ebook img

Impact of Intestinal Microbiota on Intestinal Luminal Metabolome. PDF

3.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impact of Intestinal Microbiota on Intestinal Luminal Metabolome.

Impact of Intestinal Microbiota on Intestinal Luminal Metabolome SUBJECTAREAS: MitsuharuMatsumoto1,2,RyokoKibe2,TakushiOoga3,YujiAiba4,ShinKurihara5,EmikoSawaki1, METABOLOMICS YasuhiroKoga4&YoshimiBenno2 ZOOLOGY ENVIRONMENTAL MICROBIOLOGY 1DairyScienceandTechnologyInstitute,KyodoMilkIndustryCo.Ltd.,Tokyo190-0182,Japan,2BennoLaboratory,Innovation Center,RIKEN,Wako,Saitama351-0198,Japan,3HumanMetabolomeTechnologies,Inc,Tsuruoka,Yamagata997-0052, METHODS Japan,4DepartmentofInfectiousDiseases,TokaiUniversitySchoolofMedicine,Isehara,Kanagawa259-1100,Japan,5Divisionof IntegratedLifeScience,GraduateSchoolofBiostudies,KyotoUniversity,Kyoto606-8502,Japan. Received 4August2011 Low–molecular-weightmetabolitesproducedbyintestinalmicrobiotaplayadirectroleinhealthand disease.Inthisstudy,weanalyzedthecolonicluminalmetabolomeusingcapillaryelectrophoresismass Accepted spectrometrywithtime-of-flight(CE-TOFMS)—anoveltechniqueforanalyzinganddifferentially 23December2011 displayingmetabolicprofiles—inordertoclarifythemetaboliteprofilesintheintestinallumen. CE-TOFMSidentified179metabolitesfromthecolonicluminalmetabolomeand48metaboliteswere Published presentinsignificantlyhigherconcentrationsand/orincidenceinthegerm-free(GF)micethaninthe 25January2012 Ex-GFmice(p,0.05),77metaboliteswerepresentinsignificantlylowerconcentrationsand/orincidence intheGFmicethanintheEx-GFmice(p,0.05),and56metabolitesshowednodifferencesinthe concentrationorincidencebetweenGFandEx-GFmice.Theseindicatethatintestinalmicrobiotahighly Correspondenceand influencedthecolonicluminalmetabolomeandacomprehensiveunderstandingofintestinalluminal requestsformaterials metabolomeiscriticalforclarifyinghost-intestinalbacterialinteractions. shouldbeaddressedto M.M.(m-matumoto@ Atleast1,000bacterialspecieshavebeenfoundtoinhabitthehumanintestine,and1014individualbacterial meito.co.jp) cellsofatleast160differentspeciesinhabiteachindividual’sintestine1,whichis10timesgreaterthanthe totalnumberofsomaticandgermcellsinthehumanbody.Intestinalmicrobiotaplayafundamentally importantroleinhealthanddiseasesuchasinflammatoryboweldisease2,allergy3,4,andcoloncancer5.Recently, therelationshipbetweenintestinalmicrobiotaandsystemicphenomena,suchasobesity6andautism7havebeen reported.Thelifespanofgerm-free(GF)miceislongerthanthatofconventionalmice8,showingthatintestinal microbiotacontributetolifespan.Inthelatterhalfofthe1990s,manymolecular-biologicalapproachesusing16S rRNAgenesequencinghavebeenperformedfortheanalysisofintestinalmicrobiota9.Morerecently,metage- nomictechniqueshavebeenusedtocharacterizeboththecompositionandthepotentialphysiologicaleffectsof themicrobialcommunity(microbiome)10,11.Somereportshavedemonstratedthatthegutmicrobiomeinfluences themetabolicprofilingoforgans,blood,andurineofthehost12,13. Low–molecular-weight metabolites produced by intestinal microbiota are absorbed constantly from the intestinal lumen and carried to systemic circulation; they play a direct role in health and disease. There are fewreportsconcerningthefunctionofmetabolitesproducedbyintestinalmicrobiota.Atpresent,someresearch studiesaretargetingspecificmetabolites,suchasshortchainfattyacids(SCFAs)14andpolyamines(PAs)15,16,but notglobalmetabolites(metabolome).Metabolomicsistherapidlyevolvingfieldofthecomprehensivemeasure- mentof,ideally,allmetabolitesinabiologicalfluid17,18.Tothebestofourknowledge,althoughmetabolomic approacheshavebeenemployedforthebiochemicalcharacterizationofmetabolicchangesinblood19orurine20 triggeredbygutmicrobiota,thereislittleknowledgeabouttheintestinalluminalmetabolome,whichmaybe sourceofmetabolitesinbloodandurine.Nicholsonandco-workers21,22suggestedanalyzingintestinalmicrobial- hostmetabolicinteractionsbymetabolomicanalysisusing1Hnuclearmagneticresonance(NMR)spectroscopy andultra-performanceliquidchromatography-massspectrometry(UPLC-MS).Thedynamicsoffecalvolatile metaboliteswerechangedbytheadministrationofprebioticsandprobioticsbasedontheresultsofgaschro- matographymassspectrometrysolidphasemicro-extraction23.However,thesemetabolomeanalysesfocusedon specificmetabolites,suchasbileacidsmetabolism,anddidnotfocusonawidespectrumofintestinalluminal metabolites.Inaddition,inthesestudies21,22,theyanalyzedmetabolome-containingbacterialintercellularmeta- bolitesbecausethesamplewaspreparedbysonicationoffeces.Forclarifyingtherelationshipbetweenhealth/ diseaseandintestinalbacterialmetabolites,onlyfreebacterialmetabolitesintheintestinalluminalcontentshould SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 1 www.nature.com/scientificreports beanalyzed.Ontheotherhand,noneofthepreviousresearcheshave metabolicintermediates,manymetabolitesinthecellular/bacterial taken food ingredients into consideration. Therefore, there is little metabolicpathwayscanbethusobserved18.Acomprehensiveunder- informationavailableregardingtheintestinalluminalmetabolome standing ofthemetabolite profile in theintestinal lumen byusing producedbyintestinalmicrobiota. CE-TOFMSwouldbecriticalforelucidatingthehost-intestinalbac- Large-scalemetabolomeanalysismethodsarebasedongaschro- terialinteraction. matography mass spectrometry (GC-MS), liquid chromatography Here,usingCE-TOFMS,weanalyzedthecolonicluminalmeta- massspectrometry(LC-MS),NMR,Fourier-transformioncyclotron bolome obtained from GF mice and ex-germ free (Ex-GF) mice, resonance mass spectrometry, and capillary electrophoresis mass divided from brothers bred from same parents, harboring Specific spectrometry (CE-MS). Each of these methods has its own merits pathogen-free (SPF) mice intestinal microbiota and demonstrated anddemerits.Forexample,althoughNMRcanidentifymetabolites the large effect of intestinal microbiota on the colonic luminal exactly,itssensitivityislowerthanthatofothermethods.GC-MSis metabolome. suitableonlyforvolatilemetabolites.AlthoughLC-MSdetectsrela- tivelywide-spectrummetabolites,chromatographicseparationisnot Results satisfactory.TheutilityofCE-MSinmetabolomicshasrecentlybeen The difference in colonic luminal metabolome between GF and recognized;thisismoresensitiveanddetectsawiderspectrumthan Ex-GFmice.FromthecolonicluminalmetabolomeinbothofGF LC-MS24. In particular, CE with time-of-flight mass spectrometry andEx-GFmice,CE-TOFMSidentified179metabolites.Principal (CE-TOFMS)isanovelstrategyforanalyzinganddifferentiallydis- component analysis (PCA) and hierarchical clustering, showing playing metabolic profiles25. The major advantages of CE-TOFMS patternsofmetabolites,areshowninFig.1aandb,respectively.A include itsextremely high resolution,high throughput, andability remarkable difference was observed in the colonic luminal meta- tosimultaneouslyquantifyallchargedlow-molecular-weightcom- bolomebetweenGFmiceandEx-GFmice,showingthatintestinal pounds in a sample. Because this can determine the majority of microbiota highly influences the colonic luminal metabolome, as Figure1|ThedifferenceinthecolonicmetabolomesbetweenGFmiceandEx-GFmice.(a)PCAoftheprofilingdatafromthecolonicmetabolome. (b)Hierarchicalclusteringshowingpatternsofmetabolites.Redandgreenindicatehighandlowconcentrationsofmetabolites,respectively.(c)Venn diagramofthemetabolitesnotedinthepelletandthecolonicmetabolome.(d)ThenumberofcolonicluminalmetabolitesinthegroupGF.Ex2GF, GF<Ex2GF,andGF.Ex2GF. SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 2 www.nature.com/scientificreports expected. From the pellet, 250 metabolites (ingredients) were pellet(SupplementalTableS1),indicatingthatthesewereperfectly detected. absorbedintheupperpartoftheintestine.Ofthe179metabolites Of the 179 metabolites in the colonic luminal metabolome, 131 inthecolonicluminalmetabolome,48metaboliteswerepresentin metaboliteswerecommontothosedetectedfromthepellet,and48 significantly (p , 0.05) higher concentrations and/or incidence in metabolites were detected only from the colonic luminal metabo- theGFmicethanintheEx-GFmice(groupGF.Ex-GF),77meta- lome(Fig.1c).Further,119metabolitesweredetectedonlyfromthe boliteswerepresentinsignificantly(p,0.05)lowerconcentrations Figure2|Classificationofmetabolitesdetectedfrommiceandpellets.Themetabolitesineachgroupareclassifiedasfollows:(A)Metabolitesproduced byhostandabsorbed/hydrolyzedbycolonicmicrobiota.(B)Metabolitesproducedbyhostorderivedfrompelletandabsorbed/hydrolyzedbycolonic microbiota.(C)Metabolitesproducedbyhostandnotinfluencedbycolonicmicrobiota.(D)Metabolitesproducedbyhostorderivedfrompelletandnot influencedbycolonicmicrobiota.(E)Metabolitesproducedbycolonicmicrobiota.(F)Metabolitesproducedbycolonicmicrobiotaorderivedfrom pelletandtheabsorptionofwhichwaspossiblyinhibitedinthecolon.(G)Ingredientsinthepelletabsorbedbythehost. SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 3 www.nature.com/scientificreports and/orincidenceintheGFmicethanintheEx-GFmice(groupGF and their absorption/hydrolyzation by intestinal microbiota was ,Ex-GF),and56metabolitesshowednodifferencesintheconcen- inhibited. However, to the best of our knowledge, no report has trationorincidencebetweenGFandEx-GFmice(groupGF<Ex- describedthatintestinalmicrobiotasuppresstheabsorption/hydro- GF)(Fig.1d).Thesemetaboliteswereclassifiedinto10categoriesas lyzation of low-molecular metabolites (ingredients) derived from follows:aminoacid(AA)derivatives,AAmetabolismrelatives,basic foods. Therefore, we believe that the metabolites in groups AAs,carbohydratemetabolismintermediates,centralcarbonmeta- E and F were simply produced by intestinal microbiota. Primary bolismintermediates,co-enzyme/co-enzymederivatives,lipidmeta- amines, b-Ala, tyamine, c-aminobutyric acid (GABA), and PAs bolism relatives, nucleic acid relatives, peptides, and others. The (putrescine,spermidine,andcadaverine),alongwiththebasesaden- details of the metabolites belonging to group GF . Ex-GF, group ine,guanine,cytosine,anduracil,werecharacteristicallydetectedin GF<Ex-GF,andgroupGF,Ex-GFareshowninSupplemental groupF(Fig.3bottompanel). Table S2 and Supplemental Fig. S1, Supplemental Table S3 and Supplemental Fig. S2, and Supplemental Table S4 and Supple- Colonic microbiota of Ex-GF mice. The PCA diagram and mentalFig.S3,respectively.InthegroupGF.Ex-GF,carbohydrate dendrogramofcolonicmicrobiotaofEx-GFmicebasedontheT- metabolismintermediates, suchasglucosamine,werecharacterist- RFLPpatternareshowninFig.4aand4b,respectively.Thecolonic icallydetected.InthegroupGF<Ex-GF,basicAAsandpeptides microbiotaofEx-GFmiceweredividedintotwoclusters—Ex-GF1, were characteristically detected. In the group GF , Ex-GF, AA 2,3,and4(firstsons)andEx-GF5,6,and7(secondsons)—along metabolism relatives, central carbon metabolism intermediated, withtheresultofPCAofthecolonicluminalmetabolome(Fig.1a). co-enzyme/co-enzyme derivatives, and others (unclassified) were ThepositionofEx-GF7wasseparatedfromtheotherbrothersfrom characteristicallydetected. the same mother in both PCA and the dendrogram of colonic microbiota as well as the PCA of the metabolome, indicating that Comparison of colonic luminal metabolites in GF and Ex-GF intestinalmicrobiotainfluencedtheintestinalluminalmetabolome. mice. For further understanding, we classified metabolites into 7 The number of predominant bacterial genera and groups was groups as follows: (A) metabolites that belong to group GF . determined by real-time PCR. Figure 4c shows the cell numbers Ex-GFbutnotdetectedfromthepellet,(B)metabolitesthatbelong for predominant bacterial genera and groups in the Ex-GF 1–4 togroupGF.Ex-GFanddetectedfromthepellet,(C)metabolites (firstsons)andEx-GF5–7(secondsons)generations.Thepopula- thatbelongtogroupGF<Ex-GFbutnotdetectedfromthepellet, tionsofEnterococcusspp.andLactobacillusspp.inEx-GF1–4were (D)metabolitesthatbelongtogroupGF<Ex-GFanddetectedfrom significantly higher than those in Ex-GF 5–7 (p , 0.05). The thepellet,(E)metabolitesthatbelongtogroupGF,Ex-GFbutnot populationofEnterobacteriaceaeinEx-GF1–4tendedtobelower detectedfromthepellet,(F)metabolitesthatbelongtogroupGF, thanthatinEx-GF5–7(p50.082). Ex-GF and detected from the pellet, and (G) metabolites (ingre- dients) detected from only the pellet (Fig. 2). Of the 179 meta- Relationships between predominant bacteria and metabolites. bolitesinthecolonicluminalmetabolome,theconcentrationof60 The relationship between predominant bacteria populations and metabolites involved in primary metabolisms could be measured; the concentration of metabolites that there are difference between further, the absolute concentration of these metabolites in the Ex-GF 1–4 (first sons) and Ex-GF 5–7 (second sons) is shown in pellet, colonic lumen of GF mice, and that of Ex-GF mice were Table1.ThenumberofEnterobacteriaceae,Enterococcusspp.,and compared(Fig.3).InFig.3,wehaveshowntheestimatedvaluefor Lactobacillusspp.waspositivelycorrelatedwiththeconcentrationof the metabolite’s (ingredient) concentration of the pellet in the 9,1,and1ofthe25metabolites,respectively.Incontrast,thenumber coloniclumen.Theaveragesolidcontentofthepelletandcolonic ofEnterobacteriaceae,Enterococcusspp.,andLactobacillusspp.was contentwere93.45%and35.06%,respectively.Weconsiderthatthe inversely correlated with the concentration of 1, 4, and 20 out of pelletreachedthecolonwithdilutionbydrinkingwateranddigestive the 25 metabolites, respectively. The number of Bacteroides spp., juices without absorption/hydrolyzation; we estimated that the Bifidobacterium spp., Clostridium cluster IV, Clostridium subcluster pelletwasdiluted2.665-foldbydrinkingwateranddigestivejuices XIVa,andPrevotellaspp.wasnotcorrelatedwiththeconcentration (2.665593.45/35.06). Thus, the metabolite concentration of the ofanyofthemetabolites. pelletwascalculatedusingthefollowingformula: Equivalentvalue(nmol/g)5valuemeasuredbyCE-TOFMS/2.665 Discussion Eighteen metabolites belonging to group A were those derived Inthisstudy,bycomparingthecolonicluminalmetabolomeofGF from host/digestion and absorbed/hydrolyzed by intestinal micro- miceandEx-GFmiceusingCE-TOFMS,weobtainedanovelprofile biota.Twenty-eightmetabolitesbelongingtogroupBwerederived ofnumerousmetabolitesintheintestinallumenwithoutcomparison from the pellet or host/digestion and absorbed/hydrolyzed by in- in the past21–23. In other studies, 10–60 metabolites have been testinalmicrobiota.Theconcentrationsofhydroxyprolin,Pro,Thr, detectedfromfecalsamplesbyNMRandLC-MS,butinthisstudy, Arg,anduridineintheintestinallumenofGFmicewereobviously 179 metabolites were detected by CE-TOFMS, which is 5 times higher than those in the pellet (Fig. 3 upper panel). In contrast, higherthanthatofpaststudies.Thisisattributabletotheextremely the concentrations of creatinine, Asn, choline, and inosine in the high resolution provided by CE-TOFMS24,25. The present results intestinallumenofGFmicewereequalorlowerthanthoseinthe indicatethatCE-TOFMSisthemostsuitablemethodforcompre- pellet(Fig.3upperpanel).ThirteenmetabolitesbelongingtogroupC hensiveandlarge-scalemetabolomeanalysisintheintestinalluminal werederived from host/digestion and notabsorbed/hydrolyzed by environment.Understandingtheinputofmetabolitesfromthepellet intestinalmicrobiota.Inthisgroup,peptideswerecharacteristically enabled us to consider the impact of intestinal microbiota on the detected.Forty-threemetabolitesbelongingtogroupDwerederived colonicluminalmetabolome.Wecomparedtheresultsofthepresent from pellet or host/digestion and not absorbed/hydrolyzed by in- studywiththegeneralknowledgeinourfieldasfollows. testinalmicrobiota.Inthisgroup,basicAAswerecharacteristically AlmostallbasicAAs—exceptPro,Thr,Asn,andArg—belonged detected.TheconcentrationoftheseAAs,exceptTrp,inGFmicewas togroupGF<Ex-GF(SupplementalTableS3)andwereobviously obviouslyhigherthanthatinthepellet(Fig.3middlepanel).SCFAs, presentinhigherconcentrationsinthecoloniclumenofbothGFand i.e.,butyricacidandpropionicacid,werecharacteristicallydetected. Ex-GF mice than in the pellet, indicating that free basic AAs in SeventeenmetabolitesbelongingtogroupEwerethoseproducedby coloniclumenarenotderivedfromthepelletdirectly,butarepro- intestinal microbiota. Sixty metabolites belonging to group F were duced by the digestion of proteins contained in the pellet and/or thoseproducedbyintestinalmicrobiotaorderivedfromthepellet intestinalmucusintheupperpartoftheintestine.Thisalsosuggests SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 4 www.nature.com/scientificreports Figure3|AbsolutequantitativecomparisonofmetabolitesinthepelletandthecoloniclumenofGFmiceandEx-GFmice(nmol/goffeces). MetabolitesbelongingtogroupGF.Ex2GF,GF<Ex2GF,andGF,Ex2GFareshownintheupper,middle,andbottompanels,respectively. Dataarerepresentedasmean6SEM.Estimatedvaluesofpelletingredientsinthecoloniclumenarecalculatedasfollows:Estimatedvaluesofingredients (nmol/g)5measuredconcentrationinpelletbyCE-TOFMS/2.665[5pelletsolidcontent(93.451%)/solidcontentofcoloniccontent(33.06%)]. SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 5 www.nature.com/scientificreports Figure4|ColonicmicrobiotainGFmiceandEx2GFmice. (a)PCAoftheprofilingdatafromcolonicmicrobiota.(b)ThedendrogramoftheT-RFLP profilesofcolonicmicrobiotafromGFmiceandEx-GFmice.(c)ThenumberofpredominantbacterialgeneraandgroupsintheEx-GF1,2,3,and4(first sons)andEx-GF5,6,and7(secondsons)clusters. thatAAsarisingfromdigestionintheupperpartoftheintestineare Althoughmostpeptideswerenotabsorbed/degradedbyintestinal notentirelyabsorbedthere,resultingintheentryofunabsorbedAAs microbiotasimilartomostoftheAAs,4peptides—Gly-Asp,c-Glu- intothecolon.WehavebelievedthatAAsareutilizedassourcesof 2-aminobutanoicacid,ophthalmicacid,andS-lactoylglutathione— nitrogen by intestinal microbiota; for example, AAs arising from wereproducedbyhost/digestionand/ordegradedperfectlybyintest- digestion are deaminated/degraded by intestinal microbiota, and inal microbiota, while 2 peptides, Arg-Glu and Ala-Ala, were pro- NH degradedfromAAsmaybeutilizedformicrobialcellsynthesis, ducedbyintestinalmicrobiota(SupplementalFig.S4).Interestingly, 3 while microbial metabolism of AAs results in the production of c-Glu-2-aminobutanoicacidandophthalmicacidarebiosynthesized SCFAsand gasesinthecolon26,27. However,15basicAAs—except by hepatic glutathione consumption induced by oxidative stress, Pro,Thr,Asn,andArg—werenotsignificantlyabsorbed/degraded with serum ophthalmic acid being a sensitive indicator of hepatic bytheintestinalmicrobiota.Basedontheseresults,weconsiderthat glutathionedepletion28.Afterbirth,oxygeninthecolonappearsto thetheoryconcerningtherelationshipbetweenAAsandintestinal beconsumedfirstbycolonizedaerobes,suchasEnterobacteriaceae microbiotainthecolonneedstobereassessed.Furtherstudiesare andStreptococcus29;therefore,wesupposethatalittleoxygenexists requiredtoclarifywhyintestinalbacteriautilizeonlyPro,Thr,Asn, inthecoloniclumeninGFmiceandcolonocytesareinfluencedby andArg. oxidative stress. Arg-Gln inhibits retinal neovascularization in the SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 6 www.nature.com/scientificreports ella 78222512271200778523262629351781 50689470 0316023457 Prevot 20.20.00.120.220.30.00.020.120.220.120.10.30.020.10.120.0 20.10.120.120.2 0.00.70.320.320.3 s * * ** u ** *** * * *** * * * * bacill *34*8264*32*93*55*24*16*53*34*5944*47*53*98*08 *8488*28*62 *4116*62*10*41 o 9999898989778999 8898 96988 ct 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. 0.0.0.0. 0.0.0.0.0. a 22222222222 22 2 2222 2 222 L s cu * * * * * c 9062038889826986 3710 26119 o 1998552408882620 1843 12078 oc 6787677656448687 7876 73765 er 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0. 0.0.0.0. 0.0.0.0.0. Ent 22222222222 22 2 2222 2 222 ers. h Ot g. es, bacterialgroups Enterobacteriaceae 0.722*0.7670.6330.655*0.800*0.8270.4440.520*0.865**0.9010.37820.3420.4630.6572*0.7710.532 *0.8270.824**0.903*0.880 0.72420.6760.6630.510*0.769 emetaboloismintermediat metaboliteconcentrations Predominant XVIaClostridium 0.2380.5290.7230.4190.4160.5890.5340.0700.4830.56020.01120.3130.5300.30920.4790.413 0.6010.9080.6090.311 0.44820.0520.3660.4450.224 2ndEx-GF57(secondsons).Nucleicacidrelatives,f.Carbohydrat Table1|Interrelationbetweenthenumberofpredominantintestinalbacteriaand 1)Metabolites ,IVBacteroidesBifidobacteriumClostridiumGFEx-GF 22Ornithine0.3080.3450.13623-Methylhistidine0.4150.5490.2502Homoserine0.5970.2560.5502c-Aminobutyricacid0.4840.3300.0752-Methylalanine0.4000.2710.024N2Pipecolicacid0.2510.6450.3242Urocanicacid0.6890.7600.306222-Oxoisovalericacid0.5010.6720.3112Piperidine0.2170.6730.1282Glycericacid0.2170.5750.24322-Dimethylglycine0.6480.0610.308N,N22Propionicacid0.6300.9250.0022Hypoxanthine0.6080.5150.31022Cytosine0.4960.4650.02422Adenine0.3060.4280.15920.6390.6650.1234-Methyl-2-2)oxopentanoicacid2Pantothenicacid0.4760.4760.2712Isopropanolamine0.4250.4840.8432Glutaricacid0.3170.4710.26222Pyridoxine0.2690.3280.063.2GFExGF2Hydroxyproline0.5540.4700.1542-Acetylhistidine0.1360.0300.374N2Asn0.5340.5070.1052Arg0.5730.6230.1052Glucosamine0.2680.0490.170 ThemetaboliteswereselectedbasedonthedifferenceintheirconcentrationsbetweentheclusterEx-GF1-4(firstsons)a1)a.Aminoacidderivative,b.Aminoacidmetabolismrelatives,c.Basicaminoacid,d.Lipidmetabolismrelatives,e.2)Thiswasidintifiedas4-Methyl-2-oxopentanoicacidor3-Methyl-2-oxovalericacid.*,**,***,Interrelationbetweenintestinalbacteriaandmetabolites(0.05,0.01,0.001)PPPh.positivecorrelation,i.inverselycorrelation. SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 7 www.nature.com/scientificreports mouse model of oxygen-induced retinopathy30, indicating that theconcentrationofmetabolites,usinggenera-orgroup-specificpri- intestinalmicrobiotaproducefunctionalpeptides. mer sets in order to comprehensively analyze uncultured bacteria. Most primary amines biosynthesized by decarboxylation from Enterobacteriaceae, Enterococus spp., and Lactobacillus spp. were AAs have physiological functions. Although no differences in the found to influence metabolite concentrations. To the best of our concentrations of most of the precursors were noted between the knowledge,thisfindingisnovelbecausenoneofthepublishedstudies GF mice and the Ex-GF mice or even if the concentrations of on microbiota and metabolite correlation have taken into account theprecursorsintheGFmicewerehigherthanthoseintheEx-GF uncultured bacteria. Especially, Enterobacteriaceae thrive in an in- mice, theconcentrations ofallprimary amines in theEx-GF mice flamed environment45,46 and are known to be present in increased werehigherthanthoseintheGFmice(SupplementalFig.S5).Inthe amountsintheelderly47.TherelationshipbetweenEnterobacteriaceae, colon,b-Ala,cadaverine,putrescine,tyramine,andGABAaresyn- metabolites,andinflanmmation/ageingwarrantsfurtherstudy. thesizedbycolonicbacterialdecarboxylasefromfreeAAs,Asp,Lys, Thesediscussionscenteronacomparisonbetweengeneralknow- ornithine,Tyr,andGlu,respectively.Thesearealsobiosynthesized ledgeandthedataobtainedinthepresentstudy.However,theeffects inthehostcells.Furtherresearchiswarrantedinordertoconfirm ofalmostallmetabolitesinthecolonareunclear.EvenforGABA, whetheracertainproportionoftheseprimaryaminesproducedby whichisknownasaneurotransmitter,itremainsunknownwhether intestinalmicrobiotaareabsorbedbycolonocytes,withtheremain- colonicGABAsignificantlyaffectshealthordisease.Althoughsev- ingportioncirculatingintheblood. eral metabolites might not contribute to health and disease, some PAs, such as putrescine, spermidine, and spermine, are one of metabolitesmightbeimportantfindingsforresearchersinanother themost important metabolites produced by intestinal microbiota field.Weconsiderthatthesedatahaveimplicationsforresearchersin affectingthehealthanddiseaseofthehost31.PAsareorganiccations anumberoffields,suchasmedicine,immunology,physiology,phar- requiredforcellgrowthanddifferentiationandforthesynthesisof macology,bacteriology,nutrition,andlifesciences. DNA,RNA,andproteins32;theyareconstantlyabsorbedasenergy sourcesfromtheintestinallumen33.PAshavemanyfunctions,such Methods asthematurationandmaintenanceofintestinalmucosalbarrier34,35, Mice.GermfreeBALB/cmicewerepurchasedoriginallyfromJapanCleaInc.(Tokyo, Japan),andwerebredintheDepartmentofInfectiousDiseases,TokaiUniversity anti-inflammatory actions36, antimutagenicity37, and autophagy38. SchoolofMedicine,Kanagawa,Japan.Wedividedmalemicebredfromsister-brother Although we have demonstrated that colonic microbiota are in- matingintotwogroups,GFmice(firstsons:GF1–3,secondsons:GF-4–6)and volved in regulating colonic luminal PA concentrations39,40, which Ex-GFmice(firstsons:Ex-GF1–4,Ex-GF5–7),twice(SupplementalFig.S8).They entity influenced colonic luminal PA concentrations to a greater werehousedinTrexler-TypeflexiblefilmplasticisolatorswithsterilizedCleantip (CLEAJapan,Inc.,Tokyo)asbeddingandgivensterilizedwaterandsterilized extent—intestinal microbiota or colonocytes—remained unclear. commercialCL-2pellets(CLEAJapan,Inc.)adlibitum.Thedietwassterilizedwith Thisstudydemonstratesthattheintestinalluminalconcentrations anautoclave(121uC,30min).Surveillanceforbacterialcontaminationwas of putrescine and spermidine are mainly dependent on colonic performedbyperiodicbacteriologicalexaminationoffecesthroughoutthe microbiota.However,spermineconcentrationswerenotinfluenced experiments.Ex-GFmicewereinoculatedat4weeksofageintothestomachbya metalcatheterwith0.5mLofa1021suspensionoffecesobtainedfromSPFBALB/c by intestinal microbiota. Spermine has the strongest physiological mice.TheprotocolsapprovedbytheKyodoMilkAnimalUseCommittee(Permit functionandtoxicityamongPAs,anditsconcentrationappearstobe Number:2009-02)andallexperimentalprocedureswereperformedaccordingtothe strictlycontrolledbybothcolonicmicrobiotaandcolonocytes.We guidelinesoftheAnimalCareCommitteeofTokaiUniversity. mappedtheresultsforeachPAontothePAmetabolicpathwaysof Preparationofcolonicluminalmetabolome.Seven-week-oldmiceweresacrificed Escherichia coli (Supplemental Fig. S6). Here, agmatine was not bycervicaldislocationandthecolonwasresectedviaanabdominalincision.The detected although Arg decarboxylation is the dominant pathway colonwasopenedusingalongitudinalincision,andthecoloniccontentswere forPAbiosynthesisinhumangutmicrobiota41.Ontheotherhand, obtainedandstoredat–80uCuntiluse.Frozencoloniccontents(approximately thepathwayviawhichputrescineisdecarboxylatedfromornithine 100mg)werediluted5-foldwithDulbecco’sPhosphateBufferedSaline(D-PBS) (GIBCO)andextractedthreetimesbyintensemixingfor1minandlettingthem produced from Arg appeared to be available. Further studies are standfor5minontheicebox.At1minafterextraction,theupperaqueousportion requiredtoclarifythePAmetabolicpathwaysofintestinalmicrobiota. withoutprecipitationatthebottomwascollectedandcentrifuged(12,0003gfor ProstaglandinE2(PGE2)wasdetectedonlyinEx-GFmice.PGE2 10minat4uC),and100mLofsupernatantwascentrifugallyfilteredthrougha5-kDa isaninterleukin-10(IL-10)-independentinnateimmunesuppressor. cutofffilterUltrafree-MC(Millipore).Thefiltratewasstoredat–80uCuntiluse.We confirmedtheabsenceofintracellularmetabolitesderivedfrombacteriadestroyedby ArecentstudyreportedPGE2andsuppressorofcytokinesignalling thisextraction,inthesupernatant(SupplementalFigureS9).Becausethisextraction 1 (SOCS1) as an essential mediator of immune tolerance in the wasconductedtoobtainonlywater-solublemetabolites,non-water-soluble intestine,andthatthesemayactasanalternativeintestinaltolerance metaboliteswerenotextractedefficiently.Eveniftheextractionefficienciesforeach mechanismdistinctfromIL-10andregulatoryTcellsbypotentially metabolitevary,thisextractionmethodissuitableforrelativequantification,sinceall interacting together42. Therefore, we suppose that the intestinal thesampleswereextractedusingthesameprocedureatthesametime.Theprecipitate waswashedby1mLD-PBStwice,storedat–80uC,andusedfortheanalysisof microbiota contain activation factors for innate immunity, similar intestinalmicrobiota. toinflammation. ThesefindingswerereconfirmedbythepresentCE-TOFMSana- Preparationofpelletformetabolomeanalysis.SterilizedcommercialCL-2pellets (CLEAJapan,Inc.)wascrushedbymortarandpreparedasdescribedinthecolonic lysis.SCFAs,suchaspropionicacidandbutyricacid,thatbelongedto luminalmetabolomesectionabove. group E are produced by intestinal microbiota. Urea was detected onlyfromGFmice,showingthatureaishydrolyzedbytheureaseof CE-TOFMS.Themetabolomicsmeasurementanddataprocessingwasperformedas intestinalmicrobiota43.Taurocholicacid,amajorconjugatedbileacid describedpreviouslywithanAgilentCapillaryElectrophoresisSystem48.Then,20mL inmice44,wasdetectedfromtheintestinallumenofbothGFmiceand offecalsolutionwasmixedwith80mLof250mMeachofmethioninesulphone (MetSul)andCSA.Themeasurementofextractedmetabolitesinbothpositiveand Ex-GFmice,althoughtheconcentrationsoftaurineandcholicacidin negativemodeswasperformedbyusingcommercialelectrophoresisbuffer(Solution thecoloniclumenofEx-GFmiceweresignificantlyhigherthanthose IDH3301-1001forthecationmodeandH3302-1021fortheanionmode;Human in GF mice, proving that conjugated bile acids not absorbed in the MetabolomeTechnologiesInc.,Tsuruoka,Japan).Thealignmentofdetectedpeaks ileum are reconjugated by intestinal microbiota (Supplemental Fig. wasperformedaccordingtothem/zvalueandnormalizedmigrationtime.Then, peakareaswerenormalizedagainstthoseoftheinternalstandardsMetSulandD- S7).CE-TOFMScouldnotdetectsecondarybileacidssuchasdeoxy- camphor-10-sulfonicacid(CSA)forcationicandanionicmetabolites,respectively. cholicacid,astronglytoxicacid.However,sincethereconjugationof Annotationtableswereproducedfrommeasurementofstandardcompoundsand bileacidsisthe firststep inthe productionofsecondary bileacids, werealignedwiththedatasetsaccordingtosimilarm/zvalueandnormalized thisisoneoftheharmfulinfluencesofintestinalmicrobiota. migrationtime.Weconfirmedthatthismethodhassufficientreproducibilityfor analysisoftheintestinalluminalmetabolomebyusinghumanfeces(Supplemental Wetriedtotesttheassociationbetweenthenumberofclustersof FigureS10).Principalcomponentanalysis(PCA)andclusteringanalysiswas colonicmicrobiotaofEx-GFmice(i.e.,Ex-GF1-4andEx-GF5-7)and processedbySIMCA-P1(Umetrics),respectively. SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 8 www.nature.com/scientificreports ColonicbacterialDNAextraction.Theprecipitateobtainedbythefirst 20.Li,M.etal.Symbioticgutmicrobesmodulatehumanmetabolicphenotypes.Proc centrifugationintheprocedureofthepreparationofthecolonicluminalmetabolome NatlAcadSciUSA105,2117–2122(2008). waswashedby1mLD-PBStwice,storedat–80uC,andusedfortheanalysisof 21.Martin,F.P.etal.Atop-downsystemsbiologyviewofmicrobiome-mammalian intestinalmicrobiota.ThisbacterialDNAwasisolatedusingthemethodsdescribed metabolicinteractionsinamousemodel.MolSystBiol3,112(2007). byMatsukietal.49withsomemodifications.Briefly,bacterialsuspensionwithlysis 22.Martin,F.P.etal.Probioticmodulationofsymbioticgutmicrobial-hostmetabolic bufferwastreatedat70uCfor10mininawaterbathandvortexedvigorouslyfor60s interactionsinahumanizedmicrobiomemousemodel.MolSystBiol4,157 withaMicroSmashMS-100(TomyDigitalBiologyCo.,Ltd.,Tokyo,Japan)at (2008). 4,000rpm. 23.Vitali,B.etal.Impactofasynbioticfoodonthegutmicrobialecologyand metabolicprofiles.BMCMicrobiol10,4(2010). T-RFLPanalysis.T-RFLPanalysiswasperformedasdescribedinourprevious 24.Soga,T.etal.Analysisofnucleotidesbypressure-assistedcapillary report40withsomemodifications.Briefly,27Fprimer(59-AGAGTT- electrophoresis-massspectrometryusingsilanolmasktechnique.JChromatogrA TGATCCTGGCTCAG-39)labelledatthe59-endwith6-carboxyfluoresceinwasused 1159,125–133(2007). insteadofthe529Fprimer.Then50ngofthepurifiedPCRproductwasdigested 25.Monton,M.R.&Soga,T.Metabolomeanalysisbycapillaryelectrophoresis-mass using0.25unitsofHaeIIIorAluI(Takara)at37uCfor3h.ThePCRproductsandthe spectrometry.JChromatogrA1168,237–246;discussion236,(2007). restrictiondigestproductswerepurifiedbyGenElutePCRClean-UpKit(Sigma).The 26.Bergen,W.G.&Wu,G.Intestinalnitrogenrecyclingandutilizationinhealthand terminal-restrictionfragment(T-RF)lengthwasdeterminedusinga1200LIZ disease.JNutr139,821–825(2009). standardsizemarker(AppliedBiosystems)ina3130GeneticAnalyzer(Applied 27.Metges,C.C.Contributionofmicrobialaminoacidstoaminoacidhomeostasisof Biosystems)andwiththeaidofGeneMappersoftwarev.4.0(AppliedBiosystems). thehost.JNutr130,1857S–1864S(2000). PCAwasprocessedbySIMCA-P1(Umetrics). 28.Soga,T.etal.Differentialmetabolomicsrevealsophthalmicacidasanoxidative stressbiomarkerindicatinghepaticglutathioneconsumption.JBiolChem281, Real-timePCRforquantitativedeterminationofbacterialcellnumbers.Real-time 16768–16776(2006). PCRforthequanti¢cationofpredominantbacterialgeneraandgroupswas 29.Mitsuoka,T.&Hayakawa,K.DieFaekalflorabeiMenschen.I.Mitteilung:Die performedusingtheStepOneReal-timePCRsystem(AppliedBiosystems),as ZusammensetzungderFaekalfloraderverschiedenenAltersgruppen.Zbl.Bakt. describedinourpreviousreport50.TheprimersetsusedareshowninSupplemental Hyg.IAbt.Orig.A223,333–342(1972). TableS5aswellasinourpreviousreport31. 30.Neu,J.etal.ThedipeptideArg-Glninhibitsretinalneovascularizationinthe mousemodelofoxygen-inducedretinopathy.InvestOphthalmolVisSci47,3151– Dataanalysisandstatistics.PCAinmetabolomeandcolonicmicrobiotawas 3155(2006). processedbySIMCA-P1(Umetrics).Clusteringanalysisinmetabolomewas 31.Matsumoto,M.,Kurihara,S.,Kibe,R.,Ashida,H.&Benno,Y.Longevityinmiceis processedbyMATLAB2008a(MathWorks,MA,USA).Differencesinrelative promotedbyprobiotic-inducedsuppressionofcolonicsenescencedependenton quantitybetweenGFmiceandEx-GFmicewereevaluatedforindividualmetabolites upregulationofgutbacterialpolyamineproduction.PLoSOne6,e23652(2011). byWelch’st-test.Therelationshipbetweenmetaboliteconcentrationsandthe 32.Pegg,A.E.&McCann,P.P.Polyaminemetabolismandfunction.Am.J.Physiol. numberofpredominantbacterialcellswasexaminedbylinearregressionanalysis. 243,C212–C221(1982). TheincidencesoftheindividualmetabolitesinGFmiceandEx-GFmicewere 33.Murphy,G.M.Polyaminesinthehumangut.EurJGastroenterolHepatol13, comparedbyFisher’sexacttest.StatMateIV(ATMSCo.Ltd.,Tokyo,Japan)wasused 1011–1014(2001). toconducttheseanalyses. 34.Loser,C.,Eisel,A.,Harms,D.&Folsch,U.R.Dietarypolyaminesareessential luminalgrowthfactorsforsmallintestinalandcolonicmucosalgrowthand development.Gut44,12–16(1999). 1. Qin,J.etal.Ahumangutmicrobialgenecatalogueestablishedbymetagenomic 35.Lux,G.D.,Marton,L.J.&Baylin,S.B.Ornithinedecarboxylaseisimportantin sequencing.Nature464,59–65(2010). intestinalmucosalmaturationandrecoveryfrominjuryinrats.Science210,195– 2. Tannock,G.W.MolecularanalysisoftheintestinalmicroflorainIBD.Mucosal 198(1980). Immunol1Suppl1,S15–18(2008). 36.Zhang,M.etal.Spermineinhibitsproinflammatorycytokinesynthesisinhuman 3. Kirjavainen,P.V.,Arvola,T.,Salminen,S.J.&Isolauri,E.Aberrantcomposition mononuclearcells:Acounterregulatorymechanismthatrestrainstheimmune ofgutmicrobiotaofallergicinfants:atargetofbifidobacterialtherapyatweaning? response.J.Exp.Med.185,1759–1768(1997). Gut51,51–55(2002). 37.Clarke,C.H.&Shankel,D.M.Antimutagensagainstspontaneousandinduced 4. Penders,J.,Stobberingh,E.E.,vandenBrandt,P.A.&Thijs,C.Theroleofthe reversionofalacZframeshiftmutationinE.coliK-12strainND-160.Mutat.Res. intestinalmicrobiotainthedevelopmentofatopicdisorders.Allergy62,1223– 202,19–23(1988). 1236(2007). 38.Eisenberg,T.etal.Inductionofautophagybyspermidinepromoteslongevity.Nat 5. Sobhani,I.etal.MicrobialDysbiosisinColorectalCancer(CRC)Patients.PLoS CellBiol11,1305–1314(2009). One6,e16393(2011). 6. Turnbaugh,P.J.etal.Anobesity-associatedgutmicrobiomewithincreased 39.Matsumoto,M.&Benno,Y.Therelationshipbetweenmicrobiotaandpolyamine capacityforenergyharvest.Nature444,1027–1031(2006). concentrationinthehumanintestine:apilotstudy.MicrobiolImmunol51,25–35 (2007). 7. Song,Y.,Liu,C.&Finegold,S.M.Real-timePCRquantitationofclostridiainfeces ofautisticchildren.ApplEnvironMicrobiol70,6459–6465(2004). 40.Matsumoto,M.,Sakamoto,M.&Benno,Y.Dynamicsoffecalmicrobiotain 8. Gordon,H.A.,Bruckner-Kardoss,E.&Wostmann,B.S.Agingingerm-freemice: hospitalizedelderlyfedprobioticLKM512yogurt.MicrobiolImmunol53,421– lifetablesandlesionsobservedatnaturaldeath.JGerontol21,380–387(1966). 432(2009). 9. Suau,A.etal.Directanalysisofgenesencoding16SrRNAfromcomplex 41.Burrell,M.,Hanfrey,C.C.,Murray,E.J.,Stanley-Wall,N.R.&Michael,A.J. communitiesrevealsmanynovelmolecularspecieswithinthehumangut.Appl Evolutionandmultiplicityofargininedecarboxylasesinpolyaminebiosynthesis EnvironMicrobiol65,4799–4807(1999). andessentialroleinBacillussubtilisbiofilmformation.JBiolChem285,39224– 10.Gill,S.R.etal.Metagenomicanalysisofthehumandistalgutmicrobiome.Science 39238. 312,1355–1359(2006). 42.Chinen,T.etal.ProstaglandinE2andSOCS1havearoleinintestinalimmune 11.Kurokawa,K.etal.Comparativemetagenomicsrevealedcommonlyenriched tolerance.NatCommun2,190(2011). genesetsinhumangutmicrobiomes.DNARes14,169–181(2007). 43.Wozny,M.A.,Bryant,M.P.,Holdeman,L.V.&Moore,W.E.Ureaseassayand 12.Claus,S.P.etal.Systemicmulticompartmentaleffectsofthegutmicrobiomeon urease-producingspeciesofanaerobesinthebovinerumenandhumanfeces. mousemetabolicphenotypes.MolSystBiol4,219(2008). ApplEnvironMicrobiol33,1097–1104(1977). 13.Claus,S.P.etal.Colonization-inducedhost-gutmicrobialmetabolicinteraction. 44.Floch,M.H.Bilesalts,intestinalmicrofloraandenterohepaticcirculation.Dig MBio2,e00271–00210(2011). LiverDis34Suppl2,S54–57(2002). 14.Mortensen,P.B.&Clausen,M.R.Short-chainfattyacidsinthehumancolon: 45.Pedron,T.&Sansonetti,P.Commensals,bacterialpathogensandintestinal relationtogastrointestinalhealthanddisease.ScandJGastroenterolSuppl216, inflammation:anintriguingmenageatrois.Cellhost&microbe3,344–347 132–148(1996). (2008). 15.Matsumoto,M.,Kakizoe,K.&Benno,Y.Comparisonoffecalmicrobiotaand 46.Sansonetti,P.J.&Medzhitov,R.Learningtolerancewhilefightingignorance.Cell polyamineconcentrationinadultpatientswithintractableatopicdermatitisand 138,416–420(2009). healthyadults.MicrobiolImmunol51,37–46(2007). 47.Guigoz,Y.,Dore,J.&Schiffrin,E.J.Theinflammatorystatusofoldagecanbe 16.Matsumoto,M.&Benno,Y.ConsumptionofBifidobacteriumlactisLKM512 nurturedfromtheintestinalenvironment.Currentopinioninclinicalnutrition yogurtreducesgutmutagenicitybyincreasinggutpolyaminecontentsinhealthy andmetaboliccare11,13–20(2008). adultsubjects.Mutat.Res.568,147–153(2004). 48.Ooga,T.etal.Metabolomicanatomyofananimalmodelrevealinghomeostatic 17.Raamsdonk,L.M.etal.Afunctionalgenomicsstrategythatusesmetabolomedata imbalancesindyslipidaemia.MolBiosyst7,1217–1223(2011). torevealthephenotypeofsilentmutations.NatBiotechnol19,45–50(2001). 49.Matsuki,T.etal.QuantitativePCRwith16SrRNA-gene-targetedspecies-specific 18.Ohashi,Y.etal.Depictionofmetabolomechangesinhistidine-starved primersforanalysisofhumanintestinalbifidobacteria.Appl.Environ.Microbiol. EscherichiacolibyCE-TOFMS.MolBiosyst4,135–147(2008). 70,167–173(2004). 19.Wikoff,W.R.etal.Metabolomicsanalysisrevealslargeeffectsofgutmicroflora 50.Matsumoto,M.,Sakamoto,M.&Benno,Y.Dynamicsoffecalmicrobiotain onmammalianbloodmetabolites.ProcNatlAcadSciUSA106,3698–3703 hospitalizedelderlyfedprobioticLKM512yogurt.MicrobiolImmunol53,421– (2009). 432(2009). SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 9 www.nature.com/scientificreports Acknowledgements Competingfinancialinterests:ThisworkwassupportedbytheProgrammeforPromotion ThisstudywassupportedbytheProgrammeforPromotionofBasicandApplied ofBasicandAppliedResearchesforInnovationsinBio-orientedIndustrybythe ResearchesforInnovationsinBio-orientedIndustrybytheBio-orientedTechnology Bio-orientedTechnologyResearchAdvancementInstitution(BRAIN),JAPAN.Thiswork ResearchAdvancementInstitution(BRAIN),JAPAN.WethankMrKojiMuramatsufor wasfundedbyKyodoMilkIndustryCo.LtdandHumanMetabolomeTechnologies,Inc. thepreparationofcolonicluminalmetabolomeandbacterialDNAfromcoloniccontent. Thefundershadnoroleinstudydesign,datacollectionandanalysis,decisiontopublish,or preparationofthemanuscript.M.MatsumotoandE.SawakiareemployeesofKyodoMilk IndustryCo.Ltd.andhadaroleinstudydesign,dataanalysis,preparationofthe Authorcontribution manuscript,anddecisiontopublishthemanuscript.T.OogaisemployeeofHuman M.M.,S.K.,Y.A.,Y.K.,andY.B.designedthisstudy.Y.A.performedanimalexperiments. MetabolomeTechnologies,Inc.andhadaroleindataanalysisanddecisiontopublishthe T.O.analyzedthemetabolome.M.M,R.K,T.O.,andE.S.analyzedthedata.M.Mwrotethe manuscript.Alloftheotherauthorsdeclarethattheyhavenoconflictofinterest. paper. License:ThisworkislicensedunderaCreativeCommons Attribution-NonCommercial-ShareAlike3.0UnportedLicense.Toviewacopyofthis Additionalinformation license,visithttp://creativecommons.org/licenses/by-nc-sa/3.0/ Supplementaryinformationaccompaniesthispaperathttp://www.nature.com/ Howtocitethisarticle:Matsumoto,M.etal.ImpactofIntestinalMicrobiotaonIntestinal scientificreports LuminalMetabolome.Sci.Rep.2,233;DOI:10.1038/srep00233(2012). SCIENTIFICREPORTS |2:233|DOI:10.1038/srep00233 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.