ebook img

Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in PDF

34 Pages·2017·1.3 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in

nutrients Review Impact of Inflammation on Ferritin, Hepcidin and the Management of Iron Deficiency Anemia in Chronic Kidney Disease NorishiUeda1,*andKazuyaTakasawa2,3 1 DepartmentofPediatrics,PublicCentralHospitalofMattoIshikawa,3-8Kuramitsu,Hakusan, Ishikawa924-8588,Japan 2 DepartmentofInternalMedicine,PublicCentralHospitalofMattoIshikawa,3-8Kuramitsu,Hakusan, Ishikawa924-8588,Japan;[email protected] 3 DepartmentofInternalMedicine,PublicTsurugiHospital,Ishikawa920-2134,Japan * Correspondence:[email protected];Tel.:+81-76-275-2222;Fax:+81-76-274-5974 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:26June2018;Accepted:17August2018;Published:27August2018 Abstract: Iron deficiency anemia (IDA) is a major problem in chronic kidney disease (CKD), causing increased mortality. Ferritin stores iron, representing iron status. Hepcidin binds to ferroportin, thereby inhibiting iron absorption/efflux. Inflammation in CKD increases ferritin and hepcidin independent of iron status, which reduce iron availability. While intravenous iron therapy(IIT)issuperiortooralirontherapy(OIT)inCKDpatientswithinflammation, OITisas effectiveasIITinthosewithout. Inflammationreducespredictivevaluesofferritinandhepcidin forironstatusandresponsivenesstoirontherapy. Upperlimitofferritintopredictironoverload ishigherinCKDpatientswithinflammationthaninthosewithout. However,magneticresonance imaging studies show lower cutoff levels of serum ferritin to predict iron overload in dialysis patientswithapparentinflammationthanupperlimitofferritinproposedbyinternationalguidelines. ComparedtoCKDpatientswithinflammation, optimalferritinlevelsforIDAarelowerinthose without,requiringreducedirondoseandleadingtodecreasedmortality. ThemanagementofIDA should differ between CKD patients with and without inflammation and include minimization ofinflammation. Furtherstudiesareneededtodeterminetheimpactofinflammationonferritin, hepcidinandtherapeuticstrategyforIDAinCKD. Keywords: chronic kidney disease; ferritin; C-reactive protein; hepcidin; inflammation; iron deficiencyanemia 1. Introduction Irondeficiency(ID)occursintwomajorforms;absoluteIDasdefinedbyadecreaseinthebody iron stores and functional ID (FID), a disorder in which the total body iron stores are normal or increasedbuttheironsupplytothebonemarrowisinadequate[1]. IDanemia(IDA)isfrequently associatedwithchronicinflammatoryconditions,inwhichinflammationispathogenicallyinvolved, includinginflammatoryboweldisease(IBD,e.g.,ulcerativecolitis,Crohn’sdisease),chronicheart failure,chronicliverdisease,obesity,rheumatoidarthritis(RA)andchronickidneydisease(CKD)[1]. IDAisaglobalpublichealthproblemaffecting7.2–13.96per1000person-yearsandaccountingfor 800,000deathsperyearworldwide[2]. IDAalsohasanimpactonmortalityinchildrenandadults withCKD[3,4]. Thus,appropriatemanagementofIDAiscrucialforimprovingqualityoflife(QOL) andmortalityinCKDpatients. Ironisacomponentofhemeproteins(hemoglobin;Hbandmyoglobin),whichcarryorstoreoxygen andessentialforthefunctioningofallorgans. Ironisalsopresentinhemeenzymes,non-hemeiron Nutrients2018,10,1173;doi:10.3390/nu10091173 www.mdpi.com/journal/nutrients Nutrients2018,10,1173 2of34 enzymesandiron-sulfurproteinsthatregulatevariouscellfunctionsincludingelectrontransportin mitochondrialrespiration,redoxreactionsandDNAsynthesis[5]. However,excessiveironleavesa fractionoffreeiron(knownas“labile”iron)andmakesredoxactive,formingreactiveoxygenspecies thatcauseoxidantstress. Becauseofnoexcretionsystemforironfromthebody,ironhomeostasisis tightlyregulatedviaanetworkofproteinsinvolvedintheimport,storage,exportandtransportof ironwithinthebody. There are two major molecules that regulate iron metabolism and iron availability for erythropoiesis. Ferritinbindsironasaferriccomplexwithinaproteinshell,inwhichironfluxesin and out and functions as iron storage site and ferroxidase [5,6]. Thus, alteration of serum ferritin maybeadeterminantofmortalityinadultsonmaintenancehemodialysis(HD)[7–9]. Whileiron supplementation reduced mortality in HD adults [9], excess iron therapy increased ferritin levels, leadingtohighmortality[7]. Todate,optimallevelsofserumferritinduringirontherapyforIDA remaintobedeterminedinCKDpatients. Ontheotherhand,hepcidin-25(referredtoashepcidin), a 25 amino acid peptide, is a major iron-regulatory hormone that binds to ferroportin (FPN) and inhibitsironexportfromenterocytes,hepatocytesandmacrophagesthroughtheinternalizationand degradationofFPN,therebyregulatingironmetabolisminvariousdiseases,includingCKD[10–12]. Inflammation as defined by the innate immune response to stimuli such as pathogens, cellular injury and metabolic stress [13] is part of the complex biologic response to tissue injury, infection, ischemia and autoimmune diseases. It is characterized by the acute-phase response including elevated inflammation markers such as C-reactive protein (CRP, >0.3 mg/dL) [14] and pro-inflammatorycytokineswhichpromoteCRPsynthesis[15]. Inflammationischaracteristicfeature of CKD and caused by multiple factors of the toxic uremic milieu and the dialysis procedure itself. The interpretation of iron biomarkers is hindered by inflammation, which can directly affect the concentrations of most iron biomarkers [14], including ferritin and hepcidin [16–18]. Inflammation-mediated increase in hepcidin leads to iron trapping within the macrophages and hepatocytes, resulting in FID [19]. This leads to high association of inflammation with FID anemia (FIDA) in CKD patients [16–18], requiring higher dose of IV iron to maintain Hb targets [20]. Inflammation also induces hyporesponsiveness to iron therapy [20–22] and erythropoiesis-stimulatingagents(ESA)inHDpatients[21,23]byincreasingferritinandhepcidin. Conversely, aggressiveintravenousirontherapy(IIT)mayenhanceinflammationinpatientswith end-stage renal disease (ESRD) [16], leading to further disturbance of iron metabolism. Thus, inflammationhasanimpactontheexpressionofferritinandhepcidinaswellastherapeuticstrategy forthemanagementofIDAinCKDpatients. Theaimofthisreviewistoprovideanoverviewofclinicalandexperimentalstudiesregarding aroleofferritin,hepcidinandinflammationintheregulationofIDA,efficacyoforalirontherapy (OIT)andIIT,predictivevaluesofferritinandhepcidinfortheresponsetoirontherapy,upperlimit offerritinlevelstopredictironoverload,optimalferritinlevelsduringirontherapy,complications andoutcomeinCKDpatients. Thisreviewespeciallyfocusesontheimpactofinflammationonthese issuesinCKDpatients. 2. FerritinRegulationbyIronStatusandInflammation Ferritinhastwoisoforms;theheavychain(FtH)andthelightchainofferritin(FtL).Incontrastto FtH,FtLlacksdetectableferroxidaseactivitybutcanstoremoreiron[6]. Ferritinsequestersironina nontoxicform,whereasthelevelsoffreeironregulatecellularferritinlevels[6]. Cytoplasmicferritin synthesisisstimulatedbyanincreaseofiron,whileitisdecreasedbyirondepletion. Thisprocess is mediated by the interaction between the two RNA-binding proteins (iron regulatory proteins 1 and 2; IRP1/2) and a region in the 5_untranslated region of FtH and FtL mRNA, termed the iron responsiveelement(IRE)thathasa“stem-loop”structure.BindingofIRP1/2totheIREinhibitsmRNA ferritintranslation. IRP1andIRP2aredifferentiallyregulated,dependingonironstatus. Wheniron isabundant,IRP1existsasacytosolicaconitase,whereasunderirondepletion,itassumesanopen Nutrients2018,10,1173 3of34 configurationassociatedwiththelossofironatomsintheiron-sulfurclusterandcanbindtotheIRE stemloop,therebysuppressingferritintranslation. IRP2proteinisabundantinirondepletionstatus butisrapidlydegradedinironexcess. IRP1andIRP2havedistincttissue-specificroles[6]. Nutrients 2018, 10, x FOR PEER REVIEW 3 of 33 SynthesisofFtHandFtLisactivatedbypro-inflammatorycytokinessuchasinterleukin(IL)-1β andtumsotartunse. cWrohseins ifraocnt oisr a(bTuNndFa)n-αt, I[R6P,214 e]xvisitas nasu ac lceyatorsfoalicct oacro(nNitFas)e-,κ wBhpearetahsw uanyde[r2 i5r]o.nI ndeteprlefteiroonn, it( INF)-γ andlipoapssoulmyseas cacnh oapreidn eco(nLfPigSu)raitniodnu acsesodceiagterda dwaitthio tnheo lfosIsR oPf2 irionn natiotrmics oinx tihdee ir(oNnO-su)-lfduer pcleunsdteer natndm anner, can bind to the IRE stem loop, thereby suppressing ferritin translation. IRP2 protein is abundant in leading to ferritin synthesis in macrophages [26]. IL-6 also enhances synthesis of FtH and iron depletion status but is rapidly degraded in iron excess. IRP1 and IRP2 have distinct FtL in hepatocytes [24]. FtH transcription is predominantly active in inflammatory conditions, tissue-specific roles [6]. whereastranscriptionofFtLcanbeinducedonlyafterexposuretoveryhighconcentrationofiron[27]. Synthesis of FtH and FtL is activated by pro-inflammatory cytokines such as interleukin Pro-infla(ImL)m-1βa taonrdy tcuymtoork ninecersosmiso fdacutolar t(eTNthFe)-αre [l6a,t2i4v] eviraa ntiuocloefarf efarcrtiotirn (NtoF)b-κoBd pyaitrhownays t[o2r5a].g Ientberyfeirnocnr easing ferritins(yINnFth)-eγs aisnd[2 l7ip].opolysaccharide (LPS) induce degradation of IRP2 in nitric oxide (NO)-dependent manner, leading to ferritin synthesis in macrophages [26]. IL-6 also enhances synthesis of FtH and 3. HepciFdtLin ina nhdepIartooncyMtese t[a2b4]o. lFistHm transcription is predominantly active in inflammatory conditions, whereas transcription of FtL can be induced only after exposure to very high concentration of iron 3.1. Hepc[2id7i]n. -PFreor-irnofplaomrinmaAtoxriys Rcyetgouklianteess mIroonduHlaotem ethoes taresliastive ratio of ferritin to body iron storage by increasing ferritin synthesis [27]. Dietaryironcontaininghemeandnon-hemeironisabsorbedbythedivalentmetaltransporter (DMT1)3l.o Hcaetpecdidaint athned aIrpoinc aMlemtaebmolbisrman eofduodenalenterocytes[10–12](Figure1),whichtransports onlyFe2+ butmostdietaryironisFe3+. Thus,Fe3+ shouldbereducedtoFe2+ beforeirontransport 3.1. Hepcidin-Ferroporin Axis Regulates Iron Homeostasis byDMT1. Thisreductionstepismediatedbytheferrireductaseduodenalcytochromeb(DCYTB)at theapicalmDemietbarrayn ireono fcodnutoaidneinnga hleemnete arnodc yntoens-.hHemeep icriodni nis babinsodrsbetod FbyP Nthea dnidvatlreingt gmeertsali ttsrainnstpeornrtaerl ization, (DMT1) located at the apical membrane of duodenal enterocytes [10–12] (Figure 1), which ubiquitinationandsubsequentlysosomaldegradation,leadingtoinhibitionofironexportbyFPN transports only Fe2+ but most dietary iron is Fe3+. Thus, Fe3+ should be reduced to Fe2+ before iron fromenterocytes,hepatocytesandmacrophagesintothecirculation.Hemeabsorbedbytheenterocytes transport by DMT1. This reduction step is mediated by the ferrireductase duodenal cytochrome b isdegra(dDeCdYbTyB)h aet mthee oapxiycagle mnaemseb-r1an(He oOf -d1u)oadnednatlh eentleibroecryatetes.d Hierpocnidiisnp briondces stsoe FdPiNn aansdi mtriiglgaerrms itasn neras theabsoirnbteerdnainlizoartgioann,i ucbiriqouni.tinTahtieonex apnodr stuobfseeqnuteenrot clyystoicsoimroanl dbeygrFaPdNatiorenq, uleiardeisngh etop hinaheisbtiitino,na omf iurolnti copper oxidaseehxopmorot bloyg FoPuNs ftroomce ernuteloropclyatsems, hinep(aCtoPc)y,twes haincdh moaxcirdoipzheasgFese i2n+toto thFee c3i+rcufolartiloona. dHinemgeo anbtsoortbreadn sferrin (Tf)[10]b.yO tnhec eenetxerpoocyrtteesd isb dyeFgrPaNdedin btyo htehmeec oirxcyugleantaisoen-1, F(HeO2+-1i)s aonxdi dthiez leidbeirnatteod Fireo3n+ isb ypraocfeesrsreido ixni da aseCP similar manner as the absorbed inorganic iron. The export of enterocytic iron by FPN requires inhepatocytesandmacrophages. Iron-loaded(diferric)transferrin(Tf-Fe ,holo-Tf)istransportedto hephaestin, a multicopper oxidase homologous to ceruloplasmin (CP), whi2ch oxidizes Fe2+ to Fe3+ othercellsortissuesforironmetabolismorstorage[10–12]. for loading onto transferrin (Tf) [10]. Once exported by FPN into the circulation, Fe2+ is oxidized Hepinatoto Fcey3+t ebsy sae fnesrreioixriodnases tCoPr eins haenpdatorceygteusl aatned hmeapcrcoidphinagepsr. oIrmono-tlooardeadc t(idviifteyr,rict)h terraenbsfyerrrienl easing hepcidin(Tfa-cFceo2, rhdoilno-gTlfy) .isI tnraInDspo(rFtiegdu tore ot1hAer) c,ehllse porc itdissinuesis folro iwrona mndetatbhoulissmir oorn stoisrargeel [e1a0s–e1d2]. by FPN into the circulatiHonepafrtoocmytees nsteenrsoec yirtoens ,sthoerepsa taoncdy treegsualanted hmepaccidroinp hparogmeso,tofra caciltiitvaittyin, gtheirreobny arvelaeialsainbgil ity for hepcidin accordingly. In ID (Figure 1A), hepcidin is low and thus iron is released by FPN into the erythropoiesis [10–12]. Under iron overload (Figure 1B), increased hepcidin in hepatocytes is circulation from enterocytes, hepatocytes and macrophages, facilitating iron availability for released [10–12]. Increased hepcidin binds to FPN and inhibits FPN-mediated iron export into erythropoiesis [10–12]. Under iron overload (Figure 1B), increased hepcidin in hepatocytes is the circulation to reduce Tf saturation (TSAT), leading to subsequent inhibition of duodenal released [10–12]. Increased hepcidin binds to FPN and inhibits FPN-mediated iron export into the ironabscoirrcputliaotino.n to reduce Tf saturation (TSAT), leading to subsequent inhibition of duodenal iron absorption. (A) Figure1.Cont. Nutrients2018,10,1173 4of34 Nutrients 2018, 10, x FOR PEER REVIEW 4 of 33 (B) Figure 1. Regulation of systemic iron homeostasis. Divalent metal transporter 1 (DMT1) at the apical Figure1.Regulationofsystemicironhomeostasis.Divalentmetaltransporter1(DMT1)attheapical membrane of enterocytes takes up Fe2+ from the lumen after duodenal cytochrome b (DCYTB) membrarnedeuocfese ndtieertaorcyy tFees3+ tatok eFse2u+. pFeFrer2o+pofrrtoinm (FthPeNl)u amt tehne abfatesorladtueroadl emneamlbcyratnoec herxopmorets bFe(D2+ CinYtoT Bth)er educes dietaryFcierc3u+latotioFne. 2+F.PNFe rcroooppoerratitens (FwPitNh )haetpthhaeesbtains otlhaatte roaxlimdizeems bFrea2n+ etoe xFpeo3+r. tsInF eh2e+piantotocytthese cainrdc ulation. FPNcoompaecrraoptehsagwesit, hFeh2+e pish oaxeidstizinedt hbay tao fxeirdroixziedsasFee, 2c+ertuoloFpela3+sm.Iinn (hCePp).a Dtoifceyrrtiecs iraonnd (Fme3a+2c)-rtorapnhsafegrerisn, Fe2+is oxidized(hboylo-aTff)e rsruopxpidlieass ei,rocne rutol oaplll acsemllsi na(nCdP t)i.sDsuiefse rtrhircoiurgohn (bFined3+ing) -ttroa nTsf ferrercienpt(ohr o1lo -(TTffR)1s)u panpdl iesiron 2 endocytosis. Erythrocytes are phagocytized by macrophages. Hemoglobin-derived heme in to all cells and tissues through binding to Tf receptor 1 (TfR1) and endocytosis. Erythrocytes are enterocytes and macrophages is catabolized by heme oxygenase-1 (HO-1). After sensing iron, phagocytized by macrophages. Hemoglobin-derived heme in enterocytes and macrophages is hepatocytes produce and release hepcidin. In iron deficiency (A), low hepcidin facilitates iron catabolizedbyhemeoxygenase-1(HO-1).Aftersensingiron,hepatocytesproduceandreleasehepcidin. export by FPN into the circulation. In iron overload (B), high hepcidin binds to FPN and inhibits Inirondireofinc ieexnpcoyrt( Afr)o,mlo wentheeropccyitdeisn, fhaecpialittoactyetessi raonnde xmpaocrrotpbhyagFePsN byin ttroigtgheericnigr ciunltaetrinoanli.zaIntioinro annodv erload (B),highdhegerpacdiadtiionnb oinf dFPsNto, lFePadNinagn tdo irnedhuibctiitosni roofn ireoxnp sotortrafgroe.m Deanshteedro lcinyet eins,dhiceapteast olecsys tierosna nsudpmplayc. rxo: phages bytriggeinrhinibgitiionnte. Frnigaulrizesa taidoanptaendd frdomeg [r1a2d].a tionofFPN,leadingtoreductionofironstorage.Dashedline indicateslessironsupply.x:inhibition.Figuresadaptedfrom[12]. 3.2. Hepcidin Regulation by Iron Status After sensing iron, bone morphogenetic protein (BMP)-6 is produced in the liver [28] and 3.2. HepcidinRegulationbyIronStatus increases hepcidin via BMP/small mothers against decapentaplegic (SMAD) proteins-mediated Aftseirgnsaelninsgin pgatihrowna,yb [o2n8]e (mFigourpreh 2o)g. Henoelot-iTcfp driostpelaince(sB tMheP in)-t6eriascptiorond ouf cheedreidnittahrye hlievmeorc[h2r8o]maantdosiins creases hepcidinprovtieain BM(HPFE/)s-TmfRa1ll manodt hsetarsbilaizgeas intshte daescsaopcieatniotanp loefg iHcF(ES-MTfRA2D )wpithro tmeienmsb-mraneed-iaantcehdoresdig naling hemojuvelin (mHJV), forming a complex of HFE/TfR2/HJV which is dispensable for hepcidin pathway [28] (Figure 2). Holo-Tf displaces the interaction of hereditary hemochromatosis protein transcription [10,11,28]. mHJV exclusively expressed in hepatocytes acts as a co-receptor for BMP-6, (HFE)-TfR1andstabilizestheassociationofHFE-TfR2withmembrane-anchoredhemojuvelin(mHJV), leading to activation of BMP/SMAD-mediated hepcidin transcription [28]. Neogenin acts as a formingscaaffcooldm ptol efxacoiliftaHteF aEs/seTmfRbl2y/ oHf JHVJVw/BhMicPh/BiMsPd irsepceepntsoar b(lBeMfPoRr) hceopmcpidleixn [t2r9a] nasncdr ipmtaiionntai[n1s0 ,11,28]. mHJV epxrcolpuesri vmeHlyJVe xfupnrcetisosne d[28in]. Mheaptraipttoacsye t(eMsTa)c-2t s(aalssoa kcnoow-rne caesp TtoMrPfRoSrS6B)M fuPn-c6ti,onlesa ads ian gnetgoataivcet ivation of BMPr/egSuMlaAtoDr o-fm heedpciiadtiend-rehlaetepdc iBdMinP/StrMaAnsDc sriigpntaiolinng [b2y8 c].leavNinego mgeHnJiVn inatcot ssolausblea HsJcVa f(fsoHlJdV)t [o11f].a cilitate assemblyofHJV/BMP/BMPreceptor(BMPR)complex[29]andmaintainspropermHJVfunction[28]. Matriptase(MT)-2(alsoknownasTMPRSS6)functionsasanegativeregulatorofhepcidin-related BMP/SMADsignalingbycleavingmHJVintosolubleHJV(sHJV)[11]. ID reduces BMP-6, leading to inhibition of BMP/SMAD-dependent hepcidin transcription. Decreased holo-Tf in ID destabilizes the TfR2-HFE interaction, thereby inhibiting hepcidin transcription [28]. Decreased holo-Tf and non-Tf-bound iron increase sHJV, leading to inhibition ofhepcidin,whileincreasedholo-Tfandnon-Tf-boundironhavetheoppositeeffect[28]. IDstabilizes MT-2,therebysuppressinghepcidin[28,30]. Furin,whichcleavesmHJVintosHJV,isupregulated by ID and inhibits hepcidin [31]. In iron overload, increased holo-Tf stabilizes the TfR2-HFE interaction[10,11,28]anddecreasesfurin[32],therebyincreasinghepcidintranslation. NNuuttrriieennttss 22001188,, 1100,, x1 1F7O3R PEER REVIEW 5 5oof f3334 Figure 2. Regulation of hepcidin by iron status and inflammation. Under high iron conditions, Figure 2. Regulation of hepcidin by iron status and inflammation. Under high iron conditions, increased holo-Tf induces bone morphogenetic protein (BMP)-6 in non-parenchymal cells in the increased holo-Tf induces bone morphogenetic protein (BMP)-6 in non-parenchymal cells in the liver,disruptshereditaryhemochromatosisprotein(HFE)-transferrinreceptor(TfR)1interactionto lpivroerm, odtiesrHupFtEs- ThefRre2diintatreyra hcteimonocahnrdomitsataosssiso cpiarotitoeninw (HithFEm)-etrmanbsrfaenrer-inan rcehcoepretdorh (eTmfRo)j1u vinetleinra(cmtioHnJ Vto), pforormmiontge aHcFoEm-TpflRex2 oinftHerFaEc/tiTonfR a2n/dB MitsP -a6s/sBocMiaPtiRo/nH wJVit/h nmeoegmebnriann,ew-ahnicchhoisreddis hpeemnsoajbulveefloinr h(mepHciJdVi)n, ftorarmnsicnrgip ati ocnomvipaleBxM oPf /HsmFEa/lTlmfRo2t/hBeMrsPa-6g/aBiMnsPtRd/eHcaJVpe/nnetaopgleengiinc, (wSMhiAchD )iss idgnisapleinngsa.bInlei rfoonr ohveeprcliodaidn, tfruarninsc,rwiphtiiocnh vclieaa BvMesPm/sHmJaVll, misodtohwerns raeggauilnastte dd,ecthapereenbtyapilnecgrieca (sSinMgAhDe)p sciigdnina.linLgo. wIni rioronnc oovnedriltoioands, fiunrcirne,a swehmicaht ricpletaavsees( MmTH)-J2Va, nids fduorwinn,rwehguiclhatceldea, vthesermebHyJ Vin,rcerdeausciensgB hMepPc-6idpinro. dLuocwti oinroann dcofancdiliittiaotness itnhcereHasFeE -mTfaRt1ripintatesrea c(tMioTn),-2le aadnidng ftuoriinn,h iwbihtiiochn ocfleBaMvePs /SmMHAJVD, -dreepdeuncedse nBtMhePp-6ci dpinrotdruanctsicornip tainodn . fParcoil-iitnaflteasm mthaet oHryFcEy-TtofkRi1n eisnstuercahcatisoinn,t elrelaeduikning (ItLo )-i1nβhiabnidtioILn- 6osft imBMulPa/tSeMheApDci-ddienpeexnpdreensst iohnevpicaidthine tJraannusscrkiipntaiosen.( JPArKo-)/insfilganmamltraatonrsyd uccyetroskainnedsa scuticvha taosr sinoftetrrlaenuskcirnip (tIioLn)-1(SβT AanTd)3 IsLig-6n asltiinmgu.lIantflea hmempcaitdioinn einxdpurecsessioonth veriac ytthoek iJnaen,uasc tkivininasBe, w(JhAiKch)/sstiigmnaull attreasnBsdMuPc/erSsM aAnDd saicgtnivaalitnogrs, soyfn terragnicsaclrliyptwiointh (ISLT-6AaTn)d3 sSiTgAnaTl3insgig. nInafllianmg,mleaatdioinng intoduhceepsc iodtihnere xcpyrteosksiinoen, .aEcntidvoinp lBa,s mwhicicrhet isctuimluumlat(eEsR B)MstrPe/sSsMasAsDoc isaigtendalwinigth, sinyflnearmgmicaaltliyo nwiintchr eILas-e6s ahnedp SciTdAinTv3i asiSgMnaAliDng1,/ l5e/a8dianngd tcoy hcleicp-cAidMinP -erxepspreosnssiiovne.- eElnemdoepnlta-bsminidci nregtipcruoltuemin ((ECRR)E B)sHtretshsa tbaisnsdosciaantedda ctiwviatthe shienpflcaimdimnaptrioomn oteinrcarcetaisveitsy . Ihneflpacmidmina tiovniai ncrSeMasAesDh1e/5p/c8i dinanbdy cinychliibci-tAinMgPM-rTes-2povniasidvee-cerleeamseedntS-bTiAnTd5inagn dpproetreoixni so(CmReEpBr)oHli fetrhaatot r-baicntidvsa teadndre caecpttiovratγesc ohacetpivciadtionr p(ProGmCo)-t1eαr wachtiicvhitayn. tIangfolanmizmesaltiipoonp oinlycsraecacshesa rhideep-ciniddiunc ebdy hienphcibiditiinntgr aMnsTc-r2ip vtiioan dveiacrtehaesiendt eSraTcAtiTon5 wanitdh pheerpoaxtioscoymteen ucpleroarliffaecratotorr4-αac.tIinvflaatemdm artieocne-pintodru ceγd ILc-1oβacetnivhaatnocre sh(PepGcCid)-in1αtr anwschriipchti onabnytaingdouncizinesg lCip/oEpBoPlyδs.aHccehpacriiddien-itnradnuscleadti ohnepiscimdiend tiraatnedscirnipdtiiroenc tvlyiat hthreo uingtherearcyttihonro wpoitihe thinep(EatPoOcy)/teE nPuOcRle-ainr dfauccteodr 4eαry. thInroflpaomiemsiastaionnd-ipnodsusicbeldy gIrLo-w1βth ednihffaenrecnetsi ahtieopncifdacinto rtr(aGnDscFr)i1p5t.ioDna sbhye dinlidnue:cicnlega vCa/gEeB,P→δ.: aHcteipvcaitdioinn, t(cid:96)ra:ninshlaibtiiotino nis. mediated indirectly through erythropoietin (EPO)/EPOR-induced erythropoiesis and possibly growth differentiation factor (GDF)15. Dashed line: cleavage, →: activation, ├: inhibition. 3.3. InflammationIncreasesHepcidinExpression ID reduces BMP-6, leading to inhibition of BMP/SMAD-dependent hepcidin transcription. Pro-inflammatorycytokinesareincreasedinCKD[17,18]. Pro-inflammatorycytokinessuchas Decreased holo-Tf in ID destabilizes the TfR2-HFE interaction, thereby inhibiting hepcidin IL-1βandIL-6stimulatehepcidinexpressionviatheJanuskinase(JAK)/signaltransducerandactivator transcription [28]. Decreased holo-Tf and non-Tf-bound iron increase sHJV, leading to inhibition of oftranscription3(STAT3)pathways[10–12,28](Figure2). Inflammationinducesothercytokineactivin hepcidin, while increased holo-Tf and non-Tf-bound iron have the opposite effect [28]. ID stabilizes BwhichstimulatesBMP-6/SMADpathwaysynergicallywithIL-6andSTAT3,leadingtohepcidin MT-2, thereby suppressing hepcidin [28,30]. Furin, which cleaves mHJV into sHJV, is upregulated expression[11]. Endoplasmicreticulum(ER)stressassociatedwithinflammationincreaseshepcidin by ID and inhibits hepcidin [31]. In iron overload, increased holo-Tf stabilizes the TfR2-HFE byactivatingSMAD1/5/8[33],IL-6-dependentphosphorylatedSTAT3[34]andERstress-activated interaction [10,11,28] and decreases furin [32], thereby increasing hepcidin translation. transcription factor, cyclic AMP response element–binding protein H (CREBH), which bind and activatehepcidinpromoteractivity[35]. InflammationinhibitsMT-2bysuppressingSTAT5[36]and 3.3. Inflammation Increases Hepcidin Expression peroxisomeproliferator-activatedreceptorγcoactivator-1α(PGC-1α)whichantagonizesLPS-induced hepcPidrion-itnrfalnasmcrmipattioornyv ciyattohkeininetse ararec tiinocnrweaistehdh ienp aCtKocDy t[e1n7,u1c8l]e. aPrrfoa-citnofrla4mαm[3a7t]o,rlyea cdyitnogkitnoeasc tsiuvcahti oans IL-1β and IL-6 stimulate hepcidin expression via the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways [10–12,28] (Figure 2). Inflammation induces other Nutrients2018,10,1173 6of34 ofhepcidintranslation. Inflammation-inducedIL-1βalsoactivateshepcidinexpressionbyinducing CCAATenhancer-bindingprotein(C/EBP)δinhepatocytes[38]. 4. BiomarkersofIronStatusandInflammationinCKD A number of biomarkers of iron status have been used in a clinical setting. However, traditionalbiochemicalironparameterssuchasserumiron,Tfandserumferritinareinfluencedby inflammation[14],makingthemlesssuitableindicators. Duetoconfoundingeffectsoftheacute-phase responseontheinterpretationofmostironindicators,theassessmentofironstatusischallengingwhen concomitantinflammationispresent. Infact,serumlevelsofferritinwerepositivelycorrelatedwith CRP,ameasureofinflammation,inchildrenandadultsonHD[16,39,40]. Underminorinflammation, serumferritinappearstobeamostreliablebiomarkeroftotalbodyironstoresandIDisdiagnosed belowthecutoffserumferritinlevelsof<15ng/mLinindividualsolderthan5years[1]. However, serumferritinlevelsof50ng/mLorhighercouldstillbeIDwhenapparentinflammationispresent[1]. Thus, the interpretation of serum ferritin, an acute phase reactant, is complicated by concomitant inflammation[1,14,41]. Asnegativeacutephasereactants,concentrationsofserumironandTf,anirontransportprotein, aredecreasedinresponsetoinflammation[14,41–43]. LowTSAT(<20%)withlowserumferritinis diagnosticofIDA[1,44]. LowTSATcombinedwithnormalorelevatedserumferritinisdiagnostic ofFIDA[44]. Asdiscussedlater,manyinternationalguidelinesforthemanagementofIDAinCKDuse thecombinationoflowserumferritinandTSATfordiagnosisofIDA.TSATrepresentsthepercentage ofbindingsitesonallTfmoleculesoccupiedwithironmoleculesandiscalculatedastheratioofserum irontoTforserumirontototaliron-bindingcapacity(TIBC)whichindicatesthemaximumamount of iron necessary to saturate all available transferrin iron-binding sites [1,44]. TIBC is a negative acute-phase reactant and reduction in TIBC induced by inflammationleads to higher TSAT levels independent of iron status [41]. Thus, reliability of TSAT as a measure of iron status is reduced byinflammationassociatedwithCKD.SolubleTfR(sTfR),whichisproducedbyproteolysisofthe membraneTfR,isincreasedinHDpatientswithIDandinverselycorrelatedwiththeamountofiron available for erythropoiesis [44]. As a marker of iron status, sTfR is not an acute-phase reactant andlessinfluencedbyinflammationthanserumferritinis,whileitisincreasedinindividualswith generalinflammation[14]. Inaddition,sTfRappearstorepresenterythropoieticactivitymorethan iron-restrictederythropoiesisinCKDpatientsreceivingESA[44]. Thus,theinterpretationofsTfRis alsoconfoundedbytheuseofESA[1,41]. Thus,itisaninferiormarkertocellularmeasuressuchasthe contentofHbinreticulocytes(CHr)orthepercentageofhypochromicredbloodcells(%Hypo)[41,44]. OtherlimitationsofsTfRmeasurementincludecostforthemeasurementandlackofstandardcutoff andwidespreadavailability[1,41]. Theinterpretationoftotalbodyiron(TBI),thelogratioofsTfR toserumferritin,isalsocomplicatedbythesameconfoundingfactorsasforserumferritinandsTfR concentrations[14]. Other laboratory markers of iron status include CHr and %Hypo. Both iron biomarkers are influencedbyinflammation[45,46]. CHrisinverselyrelatedtologCRP[45]andthereisapositive correlationbetween%HypoandCRP[46].CHrisaveryearlyindexofironavailableforerythropoiesis within 3–4 days [1,41,44]. The CHr of <27.2 pg is diagnostic of ID, while false normal values are frequentlyencountered[1]. Themeasurementof%Hypoasaproportionofhypochromiccellsdefined aserythrocyteswithmeancellularHbconcentrationlessthan28g/dLintotalredbloodcellsisthe most sensitive marker of ID in CKD (cutoff, <6%) [1] and FID [41]. However, it is not suitable for the assessment of short-term changes in iron status [1,41,44]. Furthermore, a fresh blood sample isneededandautomatedanalyzersarenotwidelyavailableinclinicalsetting. Currently, noneof themeasurementsareadequateandaccurateindicatorsofironstatus,especiallywhenconcomitant inflammationispresent. ItiscontroversialaboutwhetherhepcidinisareliablebiomarkerofironstatusinCKDpatients. Serumhepcidinhasbeenshowntobepositivelycorrelatedwithserumferritin,percentironsaturation, Nutrients2018,10,1173 7of34 CRP and sTfR and negatively with glomerular filtration rate (GFR) in CKD patients [47]. As GFR decreased,serumhepcidinlevelswereincreasedinnon-dialysis(ND)-CKDpatients[48]. Dialysis canremovehepcidin[49]andinflammationincreaseshepcidinlikeferritin[18,48,50]. Asignificant intra-individualvariabilityofhepcidinwasdependentonshort-termfluctuationsintheinflammatory condition[50]. Thus,short-termmeasurementofserumhepcidinshouldnotbeusedasabiomarkerof ironstatusinHDpatients[50]. Interpretationofthedataforserumhepcidinshouldbewithcaution duetotheconfoundingfactorsasdescribed. However,hepcidincouldbeagoodbiomarkerofiron statusinCKDpatientsintheabsenceofapparentinflammation. 5. IDAinCKD 5.1. ImpactofInflammationonDiagnosisofIDA The cutoff levels of Hb for diagnosis of anemia depend on age, sex and pregnancy [1] (Table 1). In general, low serum ferritin (<15 ng/mL) and TSAT (<16%) are used for diagnosis of IDA in individuals without inflammatory conditions [1]. However, IDA could be diagnosed based on higher cutoff levels of serum ferritin and TSAT in the presence of chronic inflammatory condition such as CKD [1]. Table 2 summarizes diagnostic criteria for IDA in ND-CKD and HD patients used by international guidelines for the management of IDA in CKD patients [51–60]. Some guidelines in Canada, US [51,52,55] and Taiwan [57] recommend higher cutoff levels of serumferritin≤200–500ng/mLandTSAT≤30%[54,57]fordiagnosisofIDAandinitiationofiron supplementation in ND-CKD and HD patients than those (serum ferritin <100 ng/mL and TSAT <20%)recommendedbytheJapaneseSocietyforDialysisTherapy(JSDT)guidelines[53]andother guidelines from Europe [55,56,58–60]. The Japanese nationwide study showed low cutoff levels ofserumferritin(<50–100ng/mL)andTSAT(<20%)todiagnoseIDAinHDpatientswithlowCRP (median; 1.0 mg/mL) [61]. The reason for the difference in the criteria for diagnosis of IDA and theinitiationofirontherapyinCKDpatientsbetweenJapanandsomeWesterncountriesisunclear. However, itmaybeinpartduetolowerprevalenceofinflammationassociatedwithHDpatients in Japan than those in Western countries [15,61,62]. While the specific biologic basis underlying differences by race and ethnicity is unclear [62], one of the reasons may be higher prevalence of arteriovenous (AV) fistula and lower prevalence of. catheter use and AV graft in Japan [15,63,64] thatareassociatedwithhigherlevelsofCRP[65]ascomparedtoWesterncountries. Nonetheless, theimpactofinflammationcouldincreasethecutofflevelsofserumferritinandTSATfordiagnosisof IDAtoinitiateirontherapyinCKDpatients. Table1.Cutoffofhemoglobin(Hb)fordiagnosisofanemia. Age/GenderGroups HbBelow(g/dL) Children 6monthsto4years <11.0 5to11years <11.5 12to14years <12.0 Adults Non-pregnantwomen≥15years <12.0 Pregnantwomen≥15years <11.0 Men≥15years <13.0 Nutrients2018,10,1173 8of34 Table2.InternationalclinicalguidelinesfordiagnosisofIDAandupperlimitofserumferritinandTSATinCKDpatients. RecommendedIDCutoff Organization Origin ID/IDA SerumFerritin(ng/mL) TSAT(%) UpperLimitofSerum TSAT(%) Reference (Year) Ferritin(ng/mL) ND HD ND HD KDOQI(2007) USA ID/IDA ≤100 ≤200 ≤20 ≤20 ≤500 NA [51] CSN(2008) Canada ID/IDA ≤100 ≤200 ≤20 ≤20 ≤800 NA [52] JSDT(2008) Japan ID/IDA ≤100 ≤100 ≤20 ≤20 ≤800 ≤50 [53] Children ≤100 ≤100 ≤20 ≤20 NA NA KDIGO(2012) International ID/IDA ≤500 ≤500 ≤30 ≤30 ≤500–800 NA [54] Children ≤100 ≤100 ≤20 ≤20 ≤500–800 NA ERBP(2016) Europe ID/IDA <100 <100 <20 <20 ≤500 ≤30 [55] KHA-CARI(2013) Australia ID <100 <100 <20 <20 ≤500 NA [56] TPG(1996) Taiwan ID/IDA ≤300 ≤300 ≤30 ≤30 ≤800 ≤50 [57] NICE(2015) UK ID/IDA ≤100 ≤100 ≤20 ≤20 <800 NA [58,59] UKRA(2017) UK ID/IDA ≤100 ≤100 ≤20 ≤20 ≤500–800 NA [60] Children ≤100 ≤100 ≤20 ≤20 ≤500–800 NA CKD:chronickidneydisease;CSN:CanadianSocietyofNephrology;ERBP:EuropeanRenalBestPractice;HD:hemodialysis;ID:irondeficiency;IDA:IDanemia;JSDT:TheJapaneseSociety forDialysisTherapy;KDIGO:TheKidneyDisease,ImprovingGlobalOutcomes;KDOQI:TheKidneyDiseaseOutcomesQualityInitiative;KHA-CARI:KidneyHealthAustralia-Caring forAustralianswithRenalImpairment;ND:non-dialysis,NICE:TheNationalInstituteforHealthandCareExcellence;TPG:TaiwanPracticeGuidelines;TSAT:transferrinsaturation; UKRA:UnitedKingdomRenalAssociation.IDisdefinedasadecreaseinthebodyironstores.NA:notavailable. Nutrients2018,10,1173 9of34 5.2. IDA,InflammationandClinicalOutcomeinCKD IDAandFIDAarefrequentlyassociatedwithchronicinflammation,includingCKD.IDAoccurs in42.0%inchildrenwithCKD[66]and1.2–13.9%inthosewithout[67,68]aswellasin24.0–85.0%of adultswithCKD[69,70]and1.0–4.5%ofthosewithout[67,71],suggestingthatIDAismorefrequently associatedwithCKDpatientsthangeneralpopulation. IDAismoreprevalentinbothgirlsandwomen thanboysandmenandinpatientswithadvancedCKDthaninthosewithlowgradeCKD[66,69]. FIDAoccursin12.0–21.4%ofND-CKDadults[18,48]and23.0–42.9%ofHDadults[17,72]although prevalenceofFIDAremainsunknowninCKDchildrenandgeneralpopulation. Thus,bothIDAand FIDAmorefrequentlyoccurasCKDadvances. IDAincreasesariskofhospitalization[73]andmortality,includingall-causeandcardiovascular- relatedmortalityinND-CKD[4,73,74]andHDadults[75,76]. Severalshort-termstudiesshowedthat Hb<10g/dLwasariskfactorofmortalityinND-CKD[77]andHDadults[78,79]. Thelong-term studiesshowedthatHblevelsof<10–12g/dL[80–82]wereariskfactorofmortalityinHDadults. Ontheotherhand,inHDchildren,Hb<12g/dLwasassociatedwithincreasedriskofhospitalization andmortality[83]. ThesedatasuggestthatthelevelsofHbof<12g/dLareariskfactorofmortality inbothchildrenandadultswithND-CKDandHD.Additionally,longertimerequiredtoreachthe tHblevelwasassociatedwithhigherriskofhospitalizationandmortalityinHDadults[84]. Thus, earlyinterventionwithirontherapyforIDAcanimproveQOLandmortalityinCKDpatients. Littleisknownwhetherinflammationaffectsthecutofflevelsofferritindeficiencyasariskfactor ofmortalityinCKDpatients. ThestudyfromEuropereportedthatinHDadults,mortalityratewas 13.8/100patient-yearsandthatserumferritinlevelsof<100ng/mLwereariskfactorofcardiovascular- relatedmortalityinHDpatientswithpositiveCRP[76]. However,theJapanesestudyshowedthat lowserumferritinlevelsofeither<30ng/mLor<50ng/mLwereassociatedwithasignificantrisk of mortality in Japanese HD patients with normal CRP receiving IIT and ESA [8,85]. These data suggestthatlowlevelsofserumferritinareariskfactorofmortalityinCKDpatients,whereasthe cutofflevelsofferritindeficiencytopredictmortalityislowerinHDpatientswithoutthanthosewith apparentinflammation. In addition to low ferritin, low serum iron (<45.3 µg/dL) [86], TSAT (≤20%) [74,87,88] and TIBC[75]havebeenshowntoberiskfactorsofhospitalizationandmortalityinND-CKDandHD adults. IDAinducesresistancetoESA[88]whichaggravatesrenalanemia,leadingtoworseoutcome inHDpatients[89].ThesedatasuggestthatIDAisasignificantriskfactorofmortalityinCKDpatients. Asdiscussedearlier,inflammationaffectstheseindicatorsofironstatus,especiallythecutofflevelsof serumferritindeficiencytopredictmortalityinCKDpatients. 5.3. Inflammation,IncreasedSerumFerritinandMortalityinCKD ThemanagementofIDAwithironsupplementationiscrucialforbetteroutcomeinCKDpatients. However, aggressive iron therapy causes iatrogenic iron overload, leading to inflammation and increasing a risk of mortality. In support of this hypothesis, inflammation and hyperferritinemia (>500ng/mL) were associated with cardiovascular and all-cause mortality in HD adults [90]. Inaddition,indialysischildrenandadolescentswithironoverload,ferritinlevelsshowedapositive correlationwithinflammationmarkers(CRPandIL-6)andleftventricularmass(LVM)[39]. Itiscontroversialwhetherironoverloadisassociatedwithariskofinfectionorinfection-related mortality[91]. Highserumferritinhasbeenshowntobeanindependentriskfactorofinfection-related mortalityinHDpatients[7,92–95]. Bolusdosingofferricgluconatecouldincreaseariskofinfection- relatedmortalityandhospitalizationinHDpatientswithcatheter[96]. However,norelationhasbeen reportedbetweenferritinandariskofinfection-relatedmortalityinHDpatients[97]. Toreduceariskofironoverload-mediatedtoxicity,internationalguidelinesforthemanagement of IDA in CKD recommend that upper limit of serum ferritin and TSAT should be maintained at <500–800 ng/mL [51–60] and <30–50% [53,55,57], respectively (Table 2). Other study groups in Europe and US recommend that serum ferritin should be maintained at 400–600 ng/mL [98] and Nutrients2018,10,1173 10of34 200–1200ng/mL[99]inHDpatients. ThepercentageofUSfacilitieswithanupperferritintarget of1200ng/mLincreasedfrom20%to40%from2010to2011andmorethan90%facilitieshadan upper ferritin target of 800 ng/mL in 2014 [100]. Upper ferritin targets of 500 ng/mL remained commoninEuropeandnoEuropeanfacilityhadupperferritintargetsof1200ng/mLin2014.InJapan, upperferritintargetswerelower,withmostfacilitiestargetingupperlimitsof300ng/mL[100]. Inthis study,thedataforCRPwerenegativeinJapanesefacilitiesalthoughdataforCRPinUSfacilitiesare notavailable. TheseguidelinesandthestudiesdescribedhereexceptforthosefromJapanarelikelyto bebasedonthedataobtainedfrominflamedCKDpatientsassuggestedbyotherstudies[15,61,62]. Thus,inflammationsignificantlyaffectsupperserumferritintargetstoavoidironoverloadforthe managementofIDAinCKDpatients. Insupportofthishypothesis, inthesettingofconcomitant inflammation,serumferritinlevelsof≥500–800ng/mLarefoundtobepredictiveofhighmortalityin HDpatientsofEurope[9,101]andTaiwan[92]andUSA[95]. HighCRPlevelsalonemaypredicthigh mortalityinHDpatients[62,102]. Takentogether,thesedatasuggestthatironoverloadasreflectedby highserumferritinandconcomitantinflammationindependentlyorsynergicallycanincreasearisk ofmortalityinCKDpatients. Bycontrast,intheabsenceofinflammation,evenslightincreaseinserumferritin(≥200ng/mL)is associatedwithariskofmortalityinJapaneseHDpatients[85]. Thus,thecutofflevelsofserumferritin topredictironoverloadandariskofmortalityaresignificantlylowerinHDpatientswithoutthanin thosewithapparentinflammation. Sinceinflammationincreasesferritinindependentofironstatus, upperserumferritintargetstopredictironoverloadandmortalitymaybelowerthan>500–800ng/mL inHDpatientswithapparentinflammation,Furtherstudieswouldbenecessarytodeterminewhatare truelevelsofupperserumferritintargetstopredictironoverloadinCKDpatientswhenconcomitant inflammationispresent. 6. ImpactofInflammationonTherapeuticStrategywithIronSupplementationinCKD Ironsupplementationhasbeenusedin57.3–78.0%ofdialysischildren[103–105]anditsuseis lessprevalentinthosenotreceivingthaninthosereceivingESA[104,105]. Thus,irontherapyislikely tobemorefrequentlyusedinsevereanemicCKDchildrenreceivingESA.Thereisasimilartrendin CKDadults;irontherapyhasbeenusedin48.1–56.3%ofND-CKD[4,106],68.0%ofperitonealdialysis (PD)and76.0–84.4%ofHDadults[104,107]. TheuseofIIThasrecentlybeenincreasedto>70%ofHD adults[108]andserumferritintargetsandIVirondoseshavebeenincreasedinHDadults[108,109]. MaintenanceIITcanimprovetheresponsetoESAwithareductionofESAdoseandearlysurvivalin ND-CKD[73]andHDadults[110]. However,Hblevelsof>13g/dLfollowingIITisassociatedwith worseoutcomeinCKDpatients[111]. Thus,thetargetHb(tHb)of10–13g/dLisrecommendedfor themanagementofIDAinCKDpatients[112–114]. Wehereindiscusstheimpactofinflammationon sometherapeuticissuestomaintaintHbforthemanagementofIDAinCKDpatients. 6.1. InflammationandtheResponsetoIronSupplementationinCKD IIT is generally superior to OIT to improve IDA in children and adults with CKD [115,116], whilesomepatientsfailtorespondtoirontherapy. Insupportofthis,Qunibietal. showedthatthe tHblevelsweremoremaintainedinND-CKDpatients(60.4%)afterIVferriccarboxymaltosethanin those(34.7%)receivingOIT[117]. OneofthereasonsaccountingforsuperiorityofITToverOITto maintaintHbinCKDpatientsmaybedifferenceintheefficacyofIITandOITinCKDpatientsinthe presenceofconcomitantinflammationthatincreasesferritinandhepcidin. Table3summarizesdata regardingtheimpactofinflammationontheeffectofOITversusIITforIDAinCKDpatients,inwhom thedataforCRPareavailable. TheefficacyofIITisgenerallybetterthanOITforthemanagement of IDA in inflamed ND-CKD patients with positive CRP [98,118–122]. Stoves et al. showed no significantdifferenceintheHblevelsattheendofOITandIITinND-CKDadultswithpositiveCRP, whilethelevelsofHbachievedtendedtobehigherintheIITgroupthanthoseintheOITgroup[123]. Incontrast,inHDpatientswithnormalCRP,OITisaseffectiveasIIT[124–126]. HDadultsresponding

Description:
Thus, appropriate management of IDA is crucial for improving quality of life (QOL) .. for Dialysis Therapy; KDIGO: The Kidney Disease, Improving Global . To reduce a risk of iron overload-mediated toxicity, international guidelines for Pandey, R.; Daloul, R.; Coyne, D.W. Iron treatment strategies
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.