Impact of Hybrid Distributed Generation Allocation on Short Circuit Currents in Distribution Systems A thesis submitted for the degree of Doctor of Philosophy By Sara Nader Afifi Supervisor: Dr Mohamed Darwish Brunel Institute of Power Systems (BIPS) Department of Electronic and Computer Engineering College of Engineering, Design and Physical Sciences Brunel University London March 2017 Abstract The rapid development in renewable generation technologies and flexible distribution networks requires current infrastructure to be modified and developed to adapt high penetration levels of distributed generation. Existing distribution networks were not initially designed and anticipated to accommodate generators on large scale. Short circuit studies ensure the effectiveness of protection equipment settings and coordination is maintained in case of short circuit, despite any additional distributed generation is connected to the distribution network. This research aims to study and compare the different network fault situations for wind energy systems with induction generators, photovoltaic energy systems, and diesel generators connected to distribution networks. The simulation study will be conducted on the existing IEEE case study systems including 13 bus and 30 bus distribution test systems, using ETAP software. Short circuit analysis will be performed twice to include the ANSI/IEEE and the IEC methods for short circuit currents calculation. Simulated results showed that the wind energy systems have significant impact on the short circuit currents, whereas the photovoltaic energy systems are found to have inconsequential effect. The most moderate solution is found to be a distributed generation mix. i Acknowledgment First, I would like to express my deepest gratitude to my supervisor Dr Mohamed Darwish for his guidance, support, and encouragement throughout this research. I would like to thank Prof. Gareth Taylor for his advice and secondary supervision at some stages of this PhD. A special acknowledgment must go to my dearest husband Dr Ahmed Zobaa who believed in my potentials and skills, who encouraged me to approach this degree. Also, his generous care, love and support throughout this journey are the main keys to my success. I would like to thank my parents and dearest sister for their encouragement and their unconditional support to me and to my little family throughout my PhD. Also, I must acknowledge my dearest friends who believed in my dream and inspired me. Last, I gratefully thank my little boy Noah, who was born at the beginning of this journey, and became the real motivation to continue and achieve my PhD. ii Declaration of Authorship The work described in this thesis has not been previously submitted for a degree in this or any other university and unless otherwise referenced it is the author’s own work. iii Table of Contents 1 Introduction .......................................................................................................... 1 1.1 Background ................................................................................................... 1 1.2 Distributed generation definition ................................................................... 2 1.3 Aim and objectives ........................................................................................ 6 1.4 Methodology ................................................................................................. 7 1.5 List of publications conducted from this PhD ............................................... 9 1.6 Thesis outline .............................................................................................. 10 2 Literature Review ............................................................................................... 12 2.1 Introduction ................................................................................................. 12 2.2 Challenges of increased penetration of DG in distribution network ........... 13 2.3 Technical impacts of distributed generation on the distribution systems ... 14 2.4 Simulation in literature review .................................................................... 21 2.5 Optimal allocation issues ............................................................................. 26 2.6 Gap in research ............................................................................................ 26 2.7 Summary ..................................................................................................... 29 3 Technology Overview ........................................................................................ 31 3.1 Introduction ................................................................................................. 31 3.2 Electrical power system arrangement .......................................................... 31 3.3 Overview of DG technologies ..................................................................... 35 3.4 Short circuit and short circuit currents ........................................................ 41 3.5 Summary ..................................................................................................... 47 4 Short Circuit Calculations .................................................................................. 49 4.1 Introduction ................................................................................................. 49 4.2 Short circuit calculations according to IEC standards ................................. 49 iv 4.3 Short circuit calculations according to ANSI/IEEE standards .................... 65 4.4 ANSI/IEEE standard vs IEC standard ......................................................... 71 4.5 Summary ..................................................................................................... 72 5 IEEE 13 Bus Distribution Test System .............................................................. 74 5.1 Introduction ................................................................................................. 74 5.2 System under study ..................................................................................... 74 5.3 IEEE-13 bus distribution test system case studies ...................................... 76 5.4 Simulated results for ANSI calculations ..................................................... 77 5.5 Analysis of simulated results for IEC calculations ..................................... 87 5.6 Comparison between ANSI and IEC simulated results ............................. 100 5.7 Summary ................................................................................................... 101 6 IEEE 30 Bus Distribution Test System ............................................................ 103 6.1 Introduction ............................................................................................... 103 6.2 System under study ................................................................................... 104 6.3 IEEE-30 bus distribution test system case studies .................................... 105 6.4 Simulated results for ANSI calculations ................................................... 108 6.5 Analysis of simulated results for ANSI calculations ................................. 109 6.6 Analysis of simulated results for IEC calculations ................................... 125 6.7 Differences between ANSI and IEC results .............................................. 127 6.8 Summary ................................................................................................... 136 7 Conclusions and Future Work .......................................................................... 137 7.1 Future work ............................................................................................... 140 References ................................................................................................................ 141 Appendix A .............................................................................................................. 151 Appendix B .............................................................................................................. 154 Appendix C .............................................................................................................. 157 Appendix D .............................................................................................................. 159 v List of Figures Figure 3.1 Distribution System Configuration ......................................................... 32 Figure 3.2 Block diagram of a fundamental photovoltaic power generation system [97] ........................................................................................................................... 37 Figure 3.3 Schematic diagram of Type 3 WTG [100] ............................................. 39 Figure 4.1 - Schematic diagram of short circuit current of a far-from-generator short circuit with constant AC component [112] .............................................................. 51 Figure 4.2- Schematic diagram of short circuit current of a near-to-generator short circuit with decaying AC component [112] ............................................................. 51 Figure 5.1. The worst cases during 3-ph fault for ANSI calculations ...................... 83 Figure 5.2. The worst cases during LL-G fault for ANSI calculations .................... 84 Figure 5.3 The minimum short circuit currents during 3-ph fault for ANSI calculations ............................................................................................................... 85 Figure 5.4 The minimum short circuit currents during LL-G fault for ANSI calculations ............................................................................................................... 85 Figure 5.5 Penetration level vs 3-ph short circuit currents for diesel hybrid mix located at bus 675 for ANSI calculations ................................................................. 86 Figure 5.6 The worst cases during 3-ph fault for IEC calculations.......................... 97 Figure 5.7 The worst cases during LL-G fault for IEC calculations ........................ 97 Figure 5.8 The minimum short circuit currents during 3-ph fault for IEC calculations ............................................................................................................... 98 Figure 5.9 The minimum short circuit currents during LL-G fault for IEC calculations ............................................................................................................... 99 Figure 5.10 Penetration level vs 3-ph short circuit currents for diesel hybrid mix located at bus 675 for IEC calculation ..................................................................... 99 Figure 6.1 The IEEE30 bus system ....................................................................... 104 Figure 6.2. Short Circuit versus different DG penetration level for Three-phase fault at bus 7 ................................................................................................................... 104 vi Figure 6.3 Short Circuit current versus different DG penetration level for LG fault at bus 7 ................................................................................................................... 112 Figure 6.4 Short Circuit current versus different DG penetration level for LL fault at bus 7 ................................................................................................................... 112 Figure 6.5 Short Circuit current versus different DG penetration level for LLG fault at bus 7 ................................................................................................................... 113 Figure 6.6 Short Circuit current versus different DG penetration level for Three- phase fault at bus 26 ............................................................................................... 114 Figure 6.7 Short Circuit current versus different DG penetration level for LG fault at bus 26 ................................................................................................................. 114 Figure 6.8 Short Circuit current versus different DG penetration level for LL fault at bus 26 ................................................................................................................. 115 Figure 6.9 Short Circuit current versus different DG penetration level for LLG fault at bus 26 ................................................................................................................. 116 Figure 6.10 Short Circuit current versus different DG penetration level for Three- phase fault at bus 29 ............................................................................................... 117 Figure 6.11 Short Circuit current versus different DG penetration level for LG fault at bus 29 ................................................................................................................. 117 Figure 6.12 Short Circuit current versus different DG penetration level for LL fault at bus 29 ................................................................................................................. 118 Figure 6.13 Short Circuit current versus different DG penetration level for LLG fault at bus 29 ......................................................................................................... 118 Figure 6.14 Short Circuit current versus different DG penetration level for Three- phase fault at bus 30 ............................................................................................... 119 Figure 6.15 Short Circuit current versus different DG penetration level for LG fault at bus 30 ................................................................................................................. 119 Figure 6.16 Short Circuit current versus different DG penetration level for LL fault at bus 30 ................................................................................................................. 120 vii Figure 6.17 Short Circuit current versus different DG penetration level for LLG fault at bus 30 ......................................................................................................... 120 Figure 6.18 Short Circuit current versus different DG penetration level for Three- phase fault at buses 7 and 29 .................................................................................. 121 Figure 6.19 Short Circuit current versus different DG penetration level for LG fault at buses 7 and 29 .................................................................................................... 121 Figure 6.20 Short Circuit current versus different DG penetration level for LL fault at buses 7 and 29 .................................................................................................... 122 Figure 6.21 Short Circuit current versus different DG penetration level for LLG fault at buses 7 and 29 ............................................................................................ 122 Figure 6.22 Short Circuit current versus different DG penetration level for Three- phase fault at buses 26 and 30 ................................................................................ 123 Figure 6.23 Short Circuit current versus different DG penetration level for LG fault at buses 26 and 30 .................................................................................................. 123 Figure 6.24 Short Circuit current versus different DG penetration level for LL fault at buses 26 and 30 .................................................................................................. 124 Figure 6.25 Short Circuit current versus different DG penetration level for LLG fault at buses 26 and 30 .......................................................................................... 124 Figure 6.26 The worst cases for ANSI calculations ............................................... 125 Figure 6.27 The worst cases for IEC calculations .................................................. 126 viii List of Tables TABLE 2.1: Voltage Levels Classification in Distribution Networks [31] ............. 15 TABLE 3.1:Type Of Interface for Different Distributed Generation Sources ........ 35 TABLE 4.1: Voltage Factor [112] ........................................................................ 52 Table 5.1: Different scenario𝐶𝐶s examined.................................................................. 76 Table 5.2: ANSI Simulated Results for scenario 1 with no DG installed (kA) ....... 77 Table 5.3: ANSI Simulated Results for Scenario 2 .................................................. 79 Table 5.4: ANSI Simulated Results for Scenario 3 .................................................. 79 Table 5.5: ANSI Simulated Results for Scenario 4 .................................................. 79 Table 5.6: ANSI Simulated Results for scenario 3 at different penetration levels and Diesel Hybrid mix located at Bus 675 ..................................................................... 79 Table 5.7: Three-phase short circuit current magnitudes (kA) and percentage of the total short circuit current .......................................................................................... 80 Table 5.8: Comparison of DG units contribution on the short circuit current level at S2 .............................................................................................................................. 82 Table 5.9: Comparison between DG units contribution on the short circuit current at S3 .............................................................................................................................. 82 Table 5.10: IEC Simulated Results for Scenario 1- No DG..................................... 88 Table 5.11: IEC Simulated Results for Scenario 2 - Wind ...................................... 88 Table 5.12: IEC Simulated Results for Scenario 3 - Wind ...................................... 88 Table 5.13: IEC Simulated Results for Scenario 4 - Wind ...................................... 89 Table 5.14: IEC Simulated Results for Scenario 2 - PV .......................................... 89 Table 5.15: IEC Simulated Results for Scenario 3 - PV .......................................... 89 Table 5.16: IEC Simulated Results for Scenario 4 - PV .......................................... 90 Table 5.17: IEC Simulated Results for Scenario 2 - Hybrid .................................... 90 Table 5.18: IEC Simulated Results for Scenario 3 - Hybrid .................................... 90 ix
Description: