 5 In this work, we adopt the result of z given in (Hu & Sugiyama n! 0 0 ∗ n=1 1996). 6 Angular-diameterdistanceDA(z) = cH0−1r(z)/(1+z),wherecisthe where speedoflight. 7 r (z )isthesoundhorizonatthedragepoch,wherer (z)isgivenby a(t)(n) s d s A = , n∈ N, (37) Eq.(25,zdisgivenin(Eisenstein&Hu 1998). n a(t)Hn Articlenumber,page4of12 Wangelal.:ImpactsofdifferentSNLS3LCFoncosmologicalconsequencesofIDEmodels witha(t)(n) =dna(t)/dtn.TheHubbleparameterH(z)containthe will use these three age data to test the wCDM model and the information of the first derivative of a(t). Based on the Baryon threeIDEmodels. AcousticOscillations(BAO)measurementsfromtheSDSSdata AnotherinterestingtopicisthefateoftheUniverse. Thefu- release9anddatarelease11,Samushiaetal.gaveH ≡ H(z= tureoftheUniversedependsonthepropertyofDE.IftheUni- 0.57 0.57) = 92.4 ± 4.5km/s/Mpc Samushia et al. (2013), while verse is dominated by a quintessence Caldwell, Dave & Stein- Delubacetal.obtainedH ≡ H(z=2.34)=222±7km/s/Mpc hardt(1998);Zlatev,Wang&Steinhardt(1999)oracosmologi- 2.34 Delubac et al. (2014). These two H(z) data points will be used calconstant,theexpansionoftheUniversewillcontinueforever. tocomparethetheoreticalpredictionsofthewCDMmodeland If the Universe is dominated by a phantom Caldwell (2002); thethreeIDEmodels. Inaddition,thedecelerationparameterq Caldwell,Kamionkowski&Weinberg(2003),eventuallythere- isgivenby pulsivegravityofDEwillbecomelargeenoughtotearapartall thestructures,andtheUniversewillfinallyencounteradooms- q=−A =− a¨ , (38) day,i.e. theso-called“bigrip”(BR).Setting x=−ln(1+z),we 2 aH2 cangetthetimeintervalbetweenaBRandtoday whichcontainstheinformationofthesecondderivativesofa(t). (cid:90) ∞ dx For the ΛCDM model, A2|ΛCDM = 1 − 23Ωm, A3|ΛCDM = 1, tBR−t0 = H(x), (46) A4|ΛCDM =1−322Ωm. Thestatefinderhierarchy,Sn,isdefinedas 0 Arabsalmani&Sahni(2009): wheret denotesthetimeofBR.Itisobviousthat, foraUni- BR verse dominated by a quintessence or a cosmological constant, S = A + 3Ω , (39) 2 2 2 m this integration is infinity; and for a Universe dominated by a S3 = A3, (40) phantom, this integration is convergence. We would like to in- S = A + 32Ω , (41) fer, from the current observational data, how far we are from a 4 4 2 m cosmicdoomsdayintheworstcase.Sointhisworkwecalculate Thereasonforthisredefinitionistopegthestatefinderatunity the2σlowerlimitsoft −t forallthefourDEmodels. BR 0 forΛCDMduringthecosmicexpansion, Sn|ΛCDM =1. (42) 3. Result This equation defines a series of null diagnostics for ΛCDM In this section, firstly we show the cosmology-fit results of the when n ≥ 3. By using this diagnostic, we can easily distin- wCDM model given by various SNLS3 samples without and guish the ΛCDM model from other DE models. Because of withsystematicuncertainties,nextwepresentthefittingresults Ωm|ΛCDM = 23(1 + q), when n ≥ 3, statefinder hierarchy can ofthethreeIDEmodels,thenweshowthecosmicevolutionsof berewrittenas: Hubbleparameter H(z),decelerationparameterq(z),statefinder hierarchyS(1)(z)andS(1)(z)accordingtothefittingresultsofthe S(1) = A , (43) 3 4 3 3 IDEmodels,finallyweperformthehigh-redshiftcosmicagetest S(1) = A +3(1+q), (44) and discuss the fate of the Universe. Since both three SNLS3 4 4 datasets and a time-varying β are considered at the same time, wherethesuperscript(1)istodiscriminatebetweenS(1)andS . alltheresultsofthisworkarenewcomparedwiththeprevious n n Inthispaper,weusethestatefinderhierarchyS(1)(z)andS(1)(z) studies. 3 4 asourdiagnosistoolstodistinguishtheeffectsofdifferentLCF. Now,letusturntotheissuesaboutcosmicage. Theageof 3.1. CosmologyFits theUniverseatredshiftzisgivenby In table 1, we present the fitting results of the wCDM model (cid:90) ∞ dz˜ given by various SNLS3 samples without and with systematic t(z)= . (45) (1+z˜)H(z˜) uncertainties. The first row of table 1 shows the fitting results z for the case of only considering constant β and statistical un- In history, the cosmic age problem played an important role in certainties. From this row we find that the best-fit values of thecosmologyAlcaniz&Lima(1999);Lanetal.(2010);Ben- Ω and w given by the Combined sample are in between the m0 galyJr. etal.(2014);Liu&Zhang(2014)). Obviously,theUni- best-fit results given by the SALT2 sample and by the SiFTO verse cannot be younger than its constituents. In other words, sample. ThisresultisconsistentwiththeresultofConleyetal. theageoftheuniverseatanyhighredshiftzcannotbeyounger (2011). The second row of table 1 shows the fitting results for than its constituents at the same redshift. There are some old thecaseofconsideringconstantβandstatistical+systematicun- high redshift objects (OHRO) considered extensively in the lit- certainties. From thisrow wecan see that, once the systematic erature. For instance, the 3.5Gyr old galaxy LBDS 53W091 at uncertaintiesofSNLS3samplesaretakenintoaccount,thebest- redshift z = 1.55 Dunlop et al. (1996), the 4.0Gyr old galaxy fit values of Ω and w given by the Combined sample are not m0 LBDS 53W069 at redshift z = 1.43 Dunlop (1999), and the in between the best-fit results given by the SALT2 sample and old quasar APM 08279+5255, whose age is estimated to be by the SiFTO sample any more. Therefore, the reason causing 2.0 Gyr, at redshift z = 3.91 Hasinger, Schartel, & Komossa thisstrangephenomenonisduetothesystematicuncertaintiesof (2002). Intheliterature,theagedataofthesethreeOHRO(i.e. SNLS3samples. Tofurtherstudythisissue,inthethirdrowof t ≡ t(z = 1.43) = 4.0Gyr, t ≡ t(z = 1.55) = 3.5Gyr and table1,wepresentthefittingresultsforthecaseofconsidering 1.43 1.55 t ≡ t(z = 3.91) = 2.0Gyr)havebeenextensivelyusedtotest linear β and statistical+systematic uncertainties. We find that, 3.91 variouscosmologicalmodels(seee.g. Alcaniz, Lima&Cunha afterconsideringtheevolutionofβ,thebest-fitvalueofwgiven (2003);Wei&Zhang(2007);Wang&Zhang(2008);Wang,Li by the Combined sample is in between the results given by the &Li(2010);Yan, Liu&Wei(2014)). Inthepresentwork, we SALT2sampleandbytheSiFTOsample,whilethedifferences Articlenumber,page5of12 Table1.FittingresultsforthewCDMmodelgivenbyvariousSNLS3sampleswithoutandwithsystematicuncertainties.Boththebest-fitvalues andthe1σerrorsofΩ andwarelisted. “StatOnly”and“StatPlusSys”representtheSNdataonlyincludingstatisticaluncertaintiesandthe m0 SNdataincludingbothstatisticalandsystematicuncertainties,respectively. Moreover,forcomparison,boththecasesofconstantβandlinearβ aretakenintoaccount. Combined SALT2 SiFTO Ω 0.188+0.079 0.216+0.069 0.178+0.105 Constantβ(StatOnly) m0 −0.059 −0.047 −0.141 w −0.88+0.14 −0.93+0.14 −0.84+0.19 −0.11 −0.12 −0.22 Ω 0.167+0.084 0.236+0.083 0.220+0.083 Constantβ(StatPlusSys) m0 −0.070 −0.060 −0.061 w −0.88+0.18 −0.99+0.19 −1.01+0.19 −0.11 −0.16 −0.15 Ω 0.171+0.085 0.186+0.095 0.21+0.11 linearβ(StatPlusSys) m0 −0.070 −0.13 −0.11 w −0.88+0.18 −0.856+0.22 −0.96+0.26 −0.12 −0.096 −0.11 Table 2. Fitting results for the wCDM model and the three IDE models, where both the best-fit values and the 1σ errors of various pa- rameters are listed. “Combined”, “SALT2” and “SiFTO” represent the SN(Combined)+CMB+GC, the SN(SALT2)+CMB+GC and the SN(SiFTO)+CMB+GCdata,respectively. wCDM IwCDM1 IwCDM2 IwCDM3 Parm Combined SALT2 SiFTO Combined SALT2 SiFTO Combined SALT2 SiFTO Combined SALT2 SiFTO α 1.417+0.068 1.576+0.135 1.360+0.049 1.406+0.080 1.597+0.110 1.345+0.066 1.430+0.051 1.581+0.124 1.358+0.053 1.414+0.065 1.602+0.110 1.357+0.053 ΩΩΩββbcr01000 15000.....412003144009050−0+−+−+−+−0000000008.........0215700004788870000199618922 23000.....072002234081750−+−0+−+−+−0000000008.........1216500003229151000501000921 15000.....412008634008650−+−+−+−+−00000000008.........0227600003455711000669171721 01400.....5920009340327600−+−+−+−+−0000000008.........0226600005528721000980851722 23000.....062005934006850−+−0+−+−+−0000000008.........1115400004389860000418559922 01500.....4120089340898500−+−+−+−+−0000000008.........0226600006336880100455659022 01500.....402006234098950−1+−+−+−+−0000000000.........0226600004854480000046699821 23000.....082000034025550−+−+−0+−+−0000000008.........1215600007226021000457792621 15000.....4120068340237501−+−+−+−+−0000000000.........0226600000483781000586230922 01400.....582002944067150−1+−+−+−+−0000000000.........0127500002699910100283678022 23000.....072005034027650−+−0+−+−+−0000000009.........1126500007471001000398110722 15000.....4220071340586500−+−+−+−+−0000000009.........0226600001455571000496260721 γ .......... .......... .......... 0.0008+0.0020 −0.0001+0.00260.0001+0.0024 0.0024+0.0049 0.0008+0.0052 0.0013+0.0047 0.0017+0.0145 0.0039+0.0094 −0.0002+0.0136 w −1.051+0.049 −1.066+0.053 −1.068+0.047 −1.039−+00..0005207 −1.062+0−.00.508024−1.066−+00..0005285 −1.038−+00..0005683 −1.062−+00..0006651 −1.050−+00..0004688 −1.043−+00..0016050 −1.055−+00..0015445 −1.067+0−.00.600119 h 0.701+0−.001.0241 0.706+0−.001.0143 0.707+0−.001.0040 0.698+0−.001.0856 0.704+0−.001.0848 0.733+0−.001.0751 0.701+0−.001.0146 0.708+0−.000.0951 0.705+0−.001.0468 0.700+0−.001.0345 0.705+0−.001.0258 0.707+0−.001.0053 −0.013 −0.014 −0.015 −0.018 −0.019 −0.017 −0.014 −0.016 −0.013 −0.012 −0.014 −0.014 amongthebest-fitvaluesofΩ givenbythethreeSNLS3sam- best-fitpointsgivenbythethreedatasetscorrespondtoaphan- m0 plesareeffectivelyreduced. Theseresultsimplytheimportance tom,bothphantom,quintessenceandcosmologicalconstantare of considering β’s evolution in the cosmology-fits. Therefore, consistentwiththecurrentcosmologicalobservationsat2σCL. fromnowonweonlyconsiderthecaseoflinearβ. This means that the current observational data are still too lim- itedtoindicatethenatureofDE. Intable2,byadoptingalinearβ,wegivethefittingresultsof thewCDMmodelandthethreeIDEmodels. Fromthistablewe seethat,forallthefourDEmodels,βsignificantlydeviatesfrom 3.2. HubbleParameter,DecelerationParameterand aconstant,consistentwiththeresultsofWang,etal.(2014); in StatefinderHierarchy addition,thereisnoevidencefortheexistenceofdarksectorin- teraction. Although the best-fit results of w given by the three The1σconfidenceregionsofHubbleparameterH(z)atredshift LCF are always less than −1, w = −1 is still consistent with region [0,4] for the wCDM model and the three IDE models the current cosmological observations at 2σ CL. Moreover, we areplottedinFig. 2, wherethetwo H(z)datapoints, H0.57 and check the impacts of different SNLS3 LCF on parameter esti- H2.34,arealsomarkedbydiamondswitherrorbarsforcompar- mationandfindthatforallthefourDEmodels: (1)The“Com- ison. Wefind thatthedatapoint H0.57 canbeeasilyaccommo- bined”samplealwaysgivesthelargestw;inaddition,thevalues dated in the wCDM model and the three IDE models, but the ofwgivenbythe“SALT2”andthe“SIFTO”samplearecloseto datapointH2.34 significantlydeviatesfromthe1σregionsofall eachother. (2)TheeffectsofdifferentLCFonotherparameters thefourDEmodels. Inotherwords,themeasurementofH2.34is are negligible. It is clear that these results are insensitive to a intensionwithothercosmologicalobservationsandthisresultis specificDEmodel. consistentwiththeconclusionofSahni,Shafieloo&Starobinsky (2014);Huetal.(2014). Inaddition,the1σconfidenceregions In Fig. 1, we plot the probability contours at the 1σ and of H(z) given by different LCF are almost overlap; this means 2σ CL in the γ-w plane, for the three IDE models. The best- that using H(z) diagram is almost impossible to distinguish the fit values of {γ,w} of the “Combined”, the “SALT2” and the differencesamongdifferentSNLS3LCF. “SiFTO” data are marked as a black square, a red triangle and InFig. 3,weplotthe1σconfidenceregionsofdeceleration a green diamond, respectively. For comparison, the fixed point parameterq(z)atredshiftregion[0,4],forthewCDMmodeland {γ,w} = {0,−1} for the ΛCDM model is also marked as a blue thethreeIDEmodels. Again,weseethatthe1σconfidencere- round dot. A most obvious feature of this figure is that, for all gions of q(z) given by different LCF are almost overlap. This the IDE models, the fixed point {0,−1} of the ΛCDM model is impliesthatusingq(z)diagramalsohasgreatdifficultytodistin- outside the 1σ contours given by the three data sets; however, guishthedifferencesamongdifferentSNLS3LCF. theΛCDMmodelisstillconsistentwiththeobservationaldata In Fig. 4, we plot the 1σ confidence regions of S(1)(z) at at 2σ CL. Moreover, according to the evolution behaviors of 3 redshift region [0,4], for the wCDM model and the three IDE ρ (see Eqs. 10, 12 and 16) at z → −1, we divide these γ-w de models. Fromthisfigureweseethat,the1σconfidenceregions planes into two regions: the region above the dividing line de- notesaquintessencedominatedUniverse(withoutbigrip), and of S3(1)(z) given by the three SNLS3 LCF are almost overlap at the region below the dividing line represents a phantom domi- high redshift. Although there is an separating trend for S(1)(z) 3 natedUniverse(withbigrip). Wecanseethat,althoughallthe when z → 0, most parts of these three 1σ regions are overlap Articlenumber,page6of12 Wangelal.:ImpactsofdifferentSNLS3LCFoncosmologicalconsequencesofIDEmodels IIwwCCDDMM11 IIwwCCDDMM22 −0.9 −0.9 NNoo BBiigg RRiipp −0.95 NNoo BBiigg RRiipp −0.95 −1 −1 BBiigg RRiipp ww−1.05 ww−1.05 BBiigg RRiipp −1.1 −1.1 SALT2 SALT2 SiFTO −1.15 SCioFmTObined −1.15 CΛoCmDMbined ΛCDM −1.2 −1.2 −0.006−0.004−0.002 0 0.002 0.004 0.006 0.008 −0.02 −0.01 0 0.01 0.02 γ γ IIwwCCDDMM33 NNoo BBiigg RRiipp −0.9 −1 ww −1.1 SALT2 SiFTO Combined −1.2 BBiigg RRiipp ΛCDM −0.03 −0.02 −0.01 0 0.01 0.02 0.03 γ Fig.1. (coloronline). Probabilitycontoursatthe1σand2σCLintheγ-wplane, fortheIwCDM1(upperleftpanel), theIwCDM2(upper rightpanel)andtheIwCDM3(lowerpanel)model.“Combined”(blacksolidlines),“SALT2”(reddashedlines),and“SiFTO”(greendash-dotted lines)denotetheresultsgivenbytheSN(Combined)+CMB+GC,theSN(SALT2)+CMB+GC,andtheSN(SiFTO)+CMB+GCdata,respectively. Furthermore,thebest-fitvaluesof{γ,w}ofthe“Combined”,the“SALT2”andthe“SiFTO”dataaremarkedasablacksquare,aredtriangleand agreendiamond,respectively. Tomakeacomparison,thefixedpoint{γ,w}={0,−1}fortheΛCDMmodelarealsomarkedasabluerounddot. Thegraysolidlinedividesthepanelintotworegions:theregionabovethedividinglinedenotesaquintessencedominatedUniverse(withoutbig rip),andtheregionbelowthedividinglinerepresentsaphantomdominatedUniverse(withbigrip). evenatcurrentepoch. Thismeansthat,althoughS(1)(z)isabet- andt canbeeasilyaccommodatedinallthefourDEmodels, 3 1.55 ter tool than H(z) and q(z), it still have difficulty to distinguish butthepositionoft issignificantlyhigherthanthe2σupper 3.91 the effects of different SNLS3 LCF. Moreover, our conclusion boundsofallthefourDEmodels. Inotherwords,theexistence holdstrueforallthefourDEmodels,showingthatthisconclu- of the old quasar APM 08279+5255 still can not be explained sionisinsensitivetoaspecificinteractionform. in the frame of IDE model. This result is consistent with the In Fig. 5, we plot the 1σ confidence regions of S(1)(z) at conclusionsofpreviousstudiesAlcaniz,Lima&Cunha(2003); redshift region [0,4], for the wCDM model and the thr4ee IDE Wei & Zhang (2007); Wang & Zhang (2008); Wang, Zhang & models. Fromthisfigureweseethatmostofthe1σconfidence Xia (2008); Wang, Li & Li (2010); Yan, Liu & Wei (2014). In regionsofS(1)(z)givenbythethreeLCFareoverlap.Thismeans addition,the2σregionsoft(z)givenbydifferentLCFarealmost thattheeffec4tsofdifferentLCFcannotbedistinguishedbyusing overlap, showing that the impacts of different SNLS3 LCF can notbedistinguishedbyusingtheagedataofOHRO. thestatefinderS(1)(z)either. Again,weseethatthisconclusion 4 We want to infer how far we are from a cosmic doomsday isinsensitivetoaspecificinteractionform. in the worst case. So in Fig. 7, we plot the 2σ lower limits of In conclusion, we find that the differences given by thetimeintervalt−t betweenafuturemomentandtoday, for “SALT2”,“SiFTO”,and“Combined”LCFarerathersmalland 0 thewCDMmodelandthethreeIDEmodels. Moreover,the2σ cannotbedistinguishedbyusingH(z),q(z),S(1)(z)andS(1)(z). This result is quite different from the case of “3MLCS2k24” Jha lower limit values of tBR −t0 given by the three LCF are also markedonthisfigure. 8. Alltheevolutioncurvesoft−t tend et al. (2007) and “SALT2” Guy et al. (2007), where using tothecorrespondingconvergencevaluesat−ln(1+z)(cid:39)200. The “MLCS2k2” and “SALT2” LCF will give completely different most important factor of determining t −t is the EoS w. In cosmologicalconstraintsforvariousmodelsBengochea(2011); BR 0 a phantom dominated Universe, a smaller w corresponds to a Bengochea&DeRossi(2014). largerincreasingrateofρ ; thismeansthatallthegravitation- de allyboundstructureswillbetornapartinashortertime,andthe Universe will encounter a cosmic doomsday in a shorter time, 3.3. CosmicAgeandFateofTheUniverse too. Among the three SNLS3 LCF data, the “Combined” sam- The2σconfidenceregionsofcosmicaget(z)atredshiftregion plealwaysgivesthelargestw,andthusgivesthelargestvalueof [0,4]forthewCDMmodelandthethreeIDEmodelsareplotted inFig. 6,wherethethreet(z)datapoints,t1.43,t1.55andt3.91,are 8 The2σupperlimitsoftBR−t0isinfinite;inotherwords,theUniverse alsomarkedbySquaresforcomparison. Wefindthatbotht1.43 willexpandeternally Articlenumber,page7of12 wCDM IwCDM1 500 500 168 168 450 166 450 166 164 164 400 400 162 162 350 160 350 160 158 158 z)300 1516.50 1.52 1.54 1.56 1.58 1.60 z)300 1516.50 1.52 1.54 1.56 1.58 1.60 H( H( 250 250 200 H2.34 = 222±7.0 km/s/Mpc 200 H2.34 = 222±7.0 km/s/Mpc 150 150 SALT2(1σ) SALT2(1σ) 100 SiFTO(1σ) 100 SiFTO(1σ) H0.57 = 92.4±4.5 km/s/Mpc Combined(1σ) H0.57 = 92.4±4.5 km/s/Mpc Combined(1σ) 50 50 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z IwCDM2 IwCDM3 500 500 168 168 450 166 450 166 164 164 400 400 162 162 350 160 350 160 158 158 z)300 1516.50 1.52 1.54 1.56 1.58 1.60 z)300 1516.50 1.52 1.54 1.56 1.58 1.60 H( H( 250 250 200 H2.34 = 222±7.0 km/s/Mpc 200 H2.34 = 222±7.0 km/s/Mpc 150 150 SALT2(1σ) SALT2(1σ) 100 SiFTO(1σ) 100 SiFTO(1σ) H0.57 = 92.4±4.5 km/s/Mpc Combined(1σ) H0.57 = 92.4±4.5 km/s/Mpc Combined(1σ) 50 50 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z Fig. 2. (color online). The 1σ confidence regions of Hubble parameter H(z) at redshift region [0,4], for the wCDM (upper left panel), the IwCDM1 (upper right panel), the IwCDM2 (lower left panel) and the IwCDM3 (lower right panel) model, where the data points of H and 0.57 H arealsomarkedbydiamondswitherrorbarsforcomparison. “Combined”(grayfilledregions),“SALT2”(bluesolidlines),and“SiFTO” 2.34 (purple dashed lines) denote the results given by the SN(Combined)+CMB+GC, the SN(SALT2)+CMB+GC, and the SN(SiFTO)+CMB+GC data,respectively. t −t . Inaddition,thevaluesofwgivenbythe“SALT2”and rameterspacesofthewCDMmodelandthethreeIDEmodels. BR 0 the“SIFTO”sampleareclosetoeachother,andthusthevalues According tothe results of cosmology-fits, we have plotted the oft −t givenbythesetwosamplesareclosetoeachother. cosmic evolutions of Hubble parameter H(z), deceleration pa- BR 0 rameter q(z), statefinder hierarchy S(1)(z) and S(1)(z), and have 3 4 checkedwhetherornottheseDEdiagnosescandistinguishthe 4. SummaryandDiscussion differencesamongtheresultsofdifferentLCF.Furthermore,we As is well known, different LCF will yield different SN sam- haveperformedhigh-redshiftcosmicagetestusingthreeOHRO, ple. In 2011, based on three different LCF, the SNLS3 group andhaveexploredthefateoftheUniverse. Conley et al. (2011) released three kinds of SN samples, i.e., WefindthatforthewCDMandallthethreeIDEmodels:(1) “SALT2”, “SiFTO” and “Combined”. So far, only the SNLS3 the“Combined”samplealwaysgivesthelargestw;inaddition, “Combined” sample is studied extensively, both the “SALT2” thevaluesofwgivenbythe“SALT2”andthe“SIFTO”sample andthe“SiFTO”datasetsareseldomtakenintoaccountinthe are close to each other. (see table 2 and Fig. 1); (2) the effects literature. Moreover, the cosmological consequences given by ofdifferentSNLS3LCFonotherparametersarenegligible(see thesethreeSNLS3LCFarenotdiscussedbefore. Therefore,the table2). Besides,wefindthattheΛCDMmodelisinconsistent impacts of different SNLS3 LCF have not been studied in de- with the three SNLS3 samples at 1σ CL, but is still consistent tailinthepast. Themainaimofthepresentworkispresenting withtheobservationaldataat2σCL. acomprehensiveandsystematicinvestigationontheimpactsof differentSNLS3LCF. Moreover,wefindthattheimpactsofdifferentSNLS3LCF Since the interaction between different components widely arerathersmallandcannotbedistinguishedbyusingH(z)(see exist in nature, and the introduction of a interaction between Fig. 2),q(z)(seeFig. 3),S(1)(z),(seeFig. 4),S(1)(z)(seeFig.5), 3 4 DE and CDM can provide an intriguing mechanism to solve andt(z)diagram(seeFig. 6). Thisresultisquitedifferentfrom the“cosmiccoincidenceproblem”andalleviatethe“cosmicage thecaseof“MLCS2k2”Jhaetal.(2007)and“SALT2”Guyetal. problem”, here we adopt the wCDM model with a dark sector (2007), where using “MLCS2k2” and “SALT2” LCF will give interaction. To ensure that our study is insensitive to a specific completely different cosmological constraints for various mod- darksectorinteraction,threekindsofinteractiontermsaretaken elsBengochea(2011);Bengochea&DeRossi(2014). Inaddi- into account in this work. In addition, to make a comparison, tion, we infer how far we are from a cosmic doomsday in the wealsoconsiderthecaseofwCDMmodelwithoutdarksector worst case, and find that the “Combined” sample always gives interaction. thelargest2σlowerlimitoft −t ,whiletheresultsgivenby BR 0 WehaveusedthethreeSNLS3datasets, aswellastheob- the “SALT2” and the “SiFTO” sample are close to each other servationaldatafromtheCMBandtheGC,toconstrainthepa- (seeFig. 7). Articlenumber,page8of12 Wangelal.:ImpactsofdifferentSNLS3LCFoncosmologicalconsequencesofIDEmodels wCDM IwCDM1 0.6 0.6 0.4 0.4 0.2 0.14 0.2 0.14 0.13 0.13 0.0 0.12 0.0 0.12 0.11 0.11 q(z) 0.2 00..1009 q(z) 0.2 00..1009 0.08 0.08 0.4 0.07 0.4 0.07 0.86 0.88 0.90 0.92 0.94 0.96 0.86 0.88 0.90 0.92 0.94 0.96 0.6 0.6 SALT2(1σ) SALT2(1σ) 0.8 SiFTO(1σ) 0.8 SiFTO(1σ) Combined(1σ) Combined(1σ) 1.0 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z IwCDM2 IwCDM3 0.6 0.6 0.4 0.4 0.2 0.14 0.2 0.14 0.13 0.13 0.0 0.12 0.0 0.12 0.11 0.11 q(z) 0.2 00..1009 q(z) 0.2 00..1009 0.08 0.08 0.4 0.07 0.4 0.07 0.86 0.88 0.90 0.92 0.94 0.96 0.86 0.88 0.90 0.92 0.94 0.96 0.6 0.6 SALT2(1σ) SALT2(1σ) 0.8 SiFTO(1σ) 0.8 SiFTO(1σ) Combined(1σ) Combined(1σ) 1.0 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z Fig. 3. (color online). The 1σ confidence regions of deceleration parameter q(z) at redshift region [0,4] for the wCDM (upper left panel), the IwCDM1 (upper right panel), the IwCDM2 (lower left panel) and the IwCDM3 (lower right panel) model. “Combined” (gray filledregions), “SALT2”(bluesolidlines), and“SiFTO”(purpledashedlines)denotetheresultsgivenbytheSN(Combined)+CMB+GC,the SN(SALT2)+CMB+GC,andtheSN(SiFTO)+CMB+GCdata,respectively. wCDM IwCDM1 1.5 1.5 SALT2(1σ) SALT2(1σ) SiFTO(1σ) SiFTO(1σ) 1.4 Combined(1σ) 1.4 Combined(1σ) 1.3 1.3 (1)(z)S31.2 (1)(z)s31.2 1.1 1.1 1.0 1.0 0.9 0.9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z IwCDM2 IwCDM3 1.5 1.5 SALT2(1σ) SALT2(1σ) SiFTO(1σ) SiFTO(1σ) 1.4 Combined(1σ) 1.4 Combined(1σ) 1.3 1.3 z) z) (1)(S31.2 (1)(S31.2 1.1 1.1 1.0 1.0 0.9 0.9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z Fig. 4. (color online). The 1σ confidence regions of S(1)(z) at redshift region [0,4] for the wCDM (upper left panel), the IwCDM1 (upper 3 right panel), the IwCDM2 (lower left panel) and the IwCDM3 (lower right panel) model. “Combined” (gray filled regions), “SALT2” (blue solidlines),and“SiFTO”(purpledashedlines)denotetheresultsgivenbytheSN(Combined)+CMB+GC,theSN(SALT2)+CMB+GC,andthe SN(SiFTO)+CMB+GCdata,respectively. Articlenumber,page9of12 wCDM IwCDM1 1.5 1.5 SALT2(1σ) SALT2(1σ) SiFTO(1σ) SiFTO(1σ) 1.4 Combined(1σ) 1.4 Combined(1σ) 1.3 1.3 z) z) (1)(S41.2 (1)(S41.2 1.1 1.1 1.0 1.0 0.9 0.9 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z IwCDM2 IwCDM3 1.5 1.6 SALT2(1σ) SALT2(1σ) SiFTO(1σ) 1.5 SiFTO(1σ) 1.4 Combined(1σ) Combined(1σ) 1.4 1.3 1.3 z) z) (1)(S41.2 (1)(S41.2 1.1 1.1 1.0 1.0 0.9 0.9 0.8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z Fig. 5. (color online). The 1σ confidence regions of S(1)(z) at redshift region [0,4] for the wCDM (upper left panel), the IwCDM1 (upper 4 right panel), the IwCDM2 (lower left panel) and the IwCDM3 (lower right panel) model. “Combined” (gray filled regions), “SALT2” (blue solidlines),and“SiFTO”(purpledashedlines)denotetheresultsgivenbytheSN(Combined)+CMB+GC,theSN(SALT2)+CMB+GC,andthe SN(SiFTO)+CMB+GCdata,respectively. wCDM IwCDM1 14 2.70 SALT2(2σ) 14 2.70 SALT2(2σ) 12 2.65 SCioFmTbOin(2eσd)(2σ) 12 2.65 SCioFmTbOin(2eσd)(2σ) 2.60 2.60 10 2.55 10 2.55 8 2.50 2.50 z) 2.50 2.52 2.54 2.56 2.58 2.60 z) 8 2.50 2.52 2.54 2.56 2.58 2.60 t( t( 6 6 t1.43 = 4.0 Gyr t1.43 = 4.0 Gyr 4 4 t3.91 = 2.0 Gyr t3.91 = 2.0 Gyr 2 t1.55 = 3.5 Gyr 2 t1.55 = 3.5 Gyr 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z IwCDM2 IwCDM3 14 2.70 SALT2(2σ) 14 2.70 SALT2(2σ) SiFTO(2σ) SiFTO(2σ) 12 2.65 Combined(2σ) 12 2.65 Combined(2σ) 2.60 2.60 10 2.55 10 2.55 2.50 2.50 z) 8 2.50 2.52 2.54 2.56 2.58 2.60 z) 8 2.50 2.52 2.54 2.56 2.58 2.60 t( t( 6 6 t1.43 = 4.0 Gyr t1.43 = 4.0 Gyr 4 4 t3.91 = 2.0 Gyr t3.91 = 2.0 Gyr 2 t1.55 = 3.5 Gyr 2 t1.55 = 3.5 Gyr 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 z z Fig.6. (coloronline). The2σconfidenceregionsofcosmicaget(z)atredshiftregion[0,4],forthewCDM(upperleftpanel),theIwCDM1 (upperrightpanel),theIwCDM2(lowerleftpanel)andtheIwCDM3(lowerrightpanel)model.Threet(z)datapoints,t ,t andt ,arealso 1.43 1.55 3.91 markedbySquaresforcomparison. “Combined”(grayfilledregions),“SALT2”(bluesolidlines),and“SiFTO”(purpledashedlines)denotethe resultsgivenbytheSN(Combined)+CMB+GC,theSN(SALT2)+CMB+GC,andtheSN(SiFTO)+CMB+GCdata,respectively. Articlenumber,page10of12

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.