ebook img

Impact of Natural Hazards on Oil and Gas Extraction: The South Caspian Basin PDF

363 Pages·1999·9.494 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impact of Natural Hazards on Oil and Gas Extraction: The South Caspian Basin

IMPACT OF NATURAL HAZARDS ON OIL AND GAS EXTRACTION: THE SOUTH CASPIAN BASIN IMPACT OF NATURAL HAZARDS ON OIL AND GAS EXTRACTION: THE SOUTH CASPIAN BASIN E. 8agirov Conoco Inc. P.O. Box 2197 Houston, Texas and I. Lerche Department of Geological Sciences University of South Carolina Columbia, South Carolina Springer Science+Business Media, LLC Library of Congress Cataloging-in-Publication Data Lerche. I. (Ian) Impact of natural hazards on oil and gas extraction: the South Caspian Basin / Ian Lerche and Elchin Bagirov p. em. Includes bibliographical references and index. 1. Petroleum--Geology--Caspian Sea region. 2. Hazardous geographic environments--Caspian Sea Region. 3. Natural disasters--Caspian Sea Region. I. Bagirov, Elchin. II. Title TN875 .L47 2000 6221.33810947S--dc21 99-047693 ISBN 978-1-4419-3329-4 ISBN 978-1-4757-3019-7 (eBook) DOI 10.1007/978-1-4757-3019-7 ©1999 Springer Science+Business Media New York Originally published by Kluwer AcademiclPlenum Publishers, New York in 1999. Softcover reprint of the hardcover 1st edition 1999 http://www.wkap.com 10 9 8 7 6 5 4 3 2 1 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher PREFACE Since the dissolution of the Soviet Union almost a decade ago, there has been rapid evolution of interactions between the Western nations and individual countries of the former Soviet Union. As part of that interaction, the autonomous independent Republic of Azerbaijan through its scientific arm, the Geological Institute of the Azerbaijan Academy of Sciences under the Directorship of Academician Akif Ali-Zadeh and Deputy Director Ibrahim Guliev, arranged for personnel to be seconded to the University of South Carolina. The idea here was to see to what extent a quantitative understanding could be achieved of the evolution of the Azerbaijan part of the South Caspian Basin from dynamical, thermal and hydrocarbon perspectives. The Azeris brought with them copious amounts of data collected over decades which, together with the quantitative numerical codes available at USC, enabled a concerted effort to be put forward, culminating in two large books (Evolution of the South Caspian Basin: Geological Risks and Probable Hazards, 675 pps; and The South Caspian Basin: Stratigraphy, Geochemistry, and Risk Analysis, 472 pps.) both of which were published by the Azerbaijan Academy of Sciences, and also many scientific papers. Thus, over the last four to five years an integrated comprehensive start has been made to understand the hydrocarbon proneness of the South Caspian Basin. In the course of the endeavor to understand the basinal evolution, it became clear that a variety of natural hazards occur in the Basin. These hazards are important for their potential impact on rigs, sub-sea completion equipment, pipelines, and for drilling hazards. Over the time of the basin evaluation study, we have also been compiling different hazard assessments based both on historical data bases and on quantitative hazard techniques constrained by geological, chemical and physical conditions appropriate for the onshore and offshore components of the South Caspian Basin. The purpose of this monograph is to provide technical details of the hazards so that some appreciation is available of the likely worst case conditions for each hazard and their frequencies of occurrence. In each case we tried not just to estimate the possibility of the event, but to answer the question "what will happen if the event does indeed occur?" In this way one can plan strategies and tactics for rig-siting, pipelines, sub-sea completions, and for drilling. While not necessarily eliminating potential hazards, the ideas and estimates presented here may at least minimize the influence of particular hazards. All examples are taken from one single basin -the South Caspian -to show the variation of natural hazards in one geological setting, in order to compare the scales of possible damages caused by such phenomena within a consistent geological framework. In our opinion, the work presented here should be readily understood by the average graduate student, and should be of considerable use to those individuals in the oil industry whose job it is to assess practical hazards as their companies undertake hydrocarbon exploration and/or production efforts. We believe the tools and techniques proposed in this book can be used by such v VI individuals in their assessments of natural hazards. Companies working in the South Caspian region can use directly the specific results presented in the book. We are particularly grateful to Akif Ali-Zadeh, Ibrahim Guliev, and their many colleagues at the Geological Institute of Azerbaijan for their unending cooperation. We thank the Industrial Associates of the Basin Modeling Group at USC for their financial support. And we are most appreciative of families and friends who suffer the most during the many stages of writing a book. This work would not have been possible without the unfailing support of our secretary, Donna Black, who, once again, converted hieroglyphic handwriting to legible English typescript. To you all, and many others, we extend our thanks. Elchin Bagirov Ian Lerche Columbia, SC CONTENTS LOCATION MAPS. . . . . . .. .............................. X111 1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction To The Quantitative Assessment of Geological Hazards. . . . . . . . . . . .. ................ 1 B. Some Information on the South Caspian Basin. . . . . . . 2 1. Historical Oil Review. . . . . . . . . . . . . . . . . . . . 2 2. Tectonical Review. . . . . . . . . . . . . . . . . . . . . . 4 3. Sedimentation rates of the South Caspian Basin 8 4. Mud Volcanoes and Diapirs. . . . . . . . . . . . . . . 11 2 EARTHQUAKE HAZARDS. . . . . . . . . . . . . . . . . . . . . . .. 15 A. Seismicity Hazards. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1. Frequency and Strength Distributions of Major Earthquakes. . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2. Directional Distribution of Longitudinal Earthquakes. . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3. Occurrences of Seismic Dislocations, Causes, and Spatial Onentations . . . . . . . . . . . . . . . . . .. 25 4. An Assessment Procedure for Seismic Hazards to Installation Foundations. . . . . . . . . . . . . . .. 27 B. Conclusions............ . . . . . . . . . . . . . . . . . . . . . . . . .. 28 3 FAULT AND FRACTURE HAZARDS ........... '" 31 A. Deformation of Sedimentary Beds Around a Mud Diapir ..................................... " 32 B. Interrelated Seismic and Mud Volcano Hazards .... " 37 C. Fracture Formations Associated with Mud Volcano Eruptions ................................... " 40 D. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44 Appendix A: ........................................ 46 Modeling Strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 Modeling Stress ............................. " 47 Modeling fracturing of sediments. . . . . . . . . . . . . . . . .. 48 VB Vlll 4 MUD VOLCANO ERUPTIONS AND FLAME HAZARDS ........................................ 49 A. Statistical Hazard Assessment from the Historical Record....................................... 49 1. Descriptive Information. . . . . . . . . . . . . . . . . .. 50 2. Onshore versus Offshore Statistics. . . . . . . . . . 51 3. Probability of a New Volcano Developing in the Chirag Area ........................... . 62 4. Distance distribution of individual groups of gryphons from a common eruptive center. . . .. 63 5. Waiting Time predictions and mud volcano frequency of eruptions in the Chirag Field ... . 65 a. Determination of eruptive intensity .. . 66 b. Variability of observed eruptions with time ........................... . 67 c. Evaluation of the average number of eruptions per year ................ . 72 d. Expected number of yearly eruptions at the Chirag area. . . . . . . . . . . . . . . . . 73 B. Flaming Eruptions. Historical Review. . . . . . . . . . . . .. 75 C. Factors Associated with Flaming Eruptions. . . . . . . . .. 81 1. Composition of mud volcano gases. . . . . . . . .. 81 2. Flame Ignition During Eruptions. . . . . . . . . . .. 84 3. Flame Height Distribution. . . . . . . . . . . . . . . .. 87 4. Emitted Gas Volume Distribution. . . . . . . . . .. 88 5. Gas Volumes Emitted from Volcanic Mud. . .. 90 D. Flame Hazard Distances. . . . . . . . . . . . . . . . . . . . . . . .. 90 1. A Simple Model of Flame Column Distortion. 91 2. Heating Hazards. . . . . . . . . . . . . . . . . . . . . . . .. 94 3. Test Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 a. The Eruption of Duvanny Island in 1961 .......................... . 96 b. Case History A: High Angle Flames .. 97 (i). Flames at 70° to the Horizontal 99 (ii). Flames at 80° to the Horizontal 100 c. Case History B: Low Angle Flames .. 103 E. Conclusions .................................. . 105 Appendix A. Solutions to Equations (4.15a) and (4.15b) under the initial conditions of Equations (4.16) ...... . 110 A. Downward Flowing Wind (sinw>O) ........ . 110 B. Horizontal Flowing Wind (sinr-O) ......... . 112 C. Upward Flowing Wind (simJ1<O) ........... . 113 D. The Length of the Flame Column .......... . 114 Appendix B. Heating Effects .......................... . 114 A. Radiation ............................. . 115 B. Convection. ........................... . 116 IX Appendix C. Summaries of Some Historical Flame Observations. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117 5 MUD FLOW HAZARDS. . . . . . . . . . . . . . . . . . . . . . . . . .. 123 A. Distribution of Variables related to Mud Volcano Flows ...................................... , 125 B. Dependence of Variables related to Mud Volcano Eruptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 129 C. Predicting the possible scales of mud flows based on dynamical models. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 133 D. Conclusions ................................... 140 Appendix A. Mathematical Formulation ................. , 142 l. Gravity Current Flow. . . . . . . . . . . . . . . . . . . .. 142 2. Mud Transport. . . . . . . . . . . . . . . . . . . . . . . . .. 144 3. Mud Deposition. . . . . . . . . . . . . . . . . . . . . . . .. 145 4. Erosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 146 6 HYDRATE HAZARDS ............................. 149 A. General Hydrate Dissociation Conditions. . . . . . . . . .. 149 B. Hydrate Properties. Pressure-Temperature Stability Fields ........................................ 151 C. Phase Diagrams and Evolution Tracks ............ " 153 1. Evolutionary tracks under sediment deposition redeposition conditions. . . . . . . . . . . . . . . . . .. 153 2. Evolutionary tracks under glacial-interglacial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 156 3. Evolutionary tracks under sea-level rise and/or fall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 158 4. Ethane enrichment in hydrates .............. 159 5. Aeolian effects: winter/summer and hydrate evaporation/reformation ................. " 160 D. Hazard Factors for Hydrates ...................... 162 E. Seismic Effects and Mud Flows. . . . . . . . . . . . . . . . . .. 164 F. Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167 Appendix: A Quantitative Procedure for Hydrate Composition Determination from Seismic Data. . . . . . . . . . . . . . . . . . . .. .. 168 7 GAS HAZARDS ................................... 171 A. Geology and Input Parameters. . . . . . . . . . . . . . . . . . .. 173 B. Model Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 177 l. Water Flow. . . . . . . . . . . . . . . . . . . . . . . . . . .. 188 2. Gas Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 195 C. Hazard Aspects .............................. " 209 D. Conclusions ................................... 210 Appendix A: Mathematical Considerations. . . . . . . . . . . . . . .. 211 1. Single Parameter Distributions. . . . . . . . . . . . . . . .. 212 2. Numerical Procedures. . . . . . . . . . . . . . . . . . . . . . .. 215 x 8 BRECCIA HAZARDS .............................. 217 A. General Observations. . . . . . . . . . . . . . . . . . . . . . . . . .. 217 B. Numerical Illustrations .......................... 218 1. Class 1. Onshore Ejecta. . . . . . . . . . . . . . . . .. 219 a. Planar Emission and Impact. . . . . . . .. 219 b. Raised Crater and Planar Impact. . . .. 222 c. Walled Crater Ejection and Planar Impact .......................... 227 d. Depressed Crater Emission onto a Higher Impact Plane. . . . . . . . . . . . . . . . . . . .. 231 2. Class 2. Ejecta under Offshore Conditions. . .. 233 a. Island Emission into the Ocean. . . . . .. 233 b. Submarine Emission. . . . . . . . . . . . . .. 238 C. Conclusions ................................. " 239 Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 239 A. Single Rock Fragment Motion in Air. . . . . . .. 239 B. Breccia Ejection in Air from a Walled Crater.. 241 C. Breccia Ejecta from a Depressed Crater. . . . .. 243 D. Submarine Breccia Ejecta. . . . . . . . . . . . . . . .. 244 E. Initial Distribution Considerations. . . . . . . . . . . 248 1. Initial Mass Distributions. . . . . . . . . .. 248 2. Initial Ejection Speeds. . . . . . . . . . . .. 248 9 OVERPRESSURE AND LATERAL STRESS IN SEDIMENTARY FORMATIONS ................... 251 A. Overpressure Hazards. . . . . . . . . . . . . . . . . . . . . . . . . .. 251 1. Results of Modeling along W-E 12-second cross-section. . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 a. Present-day Fluid Pressures. . . . . . . .. 252 b. Present-day Excess Pressure ......... 254 2. Results ofN-S cross-section Modeling ....... 255 a. Present-day Fluid Pressures. . . . . . . .. 255 b. Present-day Excess Pressure ......... 256 3. Results of I-D Modeling .................. 257 a. Fixed depths, variable excess pressure with time. . . . . . . . . . . . . . . . . . . .. .. 263 b. Isobaric pressures, variable depths with time. . . . . . . . . . . . . . . . . . . . . . .. 264 B. Horizontal Stress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 266 C. Conclusions ................................... 274 Appendix A ......................................... 275 1. The Governing Equations for Elastic Flexure with Constant or Variable Plate Rigidity ...... 275 2. The Inverse Tomographic Procedure. . . . . . . . . 278 Xl 10 MUD ISLAND AND MUD DIAPIR MOTION HAZARDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 283 A. Historical Observation of Mud Island Occurrence ..... 283 B. Mud Diapirs and Semi-Permanent Islands. . . . . . . . . .. 287 1. Evanescent Mud Islands. . . . . . . . . . . . . . . . .. 287 2. Mud Islands formed due to mud diapir rise. . .. 288 3. Submarine/Aeolian Islands. . . . . . . . . . . . . . .. 289 4. Dry Push-Out Islands ..................... 289 5. Almost permanent islands ................. 290 6. Lateral Diapir Motion. . . . . . . . . . . . . . . . . . .. 290 C. Hazard Aspects ofIsland Motion .................. 291 11 HAZARDS OF VARIABILITY IN RESERVOIR CHARACTERISTICS FOR SOUTH CASPIAN OIL FIELDS ........................................... 293 A. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 293 B. Specific Distributions of Reservoir Characteristics. . . .. 294 1. Geometrical Distributions. . . . . . . . . . . ... . . .. 294 a. Combined Onshore and Offshore Fields. . . . . . . . . . . . . . . . . . . . . . . . .. 294 (i) Producing Thickness. . . . . . .. 294 (ii) Areal Distribution. .......... 296 (iii) Volumetric Distribution. . . .. 296 (iv) Reservoir Depth Distribution .. 297 b. Onshore or Offshore Geometric Distributions. . . . . . . . . . . . . . . . . . . .. 297 2. Physical Parameter Distributions. . . . . . . . . . .. 298 a. Porosity. . . . . . . . . . . . . . . . . . . . . . . .. 299 b. Permeability . . . . . . . . . . . . . . . . . . . .. 299 c. Oil Viscosity . . . . . . . . . . . . . . . . . . . .. 299 d. Reserves, Recovery Factors, and Water Content. . . . . . . . . . . . . . . . . . . . . . . .. 299 e. Reserves Versus Horizons and Depths. 310 f. Reserves Versus Reservoir Thicknesses and Areas ....................... 311 g. Reserves and Production Versus Depth 311 C. Spatial Distribution of Economic Oil Field Horizons ... 320 D. Discussion and Conclusion. . . . . . . . . . . . . . . . . . . . . .. 322 Appendix A. List of Onshore and Offshore Oil Fields used together with producing horizons/field. . . . . . . . . . . . . . . . . . .. 324 12 NATURAL HAZARDS IN HYDROCARBON EXPLORATION AND PRODUCTION ASSESSMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 A. Catastrophic Loss in Exploration Assessments. . . . . .. 328 B. Catastrophic Loss after Oil is Found. . . . . . . . . . . . . .. 330

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.