Impact of Subleading Corrections on Hadronic B Decays Kwei-Chou Yang Department of Physics, Chung Yuan Christian University, Chung-Li, Taiwan 320, Republic of China (Dated: February 1, 2008) Westudythesubleadingcorrectionsoriginatingfromthe3-parton(qq¯g)Fockstatesoffinal-state mesons in B decays. The corrections could give significant contributions to decays involving an ω or η(′) in the final states. Our results indicate the similarity of ωK and ωπ− rates, of order 5×10−6, consistent with the recent measurements. We obtain a (B → J/ψK) ≈ 0.27+0.05i, in 2 good agreement with data. Withoutresorting totheunknownsinglet annihilation effects,3-parton Fock state contributions can enhancethebranching ratios of Kη′ tothe level above50×10−6. PACSnumbers: 13.25.Hw,12.39.St,12.38.Lg 4 0 The rare B decays allow us to access the Kobayashi- including the contributionsfromannihilationeffects, the 0 Maskawa(KM)mixinganglesandsearchfornewphysics. pQCDresultsreadBr(B0 ωK0).2 10−6 [9].) This 2 MuchprogressinthestudyofBdecays[1,2,3]hasbeen → × 0 result hints that, to account for the large ωK rate, the n recently made in QCD-based approaches. In the pertur- annihilation contributions to the BRs of all B KV a bative QCD (pQCD) framework, the importance of the → J modesshouldbeover80%. Ifitwillbetrue,itshouldbe weak annihilation effects in B Kπ decays was first 4 emphasized by [3], where the an→nihilation contributions easy to observe, for instance, the following simple rela- 1 tion ρ+K−,0 : ρ0K−,0 : ωK−,0 1 : (1/√2)2 : (1/√2)2, are almost pure imaginary and therefore could lead to ≈ the same as their annihilation ratios squared. Neverthe- CP asymmetry predictions different from the QCD fac- 2 less,iftheglobalfitisextendedtoallmeasuredB PV v torization (QCDF) results [1]. Nevertheless, the QCDF modes, a small Kω rate 2 10−6 will be obtain→ed[10] 5 study showedthatthe annihilationeffects mayplayonly ∼ × and a reliable best fit cannot be reached. The present 0 a minor role in the enhancement of ππ,πK branching QCD approachseems hard to offer a coherent picture in 0 ratios (BRs) [1]. A recent QCDF fit to Kπ,ππ rates [2] dealing with B VP modes. 8 indicatedthateveniftheannihilationcontributionisne- → 0 In this letter we take into account the subleading cor- glected, one can still get quite good fitting results pro- 3 rections arising from the 3-parton Fock states of final vided that the strange quark mass is of order 80 MeV. 0 statemesons,asdepictedinFig.1,toQCDFdecaysam- / The annihilation effects might be much more impor- plitudes. Wefindthatitcouldgivesignificantcorrections h tant for VP modes, where P and V denote pseudoscalar p todecayswithω,orη(′) inthefinalstates. Asimplerule and vector mesons, respectively. It has been pointed out - extended to B PP,VP modes is obtained for the ef- p that in the absence of annihilation effects, the φK BRs fective coefficien→ts aSL with the subleading corrections, e are 4 10−6 [4] which is too small compared to the i v:h dωaKta−≈∼ra8t×e×,(61.07−+61.[35, 60]..6)Rec1e0n−t6l,yaBndellωeKob−s/eωrvπe−d a l1a[r5g]e. aS2iL = a2i+[1+(−1)δ3i+δ4i]c2i−1f3/2, Xi Sizable ωK res−ul1t.s2±are als×o reported in new BaBa∼r mea- aS2iL−1 = a2i−1+(−1)δ3i+δ4ic2if3, (2) surements [6] with ωK−,0 ωπ− 5 10−6. It is hard ar to understand the large st∼rength∼of ω×K rates from the wdehfienreedia=tth1e,·s·c·a,le5,µan=d ciΛarme th/2e W1il.s4oGnecVoewffiitchienΛts theoretical point of view. The ratio ωK0/ωπ− reads h χ B ≃ χ themomentumoftheemitptedgluonasshowninFig.1(b) ωK0/ωπ− V /V 2(f /f )2 and cb ub K π ≈| | 2 √2 ×(cid:12)(cid:12)a4−a6rχK +2r2(aa13++ra15a+2 a9/4)+fBfKb3(cid:12)(cid:12) , (1) f3 = m2BfωF1Bπ(m2ω)hωπ−|O1|B−iqqg =0.12 (3) (cid:12) (cid:12) (cid:12) (cid:12) inthe SU(3)limit. HereO =sγµ(1 γ )uuγ (1 γ )b, where(cid:12)r1 = fωF1Bπ/fπAB0ω, r2 = (F1BKfω)/(AB0(cid:12)ωfK), and α is the averaged fr1action of −the5π− mµom−ent5um rK = 2m2 /[m (m +m )] is the chirally enhanced fac- g χ K b s u carried by the gluon. For the ωK amplitudes, the term tor with m being the current quark masses, and b s,u 3 ≡ a3 + a5, which is originally negligible, is replaced by b (K,ω) is the annihilation contribution defined in [7]. 3 a +a +(c c )f andthe lattergivesthe significantly Theωπ− ratedependsweaklyontheannihilationeffects. 3 5 4− 6 3 constructive contribution to the rates. It can thus help Without annihilation, since a and a rK terms in the 4 6 χ understanding the reason for the similarity between Kω ωK0 amplitude have opposite signs, the ratio ωK0/ωπ− andπ−ω. Onthe other hand, the subleading corrections shouldbe verysmall. Apossibilitytoexplainthe datais can contribute significantly to the processes with η(′) in that the annihilation effects may give the dominant con- thefinalstates,forwhichtheterma a alwaysappears 3 5 − tribution to ωK modes as shown in the QCDF fit [8] for inthedecayamplitudesandbecomesa a +(c +c )f 3 5 4 6 3 − B PP togetherwithsomeB VP modes. (However, after taking into account the corrections. We also get → → 2 Φω Due to G-parity, Φ and Ψ are antisymmetric in inter- changing α and α for the ω, so that Eq. (6) vanishes. u¯ u b B π In Fig. 1(b), we consider the emitted gluon which be- comes a parton of the pion. We first take G (vx) (a) µν Gµν(0)eivkgπ·x and then adopt the collinear approxima≃- Φω tionkπ =α p inthefinalstageofthecalculation,where g g π α is the averagedfraction of the pion’s momentum car- b g B π riedbythegluon. Thecalculationisstraightforwardand (b) leads to ωπ− O B− 1 Fig.1(b) FIG.1: Thecontributionsoftheqq¯g Fockstatesof the(a)ω h | | i and (b) π− mesons to theB− →ωπ− amplitude. fωmω 1 1 = dv φ (u) ω 4√2N Z Z c 0 0 i∂ aSL(J/ψK) 0.27+0.05i which is well consistent with π− d¯γ (1 γ )g G bB− Tr ǫ∗ 2 ≈ ×h | µ − 5 s νβ | i∂kπ (cid:26) (cid:20)6 ω the data. The result resolves the long-standing sign am- gβ e bigLueittyuosf sRteu(day2).the subleading corrections originating γν(v 6kgπ +u6pω)γµ γµ(v 6kgπ +u¯6pω)γν ×(cid:18) (vkπ +up )2 − (vkπ+u¯p )2 (cid:19)(cid:21)(cid:27) fromthe3-partonFockstatesoffinal-statemesons. Tak- g ω g ω ing the ωπ− mode as an illustration, there are two dif- = 2√2fωpα π− d¯γµγ g G bB− , (7) ferent types of diagrams shown in Fig. 1. In the follow- ∼−α m2 ωh | 5 s αµ | i g B ing calculation, we adopt the conventions Dα = ∂α + where the ω mesons’s asympteotic leading-twist distri- ig TaAa, G = (1/2)ǫ Gµν, ǫ0123 = 1, and use s α αβ αβµν − bution amplitude φω(u) = 6uu¯ has been taken and the Fock-Schwinger gauge to ensure the gauge-invariant e u¯ = 1 u. We have two unknown parameters nature of the results pα π− d¯γµ−γ g G bB− and α needed to be deter- ωh | 5 s αµ | i g 1 mined. First, let us evaluate pα π− d¯γµγ g G bB− . A (x)= dv vG (vx)xν. (4) e ωh | 5 s αµ | i µ −Z µν Thematrixelementcanbecalculatedbyconsideringthe 0 e correlationfunction: For Fig. 1(a) where the contributions come from the 3-parton Fock states of the ω, because of the V A Πα(p,p+q)=i d4xeipx π−(q)T(j3p(x)jB(0))0 − Z h | | i structure of the weak interaction vertex, the relevant 3- m2f 1 parton light-cone distribution amplitudes (LCDA) up to = B B the twist-4 level are given by [11] mb m2B−(p+q)2 π− d¯γµγ g G bB−(q+p) + , (8) 5 s αµ ω(p ,λ)u¯(0)γ g G (vx)u(0)0 ×h | | i ··· ω µ s αβ h f m2| | i where j3p = d¯gseGαµγµγ5b,jB = ¯biγ5u, the ellipses ∼=i ω√2ω Z Dαeipωxvαg(cid:26) pωβgαµ−pωαgβµ Φ(αi) denote contributiones from the higher resonance states, (cid:0) (cid:1) which can couple to the current j , and the transition B 1 + pω(pωx pωx )(Ψ(α ) Φ(α )) , (5) matrix element can be parametrized as (p x) µ β α− α β i − i (cid:27) ω π−(q)d¯γµγ g G bB−(p+q) 5 s αµ h | | i where Dα = dαu¯dαudαgδ(1 − αu¯ − αu − αg), with =pαf−(p2)+(peα+2qα)f+(p2). (9) α ,α ,α beingthefractionsoftheωmomentumcarried u¯ u g In the deep Euclidean region of (p +q)2, as depicted by the u¯-quark, u-quark and gluon, respectively. Here Φ in Fig. 2 the correlation function can be perturbatively and Ψ are the twist-4 LCDAs. Note that all the compo- calculated in QCD and expressed in terms of 3-parton nents of the coordinate x should be taken into account LCDAs of the pion, in the calculation before the collinear approximation is applied. The exponential in Eq. (5) before the collinear 1 du u approximationisactuallyeikg·xv,wherekg isthegluon’s ΠQαCD = qαZ m2 (p+uq)2 Z dαg momentum, and the resultant calculation can be eas- 0 b − 0 ily performed in the momentum space with substituting [ 2(p q)f3πφ3π +fπmb(φ˜k 2φ˜⊥)],(10) × − · − x (i/v)(∂/∂kα). The result of Fig. 1(a) is found to α →− g where u = αd +αg, and the 3-parton pion LCDAs are be defined by [12, 13] 4√2m2 π(q)d¯(x)g G (vx)σ γ u(0)0 hωπ−|O1|B−iFig.1(a) =fω 3m2 ω h= i|f [q s(qµgν qαβg 5) q| i(q g q g )] B 3π β µ να ν µα α µ νβ ν µβ − − − 2Φ(α ) Ψ(α ) ×hπ−|d¯6pω(1−γ5)b|B−iZ Dα iα−g i .(6) ×Z Dαφ3πeiqx(αd+vαg), (11) 3 0.07 u 00..88 00..66 00..44 (cid:2) 00..22 2 0.06 Φπ Ω 1.5 m A 1 u d (cid:1)(cid:3)0.05 f(cid:2)0.5 f 0 00 b 0.04 00..22 p+q p 5 10M1522(cid:1)0G2e5V320(cid:2)35 40 00..ΑΑ44g00..66 0.8 1. FIG.2: Thediagrammaticillustrationtothecorrelationfunc- FIG. 3: (a) Form factor f−(m2ω) plotted as a function of the tion, Eq. (8). BorelmasssquaredM2. (b)f−(m2ω)= 01du 0udαgAf− with M2=10 GeV2. The volume in the ploRt is eqRual to f−(m2ω). Hereu=αd+αg. π(q)d¯(x)γ g G˜ (vx)u(0)0 =if (q g q g ) µ s αβ π α βµ β αµ h | | i − q ×Z Dαφ˜⊥eiqx(αd+vαg)−ifπqxµ(qαxβ −qβxα) f(9± p2r0e)dGicetVio2n. Tbyheardeosputltinisgdse0pi≃cted37inGFeiVg.23(aan)d. TMhe2r≈e- ×Z Dα(φ˜k+φ˜⊥)eiqx(αd+vαg). (12) sthu−eltiunngcveartluaeinitsyfc∓o(mme2ωs)f=rom±(0th.0e57su±m0.r0u0l5e)aGneaVly2s,isw.hWeree then get Here φ is a twist-3 DA, φ˜ and φ˜ are all of twist-4, 3π ⊥ k pα π− d¯γµγ g G bB− 1 ωh | 5 s αµ | i φ3π(αi) = 360αdαu¯α2gh1+ω1,02(7αg−3) =−f−(m2ω)×(em2B −m2π−m2ω)≃−1.6 GeV4. (16) +ω2,0(2−4αdαu¯−8αg+8α2g) Next, we determine the value of αg. For illus- tration, we plot in Fig. 3(b) the amplitude A of +ω (3α α 2α +3α2) , f− 1,1 d u¯− g g i the f−(m2ω) sum rule versus αg and u(= αd + αg) 1 by adopting M2=10 GeV2, where A satisfies f = φ˜ (α ) = 30δ2α2(1 α )[ +2ε(1 2α )] , f− − ⊥ i g − g 3 − g 1du udα A , i.e. the volume in the plot is equal to 0 0 g f− φ˜k(αi) = −120δ2αdαu¯αg[31 +ε(1−3αg)] . (13) rfRe−g(imon2ωR)w.hTerheeure&sul6ta0n%t,fαorm.fa3c0t%or. isTdhoemaivneartaegdedbyfrtahce- g tion of the pion momentum carried by the gluon is then Since the quark’s momentum after emitting the gluon is 1 u estimated to be α =( du dα α A )/f 0.23. roughly of order mB/2 and the emitted gluon’s momen- g 0 0 g g f− − ≃ ttuhme scisalΛeχfo∼r thαegpsπep(aαrgatwioinllobfethdeispcuerstsuedrbbateilvoewa),ndwenosnet- anWd ef3the=refo0re.12obwtahiinRchhωgπiRv−e|sO1t|hBe−icFoirgr.1e(cbt)ion≃to0.1a3i perturbative parts at µh = ΛχmB/2 1.4 GeV. The as defined in Eq. (2). We list ai without and corresponding parameters apt the scale ≃µh read: f3π = with the subleading corrections in Table I, where δ02.00=320G.1e9VG2,eVω12,,0ε==−20..6435,[ω123,]0. =To9.6c2a,lcωu1la,1te=f±−,1.t0h5e, tphαωehπa−p|dp¯γroµxγi5mgasGtioαnµb|−B√−2i/ipFαπ1Bhωπ|u¯hγaµsgsbGeeeαnµb|mBa−die/.AB0Nωot≃e contributionsofhigherresonancesin Eq.(8)areapprox- that a and a do not receive subleading corrections. 6 8 e imated by Inthefollowinganalysis,theLCsumruleformfactors andm =80MeVareused. Wewillinsteaduseasmaller 1 ∞ ImΠQαCD ds, (14) AB0ρ =s0.28whichispreferredbytheωπ−data. Theωπ− π Zs0 s−(p+q)2 mode is ideal for extracting AB0ρ since its rate is insen- sitive to annihilation effects. We find that the spectator wEqhse.re(8s)0aisndth(e10th)raenshdomldaokfinhgigthheerBreosroenlatnracenss.foErmquaattiionng: parameter XH = lnmΛhB(1+ρHeiφH) is consistent with zero in the analysis. The reasonis that since the specta- [m2 (p + q)2]−1 = exp( m2/M2), we obtain the B B − − B tor interaction with a gluon exchange between the emit- light-cone sum rule tedmesonandtherecoiledpseudoscalarmesonoftwist-3 LCDA Φ is end-point divergent in the collinear expan- f−(p2)= 2mm2bf Z 1duZ udαg e(mM2B2−mu2b−Mu¯2p2) sion, theσvertex of the gluon and spectator quark should B B 0 ∆ be consideredinside the pion wave function, i.e., for this m2 p2 m situation the pion itself is at a 3-parton Fock state. An- f b − φ f b(φ˜ 2φ˜ ) , (15) ×(cid:20) 3π u2 3π − π u k− ⊥ (cid:21) nihilationeffectshavebeenemphasizedinφK studies[4]. We adopt the annihilation parameters ρ 0.9,φ 0 A A ≃ ≃ andf (p2)= f (p2),where∆=u (m2 p2)/(s p2). which give Br(B− φK−) 8.5 10−6, consistent + − − − b− 0− → ≃ × Using the above parameters for LCDAs, m = (4.7 with the current data. Here the annihilation parameter b 0.1) GeV, and fB = 180 MeV, we obtain the stab±le ofVP modesis definedasXAVP =lnmΛhB(1+ρAeiφA)[1] 4 TABLE I: Values for ai for charmless B decay processes without (first row) and with (second row) 3-parton Fock state contributions of final state mesons, where a3−10 are in units of 10−4 and theannihilation effects are not included. a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 1.02+0.014i 0.10−0.08i 26+26i −328−91i 1.2−30i −487−72i 0.7+0.3i 4.5+0.6i −89−0.1i −5.9+7i 0.974+0.014i 0.25−0.08i −55+26i −291−91i 112−30i −487−72i −0.3+0.3i 4.5+0.6i −88−0.1i −18+7i (cid:2)K10. Η(cid:6)75. result for aS2L is well consistent with that extracted from Ω (cid:1)a(cid:2) (cid:5)K (cid:2)b(cid:6) data. This solves the long-standing sign ambiguity of (cid:5)Π, ’,Η50. a2(J/ψK)whichturnsouttobepositiveforitsrealpart. Ω 5. K Note that if Re(a ) were negative, f would have to be (cid:2) (cid:3)25. 2 3 0.3 which in turns would lead to φK 20 10−6 B B ∼ − ∼ × (cid:1)Br 0 Br(cid:2) 000 and ωπ−,ωK ∼1×10−6! 0o 90o 180o 270o 360o 0o 90o 180o 270o 360o The subleading corrections could give significant con- Γ Γ tributions to the decays with η(′) in the final states be- cause these decay amplitudes always contain the singlet FIG. 4: (a) Dash, solid, and dot-dash for B → factor a a . We plot the BRs of Kη′,K∗η modes Kωπ−−η,′ω,KK0−η′a,Knd∗−ωηK,0a;n(dbK) s∗o0lηid.,Bdrostas,redoint-udnaisths,oafn1d0−d6a.sh for versus γ3i−n F5ig. 4(b), where XAPP ≈ 0, the annihila- tion parameter for PP modes, has been used as it could give good fit results for Kπ,ππ rates [2]. We do not Ρ(cid:5)15. (cid:2)a(cid:5) (cid:7)(cid:2)(cid:9)(cid:10)Η(cid:10)15. (cid:2)b(cid:10) mcoondsiedserbetchaeusseinigtleits astninllihhialartdiotnocdoertreercmtioinne[a1t5]pirnesKenηt′. K(cid:3)10. ,ΠΡ10. With (without) the subleading corrections, we see that BrB(cid:2) 5. (cid:4)K(cid:3) 5. Kin−uηn′it&s oKf 10η0−′ 6≈. T55h(e3c5o),rraenctdioKns∗−giηve&70K%∗0aηnd≈2254%(2e0n)-, B 00o 90o 180o 270o 360o Br(cid:2) 00o 90o 180o 270o 360o thhaantcewmitehnts(wtiothKouηt′)atnhde Kco∗rηrecrtaitoenss,,rKes∗pηe′ct.ive1ly. N10o−te6 Γ Γ × (&4 10−6)andKη.1 10−6 (&1 10−6). InpQCD × × × FIG. 5: (a) Solid, dash, dot-dash, and dots for B → calculation[16],itseemsthatK0η′(=41 10−6)wasun- × K0ρ0,K−ρ+,K0ρ−,andK−ρ0;(b)solid,dot-dash,dash,and derestimatedwhileK0η(=7 10−6)overestimatedcom- dotsfor B→K∗−π+,K∗0π0,ρ−η and ρ−η′. Brs are in units pared to the data[5, 6]. Wit×hin the QCDF framework, of 10−6. by only considering the two-parton LCDAs of mesons, BenekeandNeubert[15]obtainedK∗η 13 10−6,just ∼ × half of the experimental value, but with a huge error. and its the imaginary part is neglected since the BRs Forfurthercomparisonwithothercalculations,weplot are insensitive to it. In Fig. 4(a) we plot the BRs of Kρ,K∗π,ρ−η(′) modes in Fig. 5. The subleading con- γωπ≈−(a6n0d−ω1K20)m◦oadreesinvegrosoudsaγg(r≡eemaregnVtu∗wb)i.thTdhaetrae.suAlttsγfo=r thraivbeutKio0nρs0,tKo −thρe+s,eKB0Rρ−s,aKre−ρ.0 =156%,.7,7A,t2(γ =10−960)◦,,awnde 90◦, it gives ωπ−,ωK−,ωK0 to be 5.5,4.5,4.3, respec- K∗−π+,K∗0π0,ρ−η,ρ−η′ = 9,2,6,4 ( 10−×6). In [7], tively, in units of 10−6. Without the contributions from × to fit φK,ωK rates, the annihilation effects dominate 3-parton Fock states of mesons, φK−,ωπ−,ωK−,ωK0 the decay amplitudes and the form factors FBK,ABπ will become 11,3.9,3.1,2.9 (in units of 10−6). The 3- are rather small, such that it will lead to ρ1+K−,00 : parton Fock state effects give constructive contributions ρ0K−,0 : ωK−,0 1 : (1/√2)2 : (1/√2)2, while the to ωπ,ωK modes, but destructive one to the φK mode. pQCD results for r≈ates are K0ρ0,K−ρ+,K0ρ−,K−ρ0 = The corrections from 3-partonFock states of the kaon 2.5,5.4,3.0,2.2( 10−6) [9]. also give a definite answer to the longstanding problem × for a (J/ψK). In the earlier study, to account for the In conclusion, we have calculated the contributions 2 experimental value a , the parameter ρ has to be & arising from 3-parton Fock states of mesons in B de- 2 H 1.5 [14]. As emphas|ize|d in passing, without fine-tuning cays. We find that the contributions could give signif- ρ , we calculate the amplitudes from the 3-parton Fock icant corrections to decays with an ω or η(′) in the fi- H states of the kaon. With the same procedure as shown nal states. Our main results for γ (60 110)◦ are ≈ − above,we obtain f (m2 ) 0.08, f 0.14and thus ωπ−,ωK−,ωK0 6.0,(6 5),5.1, respectively, in units ∓ J/ψ ≃± 3 ≃ ≈ ∼ aSL =at2+c (µ )f 0.10+0.05i+c (µ )0.14=0.27+ of10−6,whilethepreviousQCDFglobalfittoVP modes 0.205i, w2here1at2his3d≃etermined up to1thhe twist-2 order and the pQCD results gave smaller ωK BRs of order andtheSU(3)2approximationforf hasbeenmade. The . 3 10−6 [9, 10]. We predict that K0ρ0 ωK and 3 × ∼ 5 K0ρ0/K−ρ0 3. Including the corrections we obtain Kη′ to the level above 5 10−5. ≈ × a (J/ψK) 0.27+0.05i which is well consistent with 2 ≈ the data. The sign of Re(a ) turns out to be positive. This work was supported in part by the grant from 2 Without resorting to the unknown singlet annihilation NSC91-2112-M-033-013. IamgratefultoH.Y.Chengfor effects, 3-parton Fock state contributions can enhance acriticalreadingofthemanuscriptandusefulcomments. [1] M. Beneke et al.,Nucl. Phys.B 606, 245 (2001). [7] D.S. Du et al.,Phys. Rev.D 65, 094025 (2002). [2] M. Beneke, arXiv:hep-ph/0207228. [8] D.S. Du et al.,Phys. Rev.D 67, 014023 (2003). [3] Y.Y. Keum, H.n. Li and A.I. Sanda, Phys. Lett. B 504, [9] C.H. Chen, Phys.Lett. B 525, 56 (2002). 6 (2001). [10] R. Aleksan et al.,Phys.Rev. D 67, 094019 (2003). [4] H.Y. Cheng and K.C. Yang, Phys. Rev. D 64, 074004 [11] P. Ball and V.M. Braun, arXiv:hep-ph/9808229. (2001). [12] V.M.BraunandI.B.Filyanov,Z.Phys.C48,239(1990). [5] Belle Collaboration, R.S. Lu et al., Phys. Rev.Lett. 89, [13] V.M. Belyaev et al.,Phys. Rev.D 51, 6177 (1995). 191801 (2002); Belle Collaboration, H. Aihara, talk pre- [14] H.Y. Cheng and K.C. Yang, Phys. Rev. D 63, 074011 sentedatFlavorPhysicsandCPViolation,Paris,France, (2001). June, 3-6, 2003. [15] M. Beneke and M. Neubert, Nucl. Phys. B 651, 225 [6] BaBar Collaboration, M. Pivk, talk presented at the (2003). XXXVIII Rencontres de Moriond, Les Arcs, Savoie, [16] E. Kou and A. I. Sanda,Phys. Lett. B 525, 240 (2002). France, March 15-29, 2003.