ebook img

Impact of the second order self-forces on the dephasing of the gravitational waves from quasi-circular extreme mass-ratio inspirals PDF

0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impact of the second order self-forces on the dephasing of the gravitational waves from quasi-circular extreme mass-ratio inspirals

YITP-12-66 Impact ofthe second order self-forces onthe dephasing ofthe gravitationalwavesfrom quasi-circular extreme mass-ratioinspirals SoichiroIsoyama1,∗ RyuichiFujita2,† NorichikaSago3,‡ HideyukiTagoshi4,§ andTakahiroTanaka1¶ 1 Yukawa Institute for Theoretical Physics, Kyoto university, Kyoto, 606-8502, Japan 2 Departament deF´ısica, Universitat delesIllesBalears, PalmadeMallorca, E-07122 Spain 3 Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan 4 DepartmentofEarthandSpaceScience,GraduateSchoolofScience,Osakauniveristy,Osaka,560-0043, Japan (Dated:October10,2012) 2 Theaccuratecalculationoflong-termphaseevolutionofgravitationalwave(GW)formsfromextreme(inter- 1 mediate)massratioinspirals(E(I)MRIs)isaninevitablesteptoextractinformationfromthissystem.Achieving 0 thisgoal,itisbelievedthatweneedtounderstandthegravitationalself-forces. However,itisnotquntatively 2 demonstratedthatthesecondorderself-forcesarenecessaryforthispurpose. Inthispaperwerevisittheprob- lemtoestimatetheorderofmagnitudeofthedephasingcausedbythesecondorderself-forcesonasmallbody t c inaquasi-circularorbitaroundaKerrblackhole,basedontheknowledgeofthepost-Newtonian(PN)approx- O imationandinvokingtheenergybalanceargument. Inparticular,wefocusontheaverageddissipativepartof theself-force, sinceitgivestheleadingorder contributionamong thevariouscomponents ofthem. Toavoid 9 thepossibility that theenergy fluxof GWsbecomes negative, wepropose anew simple resummation called exponential resummation, whichassuresthepositivityoftheenergyflux. Inordertoestimatethemagnitude ] c oftheyetunknownsecondorderself-forces,herewepointoutthescalingpropertyintheabsolutevalueofthe q PNcoefficientsoftheenergyflux. Usingthesenewtools, weevaluatetheexpectedmagnitudeofdephasing. - Ouranalysisindicatesthatthedephasingduetothesecondorderself-forcesforquasi-circularE(I)MRIsmay r g bewellcapturedbythe3PNenergyflux,onceweobtainallthespindependentterms,exceptforthecasewith [ anextremelylargespinofthecentralKerrblack. 1 PACSnumbers:04.30Db,04.25Nx,04.30Tv,95.85.Sz v 9 6 5 2 I. INTRODUCTION . 0 1 Extrememassratioinspirals(EMRIs)andintermediatemassratioinspirals(IMRIs),inwhichastellarmassorseveraltens 2 solarmasscompactobjectinspiralsintoamoremassivecentralblackhole,haveattractedmuchinterestnotonlyasapromising 1 sourceofthegravitationalwaves(GWs)forfuturespacebornGWdetectors,butalsoasauniquecleanprobeofthespacetime : v region of strong gravity. To achieve the test of general relativity using GWs from E(I)MRIs, we need to predict sufficiently i X accuratewaveforms. ThisrequirementmotivatesustomodeltheE(I)MRIsasthemotionofasmallbodyinagivenbackgroud spacetimewithgravitationalbackreaction. Thisbackreactionistreatedasgravitationalself-forces [1–6]anditshigherorder r a extensionwithrespecttothemassratiohasattractedmuchinterestinrecentyears [7–11]. Seefollowingreviewarticles, e.g. ,[12,13]andreferencesthereinformoredetails. Infact,followingthescalingargument(Seee.g.[14,15]),thephaseofGWsfromaparticlewhoseorbitalfrequencysweeps afewordersofmagnitudebeforetheplungecanbeexpandedas M µ µ2 Φ= BH Φ(0)+ Φ(1)+O , (1) µ M M2 (cid:20) BH (cid:18) BH(cid:19)(cid:21) whereΦ(0) andΦ(1) areO(1)quantitiesindependentofµ,whichisthemassofasmallparticle,andM andaarethemass BH and the spin parameterof the Kerrblack hole, respectively. 1 On the one hand, Φ(0) in Eq. (1), we only needthe self-forces up to the first order time-averageddissipative part. In addition, it has been long known that Φ(0) can be computedwith well establishedbalanceargument,whichrelatesthefirstordertime-averageddissipativepartofself-forcestotheenergyandangular momentumfluxesassociated to the globalkilling vectorson backgroundKerr black hole [19]. Thoughthe Carter constantis ∗Electronicaddress:isoyama˙at˙yukawa.kyoto-u.ac.jp †Electronicaddress:ryuichi.fujita˙at˙uib.es ‡Electronicaddress:sago˙at˙artsci.kyushu-u.ac.jp §Electronicaddress:tagoshi˙at˙vega.ess.sci.osaka-u.ac.jp ¶Electronicaddress:tanaka˙at˙yukawa.kyoto-u.ac.jp 1Throughoutthispaper,weassumethattheresonanceisabsentduringitsorbitalevolution.SeeRefs.[15–18]forfurtherdiscussionaboutresonantorbits. 2 notassociated to anyKillingvectorandsimplebalanceargumentisnotapplicable,the wayto computinglongtimeaveraged evolutionofCarterconstanthasbeenalreadywellestablished[20–23]. Ontheotherhands, Φ(1), whichisreferredtoasthe dephasing relative to Φ(0), depends on two differentcomponents of the self-forces: the first order conservative part, and the averagedsecondorderdissipativepart. 2 Thefirstsub-leadingtermΦ(1) stillcanbeimportantsincepotentiallyitmaygivethe correctionsignificantlygreaterthanunitytothephase [24–26]. Toobtainaccuratewaveform,therehavebeenmanyworksonself-forces. Asforthefirstorderconservativepart,thanksto therecentmassivedevelopment,we arenowin partreadyforpracticalcomputationwithnumericalimplementation [27–31]. Particularly, in the case of Schwarzschild backgroundthe correction to the orbital frequencies [32] and Φ(1) [33] have been already studied extensively. Even in the case of Kerr background the preliminary results of the self-forces in quasi-circular orbitshavebeenreported[34]. By contrast, the averagedsecond orderdissipative partofself-forceshas beenso far studied onlyat the formallevelin the contextofblackholeperturbation [7–11]. Itwillrequiremuchmoreefforttoestablishthemethodtocomputethesecondorder dissipative part, especially in the case of Kerr background. Under such circumstances, a typical strategy to evaluate Φ(1) is to makeuse of the standard post-Newtonian(PN) approximation,in which we assume slow motionof a satelite and its weak gravitationalfield.BasedonthePNapproximation,HuertaandGair[35]evaluatedthesizeofdephasingcausedbythefirstorder conservativeself-forcesandtheaveragedsecondorderself-forces,pickinguprepresentativeEMRIsinquasi-circularorbitson aKerrblackhole.ThesamedephasingwasalsodiscussedbyYunesetal.[36]usingtheeffectiveonebodyformalismagainfor representativeE(I)MRIs. AnaiveexpectationisthatthePN approximationisnotsuitableformodellingthewaveformsofE(I)MRIs,especiallyfora Kerr black hole with large spin. TypicalE(I)MRIsin circular orbitsspend the last few yearsof inspiralin the vicinity of the innermost stable circularorbit(ISCO). Since the ISCO radiusreachesthe eventhorizonas the spin ofthe Kerrblack hole is increasedtotheextremallimit,themotionofthebodybecomeshighlyrelativistic,exceedingthevalidityrangeofthestandard PNapproximation[37]. However,thethingsarenotsotrivial. ThetimespentneartheISCObecomeslongerasweincreasethe massratioM /µ,butinthatcasethemassofthelargecentralblackholealsobecomeslarger. Then,thetotalcyclesofGWs BH become smaller for a given observation time. As a result, the correction due to higher order self-forces mightbe suppressed belowtheobservationalthreshold,despitethelossoftheaccuracyofthePN approximation. Therefore,itisnotsoobviousif thereareE(I)MRIssuchthatreallyrequirethenotionofthesecondorderself-forces. Thepreviousanalysesmentionedabove[35,36]arefocusingonthecorrectionscomingfromtheself-forcesatthecurrently availablePNorderandarelimitedtorepresentativeE(I)MRIs.Togetaninsightintowhetherthesecondorderself-forcesbased on the black hole perturbationare really necessaryto calculate the waveformsof quasi-circularE(I)MRIsor not, therefore, it wouldbeusefultogiveanestimateofdephasingcomingfromtheaveragedsecondorderdissipativeself-forces,focusingonthe yetunknownhigherPNtermsandsurveyingthewholeparameterregionofE(I)MRIs Whatwediscussin thispaperisthe adiabaticevolutionofE(I)MRIsinquasi-circularorbitsona Kerrspacetime. Here the adiabaticevolutionmeansanapproximationinwhichtheevolutionoftheorbitalfrequencyisdeterminedbytheenergybalance argument,i.e.,therateofchangeofthetotalenergyofthebinaryisequatedtotheenergyfluxemittedtotheinfinity. ToevaluatetheorderofmagnitudeoftheyetunknownhigherPNcorrections,weneedtorelyonsomeextrapolation.Forthis purpose,wefirstintroduceasimplenewresummationoftheenergyflux,whichwecallthe“exponentialresummation”. When thespinofaKerrblackholeislargeenough,thePNenergyfluxintheTaylorformcanbenegativeoutsidetheISCOradiusfor somePN orders[38]. Ifthishappens,the estimatedtotalphasebeforetheplungedivergesandtheextrapolationto thehigher PNorderwillnotmakesense. Oursimple“exponentialresummation”istheonethatensuresthepositivityoftheenergyflux. AsaPNinputforthecorrectionsatthenextleadingorderinthemassratio,thebestoneavailablesofaristhe3.5PNenergy fluxofGWs[39,40]withlinearspindependenttermsupto3PNorder,whichhasbeenrecentlyderivedbyBlanchetetal.[41]. Toestimate thepossiblemagnitudeoftheyetunknownhigherorderPN terms, wefocusona scalingpropertyamongthePN coefficients in the energy flux. Using the 8PN energy flux in the test particle limit [42, 43], we will show that the absolute valuesofthecoefficientsscaleroughlyasrequiredfromtheconvergenceofthePNseriesuptothelightringradius. (Thispoint wasalsodiscussedbyNakanoetal. independently[44].) SincethisscalingbehaviorisrelatedtothePNconvergence,despite thelackofthehigherPNtermsintheenergyflux,weconjecturethatthesamescalingpropertywillholdforthetermshigher orderinthemassratio. Underthisassumption,weestimatetheorderofmagnitudeoftheunknownportionoftheenergyflux comingfromhigherPNtermsatthenextleadingorderinthemassratiovia“extrapolation”. Gatheringthetoolsstatedabove, we will investigate the impact on the dephasing from the averaged dissipative second-orderself-forces for various E(I)MRIs systematically.Thisisthemaingoalofthispaper. 2Herethe“dissipative”partmeanstheself-forcesthatcausethetimevariationoftheconstantsofmotion,suchastheenergy,theangularmomentumaround theaxisofsymmetryandtheCarterconstant.The“conservative”partmeanstheonegivingthecorrectiontotherelationbetweentheorbitalfrequenciesand theconstantsofmotion[15,20]. Themeaningof“time-averaged”isaveragingoverasufficientlongperiodcomparedtothetimescalefortheevolutionof thephasedifferencebetweentheoscillationsintheradialandthezenithangledirections. 3 Theremainderof thismanuscriptis organizedas follows. In Sec. IIwe brieflyreviewhowthe accumulatedphaseof GWs fromadiabaticinspiraliscalculated,basedonthe balanceargument. InSec.III, tocurethenegativeenergyfluxofGWs that appearersin the truncatedPN Taylorseries expansion,we proposethe exponentialresummationthat ensuresthe positivityof theenergyflux. Sec.IVisdedicatedtothestudyofthescalingpropertyinthecoefficientsoftheenergyfluxinthetestparticle limitthatbecomesmanifestowingtothebrandnew8PNenergyflux[43]. InSec.V,usingtheexponentialresummationandthe scalingproperty,wewillestimatethedephasingcomingfromtheyetunknownpartofthesecondorderself-forcesforvarious E(I)MRIs. We find that the unkown non-linearspin dependentterms at the lower PN order in the energyflux dominante the unknowndephasing.WesummarizeourresultsandconcludeinSec.VI. Inthismanuscript,weusegeometricalunitsG=c=1andthesignconventionofthemetricis(−,+,+,+).Thecoordinates (t,r,θ,φ)denotetheBoyer-LindquistcoordinatesoftheKerrblackhole[45].Wefrequentlyusethedimensionlessspindefined byq :=a/M ,andthesymmetricmassratiodefinedbyν :=µM /(M +µ)2. BH BH BH II. THEACCUMULATEDPHASEOFTHEGRAVITATIONALWAVEFROMANINSPIRALINGBINARY We consider a binarycomposedof a small satellite bodywith the rest massµ in a quasi-circularorbitarounda Kerr black holewiththemassM andthespinparametera. Weneglecttheeffectofthespinofthesatellite,whichisnegligibllysmall BH forE(I)MRIsthoughplaysnonegligibleroleinsomesituations [46,47]. Forabinaryinaquasi-circularorbit,theaccumulated phaseofGWsiscalculatedas x0 x3/2E′(x) Φ := −2 dx , (2) M E˙(x) ZxISCO whereE isthebindingenergyofthebinary,E˙ := dE/dtistheenergylossrate,andtheprimedenotesthedifferentiationwith respectto x, which isa dimensionlessorbitalfrequencydefinedby x := (MΩ)2/3 with the orbitalfrequencyΩ and the total massM := M +µ. HereE issupposedtodependonlyonx, neglectingtheeffectofvariationofmassduetothe energy BH absorbedbytheblackhole.Throughoutthepaperwetotallyneglecttheeffectofthistimedependentmassvariation.Wechoose thelowerboundoftheintegralinEq.(2),x tothevalueofxattheinnermoststablecircularorbit(ISCO)andtheupper ISCO bound x to the one determined by the condition coming from the finite observation time. Throughoutthis paper, we adopt 0 t =1yearastheobservationtime. obs Ourprimaryinterestinthispaperistheorderofmagnitudeofthedephasingcomingfromthecorrectionsatthenextleading order in the mass ratio. To evaluate it, we calculate the difference between Φ with and without the higher order corrections. Checkingthedetectabilityofthisdifferencebyobservations,theinitialandthefinalfrequenciesshouldbekeptunchangedwhen weevaluateit. Here,wefixbothx andx tothevaluesdeterminedbythetestparticlelimit. Namely, [48] 0 ISCO −1/6 x := R3/2 +q R :=3+Z ∓ (3−Z )(3+Z +2Z ), ISCO ISCO ISCO 2 1 1 2 Z := (cid:16)1+(1−q2)(cid:17)1/3[(1+q)1/3+(1−q)1/3], pZ := 3q2+Z2, (3) 1 2 1 q wheretheupper(lower)signinthesecondequationischosenfortheco(counter)-rotatingcasewithq >(<)0andR:=r/M BH representsthedimensionlessradius.x isdeterminedby 0 x0 E′[0](x) 1(year)=− dx , (4) E˙[0](x) ZxISCO wherethesuperscript[0]meanstheleadingordercontributioninthemassratio,i.e.,thetestparticlelimit,and R3/2−2R1/2+q 1 1−qx3/2 2/3 E[0] =µ , Ω:= , R= . (5) R3/4(R3/2−3R1/2+2q)1/2 M(R3/2+q) x3/2 (cid:18) (cid:19) Asfortheenergy,wehereadoptedthebindingenergyofthebinaryinsteadoftheenergydirectlyrelatedtothefourmomentum oftheparticle.Itwouldbemorenaturaltoconsiderthelatterinthecontextoftheself-forcecalculationbasedontheblackhole perturbation,butitisnotgaugeinvariant.Hence,theformerismoresuitableforcomparisonwiththePNcalculation.Thesetwo energiesaredifferentatthenextleadingorderin themassratioduetothe presenceofthe gravitationalfield energy,butthere mustbeone-to-onecorrespondencebetweenthem,oncethegaugeiscompletelyfixed. Theenergybalanceargumenttellsusthattheaveragedlossofthetotalenergyshouldbeequaltotheaveragedtotalenergy fluxtothefuturenullinfinitybecauseoftheenergyconservation(seee.g.Ref.[19,49]).Hence,aslongaswedefinethebinding energyappropriately, dE − =L, (6) dt 4 holds,inthesenseaveragedoverasufficientlylongtimeandneglectingthehorizonabsorptionflux,whereListheenergyflux emittedtothenullinfinity.Hence,weevaluatethephaseby x0 x3/2 E′[0](x) Φ[L]:=2 dx . (7) M L(x) ZxISCO Intheaboveequation,asweareinterestedinthedissipativecorrections,wefixedE′ totheexpressioninthetestparticlelimit. WeexpandLasL=L[0]+νL[1]+O(ν2).TocomputeL[0],wecanusetheTeukolskyformalism[50]andinvokethenumerical codedevelopedbyFujitaandTagoshi[51,52]. The finite mass correctionsat the nextleadingorder, L[1], are in partprovidedby the standardPN calculations. In the PN formalism, the energy flux of GWs emitted to the infinity from a quasi-circular binary is obtained up to 3.5PN order for the spinindependentterms[39,40]andupto3PNorderforthetermslinearinspinwhenthespinvectorsareparalleltotheorbital axis[41]. Inthepresentnotation,truncatedatO(ν),itisgivenby 32 1247 35 11 17 44711 9271 LT (x,q) = x5ν2 1+x − − ν +x3/2 4π− q+ qν +x2 − + ν nPN 5 336 12 4 4 9072 504 (cid:20) (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) 8191 59 583 3749 +x5/2 − π− q+ν − π+ q 672 16 24 144 (cid:18) (cid:26) (cid:27)(cid:19) 6643739519 16 1712 856 65 134543 41 33 +x3 + π2− γ − log(16x)− πq+ − + π2+ πq ν E 69854400 3 105 105 6 7776 48 2 (cid:18) (cid:26) (cid:27) (cid:19) 16285 214745 +x7/2 − + ν π+O(x4,ν2,q2,qx7/2) , (8) 504 1728 (cid:18) (cid:19) (cid:21) whereγ =0.57721··· denotesEuler’sconstant.Wewillrefertotheaboveexpressionfortheenergyfluxtruncatedatthenth E PNorder3 as“thenPNTaylorflux”. WedenoteitbyLT ,andexpanditlikeLT :=LT[0] +νLT[1] +··· asbefore. We nPN nPN nPN nPN alsofrequentlyuse“thenormalizednPNflux”definedby −1 32 LT (x,q):= ν2x5 LT (x,q). (9) nPN 5 nPN (cid:18) (cid:19) Fromnowon,wedenotethePNfluxsolelycomposedoftheknownpartas“theknownnPNTaylorflux”anddistinguishingit fromthefullPNfluxbyassociating“˜”likeL˜T . Wealsointroducethenotationtodenotetheresidualtermshigherorderin nPN PNexpansionandinspinby LT[i] :=L[i] −LT[i] . (10) >nPN full nPN Then,L˜T[1] representstheyetunknownenergyfluxtobedeterminedfromthecomputationofthesecondorderdissipative >3.5PN self-forces. FurtherwedefineL˜T[0] andL˜T[0] bythetermsinL[0] thatcorrespondtoL˜T[1] andL˜T[1] ,respectively. Tobe nPN >nPN nPN >nPN precise,wedefineL˜T[0] bythesumofthespinindependenttermsupto3.5PNorderandthetermslinearintheblackholespin nPN upto3PNorder. L˜T[0] istheremainingtermsattheleadingorderinthemassratio,whichalsoincludesthenon-linearspin >nPN dependenttermsinallPNorders.4. III. AMANIFESTLYPOSITIVEDEFINITEENERGYFLUX:EXPONENTIALRESUMMATION Inthissectionwe proposeanewsimpleresummationscheme,whichcanbeeasilyappliedifwejustknowthenPNTaylor flux. A. LimitationoftheTaylorfluxrevisited ItiseasytoimaginethatthePNTaylorfluxisnotsoaccuratewhentheorbitalradiusbecomessmall. Indeed,Zhangetal.[37] pointedoutthatthenPNTaylorfluxinthetestparticlelimitrapidlylosestheaccuracyaroundtheISCOradius.However,itisa 3 WerefertoatermofO(xn)relativetotheleadingorderasthoseofnPNorder. 4Herewedonotdistinguishthelogarithmictermin3PNTaylorfluxinthetestparticlelimitfromtheother3PNterms. Weconfirmedthattheresultsinthe presentpaperdonotchangemuchevenifweexcludethistermfromL˜T[0] nPN 5 1 x 0 u fl r o -1 yl a T -2 N P n Exact -3 d 2.5PN e z 4.0PN ali -4 5.0PN m 5.5PN r no -5 6.5PN q = 0.9 8.0PN -6 0.55 0.6 0.65 0.7 0.75 x FIG. 1: The normalized nPN Taylor flux in the test particle limit, LT[0](x,q), for q = 0.9 up to x (0.9) := 0.78014.... The nPN ISCO horizontalaxisisthedimensionlessfrequencyxofabody.Thelable“Exact”meanstheexactnumericalenergyflux,calculatedbyFujitaand Tagoshi[51]. differentissuewhetherornottheTaylorfluxisaccurateenoughforourpresentpurposebecausewhatweareinterestedinhere iswhetherornotthedephasinginGWwaveformsismeasurebale. As we want to evaluate the correction to Φ in Eq. (7) caused by the yet unknown part of the flux L˜T[1] , we need some >nPN extrapolationmethod. Forthis purpose,laterit becomesnecessaryto evaluatesomethinglike the phaseforthe fluxtruncated at nPN order,Φ[L˜T[0]]. At this pointwe find thatthe nPN Taylor flux is problematic. As mentionedearlier, the energyflux nPN truncatedatsomePNordersbecomenegativeoutsideR ifthespinofblackholeq issufficientlylarge,firstlypointedout ISCO byTagoshietal.[38]. Toseehowserioustheproblemis,werevisittheTaylorfluxinthetestparticlelimit.ThespinindependenttermsinLT[0] have nPN beenanalyticallycalculatedupto22PNorderandthespindependenttermsupto8PNorderbyFujita[42,43]. Theexpression ofthenormalized8PNenergyfluxincludingcompletespindependenttermsisschematicallyexpandedas5 8 pmax LT[0](x,q)= Lˆ(n,p)(q)xn(log(x))p , (11) 8PN n=0 p=0 X X wherep isthemaximumintegerthatdoesnotexceedn/3. InFIG.1,wedepictedLT[0](x,q),thenormalizednPNTaylor max nPN fluxinthetestparticlelimit(11)truncatedatvariousPNordersforq = 0.9. ThecurvesterminateattheISCOfrequency. We alsoplottheexactnumericalenergyfluxinthetestparticlelimitasareference. Theexactnumericalenergyfluxismanifestly positivedefiniteforx < x (0.9), whileallthenPN TaylorfluxesinFIG.1crosszeroatsomex = x (q) < x (0.9). ISCO 0 ISCO In additionto the alreadyknown2.5PN and 4PN cases 6 [38], we also find that 5PN, 5.5PN, 6.5PN and8PN fluxesbecome negativebeforexreachesx (q). Evenforamoderatevaluesuchasq = 0.7,westillobservethefluxtocrosszero,sayat ISCO 8PNorder.Oncethishappens,theintegrandof(7)diverges,andthenthephaseevaluatedbyusingthetruncatedfluxLT[0] does nPN notmakesense. Forareliableextrapolation,itisnecessarytousearesummedexpressionfortheenergyfluxthatgivesatleast afiniteestimateofthephaseforthetruncationatanyPNorder. 5 TheexplicitexpressionforLT[0] willbemadeavailableelsewhereinanappropriateform[43]. 8PN 6WhileTagoshietal.[38]reportedthat3PNTaylorfluxwithq = 0.9becamenegativeforsmallradius,wefindthatthe3PNTaylorfluxisalwayspositive definiteforallradiusirrespectiveofthespinparameteroftheKerrblackhole. 6 B. Theexponentialresummationandanimprovedhybridenergyflux To overcome the drawback of the nPN Taylor flux, a naive requirementwill be to guarantee the energy flux to be always positive by resummation. Among various known resummation techniques [53–56], to the best of our knowledge, only the factorizedresummationensuresthepositivityoftheenergyflux. ThisresummationwasproposedbyDamouretal.[57]forthe equalmassnon-spinningbinariesin a circularorbit. Fujita and Iyer[58] andPan etal.[59] applieditto the testparticlein a circularorbitaroundaSchwarzschildandaKerrblackhole,respectively.Here,weproposeanotherevensimplerresummation, whichisdefinedby 32 Lexp (x,q):= ν2x5exp[Lexp (x,q)], (12) nPN 5 nPN with LenxPpN(x,q):=log LTn′PN(x,q) , (13) truncatedatnPNorder (cid:12) wheren′ ≥ n isunderstood. We refertothisresumm(cid:2)ationandthe(cid:3)(cid:12)energyflux (12) asthe exponentialresummationand“the (cid:12) nPNexponentialresummedflux”,respectively.Thisfluxismanifestlypositiveandcanincorporateanyhigherordercorrections ifthecounterpartsinthenPNTaylorfluxisgiven. Furthermore,itsignificantlyimprovestheaccuracyofapproximation [43]. Fordefiniteness,weexplicitlywritethedefinitionofLexp[0] andLexp[1]as nPN nPN 32 32 Lexp[0](x,q):= ν2x5exp[Lexp[0](x,q)], Lexp[1](x,q):= ν2x5exp[Lexp[0](x,q)] Lexp[1](x,q), (14) nPN 5 nPN nPN 5 nPN nPN (cid:18) (cid:19) withLexp =Lexp[0]+νLexp[1]+···. WeshowtheexplicitformonlyforLexp[1] as nPN nPN nPN nPN 35 17 30523 136229 101 Lexp[1](x,q) = − x+ qx3/2+ x2+ q− π x5/2 nPN 12 4 4032 4032 8 (cid:18) (cid:19) 43670915 41 π 70075 + − + π2− q x3+ πx7/2+O(x4,qx7/2,q2). (15) 12192768 48 2 6048 (cid:18) (cid:19) Combiningthe exactnumericalflux obtainedin the test particlelimit, L[0] , andthe PN flux, L , onecan obtain a better full PN estimatefortheenergyflux. InthecaseoftheTaylorflux,thesetwoarecombinedsimplybysummingL[0] andLT[1]. Inthe full PN caseoftheexponentialresummedenergyflux(12),weneedtodothissummationattheleveloftheexponent,Lexp. Namely, expandingLexp inpowersofν,wereplaceLexp[0]withtheonecorrespondingtothenumericalflux. Then,weobtain nPN nPN Lhyb (x,q)=L[0] (x,q)exp νLexp[1](x,q)+··· , (16) nPN full nPN h i whichwecall“thenPNhybridflux”. Intheanalogouswayasbefore,weintroduce“theknownnPNexponentialresummedflux”and“theknownnPNhybridflux”, anddistinguishthemfromtheirrespectivecounterpartsbyassociating“˜”. Herethetruncationfortheknownpartismadeat thelevelofLexp[1]. Namely,L˜exp[1] istruncatedatthesamePNorderforeachorderofspinthatisincludedintheknownterms nPN L˜T[1]. For the exponentialresummedflux, we can also introduceL˜exp[0], the counterpartof L˜exp[1] in the test particlelimit, nPN nPN nPN asinthecaseofL˜T[0]. Namely,L˜exp[0] istruncatedatthesamePNorderforeachorderofspinthatisincludedintheknown nPN nPN termsL˜T[1]. Ontheotherhand,L˜hyb[0] doesnotmakesense. Inthefollowingweidentifythehybridfluxwiththeexponential nPN nPN resummedfluxfortheleadingorderinthemassratio. Wesummarizeournotationforvariousfluxesusedintherestofourpaper inTableI,forreadability. IV. THESCALINGLAWOFTHECOEFFICIENTSINTHEENERGYFLUX Nowwetackleourmainissue: howtoevaluatethemagnitudeoftheyetunknownpartoftheenergyflux,L˜[1] . (When >3.5PN wediscussgeneralissuesindependentoftheformoftheenergyflux,wesimplysuppressthelabels“T”,“exp”and“hyb”.)Our strategyhereistoestablishthescalingpropertyinthecoefficientsofthePNexpansionoftheenergyfluxinthetestparticlelimit forfixedq. (SeealsoRef.[44].) TheargumentofthenPNexponentialresummedflux,Lexp[0],isexpandedas nPN n p x x Lexp[0](x,q):= C (q) log , (17) nPN x (q) n,p x (q) n (cid:18) lr (cid:19) p (cid:18) (cid:20) lr (cid:21)(cid:19) X X 7 Symbol ThefluxtruncatedatnPNorder L[i] nPN TheresidualpartofL[i] L[i] nPN >nPN TheknownpartoffluxtruncatedatnPNorder L˜[i] nPN TheresidualofL˜[i] L˜[i] nPN >nPN ThenormalizednPNTaylorflux LT[i] nPN TheexponentofnPNexponentialresummedflux Lexp[i] nPN TABLEI: Our notation for various fluxes in thispaper. Upper index [i] refers tothe order of truncation withrespect tothe mass ratio ν: L=L[0]+νL[1]+O(ν2).Wealsoputlabel“T”,“exp”,“’hyb”and“full”whichrespectivelycorrespondtoTaylor,exponential,hybridand numericalcompleteflux,todistinguishthefluxtype. 100 Exp resum 10 |0 n, 1 C | q = 0.998 0.1 q = 0.9 q = 0.5 q = 0.0 q = -0.5 q = -0.9 0.01 0 1 2 3 4 5 6 7 8 9 PN order: n FIG.2: TheabsolutevalueofthecontributiontotheenergyfluxfromeachPNorder|Cn,0|atx=xlr(q),withthehorizontalaxisbeingthe PNordern.Notethatthevaluesof|Cn,0|areaccidentalysmallwithsomefixedq.Wesafelyexludedthesevaluesfromtheplot. where 2/3 1 x (q):= , (18) lr R3/2+q! lr with 2 R (q):=2 1+cos arccosq , (19) lr 3 (cid:20) (cid:18) (cid:19)(cid:21) isthevalueofxcorrespondingtotheradiusofthecircularorbitonthelightring[48]. ItisknownthatforcircularorbitsthesourcetermoftheTeukolskyequationhasasimplepolewhentheorbitisonthelight ringradius,i.e., atx = x (q) [60,61]. Thelightringradiusistheinnermostradiusforthepresenceofan(unstable)circular lr orbit,andtheretheparticleenergyperunitrestmassdiverges.Asaresult,theenergyfluxalsodivergesthere. Besidesthelight ring singularity, another origin of singularity in solving the Teukolsky equation is the presence of quasi-normalmode poles, whicharezerosoftheWronskian. However,theabsolutevalueofthefirstquasi-normalmodefrequency,whichisthesmallest, isalmostidenticaltothefrequencyofGWsfromthesourceatthelightring[62]. Hence,weexpectthatx determines,atleast lr approximately, the convergenceradius when the energyflux is seen as an analytic function of x. If the PN expansionof the energyfluxconvergesaslongasx<x (q),x=x (q)isthefirstplacewheretheseriesceasestoconverge. lr lr With this expectationin mind, we plotthe contributionfrom each PN orderwith x = x (q), |C |, in FIG. 2 for various lr n,0 valuesofq. Hereq = 0.998,isaboundforpossiblemaximumspinofanastrophysicalblackholecalledThornelimit[63]. As 8 isexpected,|C |isroughlyindependentofthePNordern,astypicalattheboundaryofconvergencefor|q| < 0.9. Contrary n,0 to ourexpectation,for|q| > 0.9, |C | continuestoincreaseupto 8PN,andtheseriesseemsto diverge. However,thisdoes n,0 notmean that PN series doesnotconvergefor x ≈ x (q) with |q| ≈ 1. When we make a similar plotfor each partial wave lr contribution for a higher multipole component, the contribution to the energy flux peaks around a higher PN order, but the seriesisconvergent,althoughwecannotcheckextremelyhighmultipolecomponents. Ontheotherhand,thesummationover multipolecomponentsisknowntoconvergefromthenumericalcomputationoftheenergyfluxbyFujitaandTagoshi[51,52]. Thesefactsmayindicatethattheconvergencedependsontheordertotakesummation.ThepointofFIG.2isthat|C |shows n,0 anicescalingpropertywithrespecttothePNorderforanyvalueofq. Evenforqclosetotheextremallimit,theplotbecomes flatifwesubstitutealittlesmallervalueofxinsteadofx . lr Now we are in the position to discuss how to estimate the order of magnitude of the yet unknown part of the energyflux, L˜[1] . The second order perturbedEinstein equation would schematically take the form (cid:3)h(2) = (T[z +δz]−T[z])+ >3.5PN h(1)T[z]+(∇h(1))2,whereh(1)andh(2)are,respectively,thefirstandthesecondorderperturbationsinducedbyabody.Here z isthebackgroundKerrgeodesicandδz istheO(ν)correctiontoit[65]. Weknowthatallthefirstorderperturbationshave singularityonlyatx≈x (q). TheGreen’sfunction(cid:3)−1isbasicallythesameasinthelinearcase. Hence,evenforthesecond lr order perturbation, the convergenceradius in x will be the same as in the linear case, and thus a similar scaling for the PN coefficientswillbeexpectedforthenextleadingorderinthemassratio,too.Then,wecanguesstheamplitudeofthehigherPN coefficientsfromthefirstfewtermsinthePNexpansionthatareknownfromthestandardPNcalculation. One mayworrythat (cid:3)−1 hassingularitiesat the quasi-normalmodefrequencies. When we considerthe secondorderper- turbation,theremayarisehighfrequencycomponentswhichareabsentattheleveloflinearperturbation. However,thismight nothappen. Thepointisthatthemetricperturbationcausedbya circulargeodesichasa helicalKillingvector7. Atthelevel ofsecondordersourceterm,thishelicalsymmetryisbrokenduetothepresenceofthedeviationfromthegeodesic,δz. Apart fromthiscontribution,however,thesourcetermkeepsthehelicalsymmetryandhencethefrequencythatappearsin a partial wavelabelledby(ℓ,m)ismΩonly. Namely,higherfrequencymodesdonotarise. Evenifwetakeintoaccountδz,thetime scaleassociatedwithδz isasslowasΩ−1×O(ν−1). Therefore,thepresenceofδz altersthefrequencymΩonlybyasmall amountofO(νΩ). Thisessentiallydoesnotchangetheconvergenceradiusinx. EvenifwegettheorderofmagnitudeofthePNcoefficients,thescalingpropertytellsusnothingabouttheactualsignofeach term. Therefore,whenxiscloseto x (q), itbecomesdifficulttoguesstheorderofthemagnitudeoftheinfinitesummation. lr However,sincethehigherorderPNtermsaresuppressedbythepowerofx/x (q),thesummationisdominatedbyafewleading lr termswhenx/x (q)isreasonablysmall. Inthatcase,wedonothavetoworryabouttheinfinitesummation. Here,webravely lr step a little forwardbymakingthe followingproposalthatthe ratio betweenL˜[1] andL˜[1] willbe the same orderas the nPN >nPN ratiobetweenL˜[0] −L[0] andL˜[0] . Basedonthisassumption,weextrapolatetheknownresultstoestimatetheunknown nPN 0PN >nPN L˜[1] . >nPN V. THEDEPHASINGDUETOTHEAVERAGEDDISSIPATIVEPORTIONOFTHESECONDORDERSELF-FORCES Themainfocusofthissectionistoevaluatethedephasingfromtheaverageddissipativepartofthesecondorderself-forces inE(I)MRIs,basedontheideaoftheextrapolationproposedintheprecedingsection. Inthispaper,wemeasurethemagnitude ofthedephasingduetohigherordercorrectionstotheenergyfluxδLby x0 x3/2E′[0](x) 1 1 ∆Φ[L,δL]:=−2 dx − . (20) M L(x)+δL(x) L(x) ZxISCO (cid:12) (cid:12) (cid:12) (cid:12) Heretheabsolutevalueofthedifferenceoffluxesistakenintheintegran(cid:12)(cid:12)d.Thefactor(L+δL)−1(cid:12)(cid:12)−L−1canchangeitssignature inthedomainoftheintegralforsomeparameterregionofE(I)MRIs.Ifwedonottaketheabsolutevalue,therefore,theremight beanaccidentalcancellationbetweenpositiveandnegativecontributions.Then,theorderofmagnitudeoftheevaluated∆Φcan largelydeviatefromwhatwereallywanttomeasure. Noticethat,evenif∆Φdefinedwithouttakingtheabsolutevalueinthe integrandstrictlyvanishes,thedeviationintheGWwaveformisstilldetectable.Therefore,toavoidthispossibleunderestimate ofthedephasing,wetaketheabsolutevalueofthedifference. Asageneralremark,wewouldliketomentionthemassdependencesofΦ[L[0]],thephaseforacertainreferencefluxL[0] ref ref whichincludestheleadingPNtermsinthetestparticlelimit, and∆Φ[L[0],δL[0]]and∆Φ[L[0],δL[1]],thedephasingsdueto ref ref 7 ThehelicalKillingvectortα+Ωφα,thatremainstogenerateasymmetryevenfortheperturbedspacetime: wheretαandφαaretheasymptoticallytime translationandrotationalKillingvectorsofthebackgroundKerrblackhole,respectively.Seee.g.Ref.[64]formoredetailes. 9 104 104 q = -0.9, spin full q = 0.9, spin full 102 Exp resum 102 Exp resum ad] 100 ad] 100 Φ [r Φ [r ∆* 10-2 1PN ∆* 10-2 1PN ν 1.5PN ν 1.5PN 2PN 2PN 10-4 2.5PN 10-4 2.5PN 3PN 3PN 3.5PN 3.5PN 10-6 10-6 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 (ν/M)*M (ν/M)*M solar solar FIG.3: ThedephasingduetothehigherPNcorrectionsinthetestparticlelimit,ν∆Φ[Lexp[0],Lexp[0]]asafunctionofν/M forq=±0.9. nPN >nPN δL[0] and δL[1], which are some portionsof the energyflux at the leading orderand the nextleading orderin the mass ratio, respectively.FromtheintegralinEq.(4),whichdefinesx ,onecanfactoroutM /ν since 0 BH E′[0] ∝M ν, L[0] ∝ν2, (21) BH ref for a given x. Hence, we find that x is a function of M /ν. Substituting δL[0] ∝ ν2 and δL[1] ∝ ν3 together with the 0 BH relations(21)intothedefinitionsofν×Φ[L[0]],ν×∆Φ[L[0],δL[0]]and∆Φ[L[0],δL[1]],wefindthattheirmassdependences ref ref ref remainonlythroughx . Therefore,onecanconcludethatν×Φ[L[0]],ν×∆Φ[L[0],δL[0]]and∆Φ[L[0],L˜[1]]dependonM 0 ref ref ref BH andν onlythroughthecombinationM /ν foralargemassratioν ≪1forafixedobservationperiodbeforetheplunge. BH A. Theerrorcausedbythepost-Newtoniantruncationinthetestparticlelimit Beforeweevaluatethedephasingduetotheyetunknownpartoftheenergyfluxatthenextleadingorderinthemassratio, we will assess the magnitude of the dephasing due to the PN truncation in the test particle limit ∆Φ[L[0] ,L[0] ] in this nPN >nPN subsectionandthatcomingfromtheknownPNterms,∆Φ[L[0] ,L˜[1] ],inthesucceedingsubsection. full nPN Here, we study the quantity ∆Φ[L[0] ,L[0] ] to examine the PN convergence in terms of the phase error for various nPN >nPN E(I)MRIs. We show the results only for the exponential resummed flux because the phase for the PN Taylor flux becomes ill-definedforseveralPNorders. (Thehybridfluxisidenticaltotheexponentialresummedonebydefinitioninthetestparticle limit.) In FIG. 3 we plot ν∆Φ[Lexp[0],Lexp[0]] as a functionof ν/M for q = ±0.9. The main message of these plots is that the nPN >nPN PNconvergenceisalmostuniformexceptforthecaseoflargeblackholespinforlargeν/M. Whenq islarge,ISCObecomes closetothelightringradiuswherePNconvergencebecomesveryslow. Eveninthatcase,forlowerPNorderstheconvergence israthersmoothforlargeν/M. Thisisbecauseupto2PNorderthephasecorrectionisdominatedbythelowerboundofthe x-integralin(20),iftheinitialseparationofthebinaryatthetime1yearbeforetheplungeissufficientlylarge.Thereasonwhy wefocusonlargeν/M is,aswillbediscussedinAppend.V,thedephasingfromtheknownPNtermsisalreadywellsuppressed below1radifν/M issmallenough.Thus,thePNconvergenceforsmallν/M doesnotaffectthefollowingdiscussion. Noticealsothatx becomessmallerandsmallerforlargerν/M. The2.5PNcaseismarginalinthesensethatallrangeofx 0 almostequallycontributes.Bycontrast,thecontributionneartheISCOdominatesforthecorrectionsatthe3PNorderorhigher. AlthoughthePNconvergenceisnotclearlyseenforq > 0.9,weshouldnotethatthephaseerrorisneverextremelyenhanced forsomeparticularpost-Newtonianorder,largelyexceedingthevaluesfor3PNor3.5PNorder,whichwe mainlyfocusonin thefollowingdiscussion. B. Theexpecteddephasingfromtheunkownhigherorderpost-Newtonianterms Now we moveon to our main issue: evaluatingthe dephasingdue to the yetunknownhigherorderPN terms, ∆Φ[L[0] + full L˜[1] ,L˜[1] ],basedontheideafortheextrapolationproposedinSec.IV.Thescalingargumentwilltellusthatthedephas- 3.5PN >3.5PN 10 102 102 101 101 100 100 ad] 10-1 ad] 10-1 [rss10-2 [rss10-2 e e Φgu10-3 q=q0=.909.98 Φgu10-3 q=q0=.909.98 ∆ ∆ 10-4 q=0.5 10-4 q=0.5 spin linear q=0.0 spin linear q=0.0 10-5 3PN Hybrid q=-0.5 10-5 3.5PN Hybrid q=-0.5 q=-0.9 q=-0.9 10-6 10-6 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 10-16 10-14 10-12 10-10 10-8 10-6 10-4 10-2 (ν/M)*M (ν/M)*M solar solar FIG.4: Theexpectedresidualdephasing∆Φ [L[0] +L˜[1] ,L˜[1] ]causedbytheunknownpartoftheaverageddissipativesecond guess full nPN >nPN orderself-forces.Forn=3,the3.5PNknownspinindependentpartofthefluxatthenextleadingorderinthemassratioistreatedasunkown. ingscomingfromtherespectivePNtermsattheleadingorderinthemassratiowillberoughlyproportionaltothecorresponding nextleadingorderdephasings.Namely, ∆Φ[L[0] ,L˜[0] −L[0] ]:∆Φ[L˜[0] ,L˜[0] ]≈∆Φ[L˜[0] ,L˜[1] ]:∆Φ[L[0] +L˜[1] ,L˜[1] ], (22) 0PN nPN 0PN nPN >nPN full nPN full nPN >nPN willhold. RecallthatL˜[0] consistsofthetermsattheleadingorderinmassratiouptothesamenPNorderthatisavailablein nPN L˜[1] . nPN Here, we have basically three options in the choice of the flux among the Taylor flux, the exponentialresummed flux and thehybridflux. (Recallthatthehybridfluxisdefinedassuchthatisidenticaltotheexponentialresummedfluxattheleading orderinthemassratio.)Ononehand,theTaylorfluxisproblematicsinceitcanbenegativebeforereachingISCOforsomePN orders,say2.5PN,withmodelatevalueofthespinparameteraswementionedearlier. Insuchcasesthephasebeforetheplunge isnotwelldefined. Ontheotherhand,thedifferencebetweentheexponentialresummedfluxandthehybridfluxisnegligible. Therefore,wehereconsiderthehybridfluxonly. Theresidualdephasingestimatedbyusing(22) ∆Φ[L˜[0] ,L˜[0] ] ∆Φ [L[0] +L˜[1] ,L˜[1] ]:= nPN >nPN ∆Φ[L˜[0] ,L˜[1] ], (23) guess full nPN >nPN ∆Φ[L[0] ,L˜[0] −L[0] ] full nPN 0PN nPN 0PN withn = 3andn = 3.5isdepictedinFIG.4. ThetrendoftheestimateddephasingisindependentofthetruncatedPNorder. ThepointofFIG.4isthattheresidualdephasingisrathersupressedoverthewholerangeofthebainaryparameters.Indeed,the residualdephasingisatmostabout10radinthecaseof3PNtruncation.Inthecaseof3.5PNtruncation,themaximumvalueof theresidualdephasingisbiggerbyfactor2orso. Sincetheplotisgivenintheunitofradian,thevaluemustbedividedby2πto translateitintothenumberofcycles. Fromtheaboveresults,onemaysaythattheresidualdephasingduetotheyetunknown PNcorrectionsatthenextleadingorderinthemassratio,∆Φ [L[0] +L˜[1] ,L˜[1] ]isnotnegligible,adoptingonecycle guess full nPN >nPN asthecriteriaforthesignificantdephasing. InFIG.4,weseeatinybumparoundνM /M ≈ 10−10−10−11 forsomevaluesofq. Thereasonwhythisbumpappears ⊙ at this position can be understood from the observation that L˜[0] − L[0] crosses zero within the domain of the integral, nPN 0PN x < x < x when the bump appearers. When L˜[0] −L[0] crosses zero, the factor in the denominator of Eq. (23) 0 ISCO nPN 0PN ∆Φ[L[0] ,L˜[0] − L[0] ] suffers from more or less accidental suppression even though we take the absolute value in the 0PN nPN 0PN integrandof∆Φin(20). WedenotethevalueofxatwhichthefluxL˜[0] −L[0] crosseszerobyx . Then,ifx ≪x nPN 0PN cross 0 cross orx ≫ x , thissuppressiondoesnotproducemucheffectontheestimate of∆Φ[L[0] ,L˜[0] −L[0] ]. Therefore,the 0 cross 0PN nPN 0PN suppression becomes significant only for x ≈ x . The value of x is rather close to the value at ISCO, x , but 0 cross cross ISCO typicallynotextremelyclosetoit. Hence,x ≈ x occurswhenx isneitherextremelyclosetoISCOnorverysmalllike 0 cross 0 x ≪1,whichcorrespondstotheparameterregionνM /M ≈10−10−10−11. Sincenowwefindthatthistinybumpistobe 0 ⊙ attributedtoanaccidentalzeroinL˜[0] −L[0] ,thisbumpwouldberegardedasanartificialfeature.Ifitisfaretoremovethe nPN 0PN bumpsfromFIG.4,wewillfindthatthesignificantlylargedephasing(inthesenseofexceeding1cycle)willbeexpectedonly forνM /M &10−9. ⊙

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.