ebook img

Impact of Gravity on Vacuum Stability PDF

0.41 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impact of Gravity on Vacuum Stability

ImpactofGravityonVacuumStability Vincenzo Branchina1,2, Emanuele Messina1,2, and D. Zappala`2 1 DepartmentofPhysicsandAstronomy,UniversityofCatania,ViaSantaSofia64,95123Catania,Italyand 2 INFN, Sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy (Dated:May19,2016) Inapioneeringpaperontheroleofgravityonfalsevacuumdecay,ColemanandDeLucciashowedthata stronggravitationalfieldcanstabilizethefalsevacuum,suppressingtheformationoftruevacuumbubbles.This resultisobtainedforthecasewhentheenergydensitydifferencebetweenthetwovacuaissmall,thesocalled thinwallregime,butisconsideredofmoregeneralvalidity. Hereweshowthatwhenthisconditiondoesnot hold,however,astronggravitationalfield(Planckianphysics)doesnotnecessarilyinduceatotalsuppression oftruevacuumbubblenucleation. Contrarytocommonexpectationsthen,gravitationalphysicsatthePlanck scaledoesnotstabilizethefalsevacuum.Theseresultsareofcrucialimportanceforthestabilityanalysisofthe 6 electroweakvacuumandforsearchesofnewphysicsbeyondtheStandardModel. 1 0 PACSnumbers:14.80.Bn,11.27.+d,04.62.+v 2 y Introduction–ThesearchfornewphysicsbeyondtheStan- largethebubblesize. Inacurvedbackground,thingsaredif- a dardModel(BSM)isoneofthemostimportantandchalleng- ferent. Inthefollowingweconcentrateonthecaseofafalse M ingquestionsofpresentexperimentalandtheoreticalphysics. vacuum with vanishing energy density, Minkowski vacuum, 8 ThefirstrunofLHCdidnotshowanysignofnewphysics[1]. andatruevacuumwithnegativeenergydensity,anti-deSitter 1 Thesecondrun,reportinglocalexcessofsignalinthedipho- (AdS) vacuum, as this case is very relevant for applications, ton channel, has generated a certain expectation and enthu- inparticularforthestabilityanalysisoftheEWvacuum. ] h siasm in the community[2]. Whether or not this signal will The transition from a false Minkowski vacuum to a true p be confirmed by future work, clues are also needed from the AdS vacuum was studied in[20], where it was shown that, - theoretical side. In this respect, crucial for our understand- when the size of the Schwarzschild radius of the bubble of p e ingandconstructionofBSMtheoriesisthestabilityanalysis truevacuumismuchsmallerthanitssize,i.e. whenthegrav- h oftheelectroweak(EW)vacuum[3–9]. Thediscoveryofthe itational effects are weak, the probability of materialization [ Higgsbosonboostednewinterestonthisquestion,makingit of such a bubble is close to the flat space-time result, while, 2 oneofthehottesttopicintheoreticalparticlephysics[10–17]. whentheSchwarzschildradiusbecomescomparablewiththe v At first, it seemed that the knowledge of the Higgs and top bubblesize,i.e. inastronggravitationalregime,thepresence 3 masses, MH and Mt, was sufficient to determine the stability ofgravitystabilizesthefalsevacuum, preventingthemateri- 6 condition of the SM vacuum, that is to determine whether it alization of a true vacuum bubble. This result was obtained 9 isametastablestate(falsevacuum)orastableone(truevac- under the thin wall condition mentioned above, namely for 6 0 uum).Itwaslaterrealized,however,thatthisknowledgeisnot the case when V(φfalse)−V(φtrue)<<V(φtop)−V(φfalse). . enough, as the stability condition of the vacuum is very sen- However,itiscommonlyconsideredasbeingofmoregeneral 1 0 sitive to unknown new physics interactions at high (or very validity. 6 high,sayPlanckian)energyscales[14–17]. GoingbacktotheSM,itisknownthatduetothetoploop 1 Following a pioneering work of Bender and collabora- corrections the Higgs potentialV(φ) bends down for values : v tors[18], Coleman and Callan studied the decay of the false of φ > φ(1) =v, where v∼246 GeV is the location of the min Xi vacuuminaflatspace-timebackground[19]. Later,Coleman EWminimum,andforthepresentexperimentalvaluesofMH andDeLucciaextendedthisanalysistoincludetheimpactof and M, namely M ∼ 125.09 GeV and M ∼ 173.34 GeV r t H t a gravity[20]. The physical mechanism that triggers the false [21,22], developsasecondminimum, muchdeeperthanthe vacuum decay is quite simple: due to quantum fluctuations, EW one and at a much larger value of the field, φ(2) >> v. min thereisafiniteprobabilitythatabubbleoftruevacuummate- Clearly, the conditions under which the Coleman-De Luccia rializesintheseaoffalsevacuum. result is derived are not fulfilled. As said above, however, it Coleman and collaborators worked within the so called isstillexpectedthatinthepresenceofPlanckianphysicsthe “thin wall” approximation, that applies when the two min- bubble nucleation rate vanishes[23–25]. In more technical ima of the potential, φ and φ , are such that the en- words,itisexpectedthatthebouncesolutiontotheeuclidean false true ergy density differenceV(φ )−V(φ ) is much smaller equationofmotion(fromwhichthesaddlepointapproxima- false true than the height of the potential barrier V(φ )−V(φ ), tionforthebubblenucleationrateisobtained)disappears. top false whereV(φ ) is the maximum of the potential between the Motivated by the above phenomenological considerations, top twominimaatφ andφ . Theyfoundthattheprobabil- inthisLetterwefocusourattentiononthecasethatisrelevant false true ity of materialization of a true vacuum bubble decreases for fortheapplicationstotheanalysisoftheSMvacuumdecay, increasingvaluesofitssize. Inaflatspace-timebackground, namelythedecayofafalsevacuumwithzeroenergydensity this probability turns out to be always finite, no matter how toatruevacuumwithnegativeenergydensity,i.e. thedecay 2 6 2.5 (cid:230) (cid:224) (cid:230) (cid:224) 5 2.0 (cid:230)(cid:230)(cid:224)(cid:224)(cid:224) (cid:230) (cid:224) 4 (cid:230) (cid:224) (cid:224) Ρ 1.5 (cid:230) (cid:224) B r0 1.0 (cid:230)(cid:230)(cid:230)(cid:224)(cid:230) (cid:230)(cid:224) (cid:230)(cid:224)(cid:224) (cid:224)(cid:230)(cid:224)(cid:224)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)(cid:230)(cid:224)(cid:224)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230) B0 23 (cid:230) (cid:224) 0.5 1 (cid:230)(cid:230)(cid:230)(cid:224)(cid:230) (cid:230)(cid:224) (cid:230)(cid:224)(cid:224) (cid:224)(cid:230)(cid:224)(cid:224)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230)(cid:230)(cid:224)(cid:224)(cid:230)(cid:230)(cid:224)(cid:230)(cid:230)(cid:230) 0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 r0 r0 2(cid:76) 2(cid:76) FIG. 1: ρ/r0 computed for b=0.01 (red online) circles, and for FIG.2: B/B0computedforthesamevaluesoftheparametersused b=0.13(greenonline)squares,plottedtogetherwiththethinwall inFig.1. prediction,(blueonline)solidline. thepotential[26]: fromaMinkowskifalsevacuumstatetoanAdStruevacuum. g2(cid:20) 4b (cid:21) Tostudytheimpactofgravityonthenucleationrateofabub- V(φ)= (φ2−a2)2+ (aφ3−3a3φ−2a4) . (2) 4 3 ble of true vacuum, we consider a potential[26] that allows toexploreinaunifiedframeworkallpossiblecases,fromthe When 0 < b < 1, V(φ) has two non-degenerate minima at thinwallregimetothecasewhenthedifferenceinheightbe- φ =±a, φ =a being the absolute minimum, and a poten- tweenthetwominimaofthepotentialislarge. Forthislatter tial barrier that separates the two minima, with maximum at case,wefindthatthenucleationrateofatruevacuumbubble φ =−ba. Notethatforb=0thisisjustthedoublewellpo- hasavalueclosetotheresultobtainedinflatspace-timeeven tentialwithtwodegenerateminimaatφ=±a,whileforb=1 in a strong gravity regime, when the typical mass scales of theminimumatφ =−abecomesaninflectionpointandthe thepotential(seeEq.(2)below)becomecomparablewith(or barrierdisappears. evenlargerthan)thePlanckscale. This potential is perfectly suited for our scopes. By vary- In fact, we will see that in this case no vanishing of the ing the dimensionless parameter b, we control the difference bubble materialization rate is observed at these high energy inheight,V(−a)−V(a), betweenthefalseandthetruevac- scales. On the contrary, we find that the suppression of the uum. Thecomparisonbetweenthisdifferenceandtheheight Minkowski false vacuum decay (if still present) is pushed to ofthepotentialbarrier,V(−ba)−V(−a),allowstodetermine veryhighenergyregimes, evenmuchhigherthanthePlanck whetherornotweareinthethinwallregime,thelatteroccur- scale, so that the possible presence of a Coleman-De Luccia ingwhenV(−a)−V(a)<<V(−ba)−V(−a). Atthesame polebecomesphysicallyirrelevant(similarlytowhathappens time,byvaryingthedimensionfulparametera(theonlymass for the Landau pole in QED, where the latter occurs at such scaleofourpotential),andpushingittowardthePlanckscale ahighenergyscalethatthetheoryhasalreadylostitssignif- andbeyond,wewillbeabletotesttheimpactofstronggrav- icanceseveralordersofmagnitudesbelowthatscale). Aten- itationalphysicsonthedecayofthefalsevacuum. ergiesbelowthepolescale,butyetPlanckianortransPlanck- Anticipating from the following analysis, we will see that ian, the decay probability is non-vanishing and very close to intheb→1limit(thatisthelimitofthelargestpossibledif- theflatspace-timeresult,i.e. theresultobtainedignoringthe ferenceV(−a)−V(a) for the potential (2)), the decay prob- presenceofgravity. abilityfromtheMinkowskifalsevacuumtothetruevacuum These findings are new and totally unexpected, as it was gives exactly the flat space-time result (as if gravity was ab- thought that in a strong gravity regime the decay of a false sent!), foranyvalueofa, i.e. fromveryweaktoverystrong MinkoskivacuumtoatrueAdSvacuumisalwaysinhibited. gravitational regimes. For values of b close to (but smaller Moreover, they are of crucial importance for current studies than)1,thesuppressionofthevacuumdecayshouldoccurfor and for model building of BSM physics, where we are of- verylargetransplanckianvaluesofa. teninterestedinconsideringnewphysicsatPlanckianand/or To calculate the bubble nucleation rate Γ we need the transPlanckianscales. bounce solution to the (Euclidean) equations of motion de- Analysis–Tostudytheimpactofgravityonfalsevacuum rived by varying the action in Eq.(1). The saddle point ap- decay, let us consider the (Euclidean) action of a scalar field proximation to the transition rate Γ per unit volume is given incurvedspace-timetogetherwiththeEinsteinterm: bytheratiobetweentheexponentialofminusthe(Euclidean) (cid:90) √ (cid:20)1 R (cid:21) action evaluated at the bounce and the action calculated for S= d4x g gµν∂ φ ∂ φ+V(φ)− , (1) thefalsevacuumsolution[20]: 2 µ ν 16πG Γ whereRistheRicciscalar,GtheNewtonconstant,andV(φ) V ∼ e−(Sbounce−Sfalse)≡ e−B. (3) 3 3.0 3.0 2.5 2.5 2.0 2.0 Ρ B 1.5 1.5 r0 B0 1.0 1.0 0.5 0.5 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 r0 r0 2(cid:76) 2(cid:76) FIG. 3: ρ/r0 computed for b=0.4 (red online) dotted, b=0.7 FIG.4:B/B0withthesamecodingasinFig.3. (greenonline)dot-dashed,b=0.85(violetonline)dashedline. The blacksolidcurvecorrespondstothethinwallprediction. TheB.T.areinfinite. However,thecomputationofΓonly involvesthedifferenceBbetweentheactionevaluatedatthe Following[20], we consider the most general O(4)- bounceandatthefalsevacuumsolutions(seeEq.(3)). These symmetric Euclidean metric (r is the radial coordinate along twosolutionscoincideatinfinity,andthetwoactionsprovide aradialcurve): the same divergent contribution, that is then canceled out in thedifferenceB=S −S . (ds)2=(dr)2+ρ(r)2(dΩ )2 (4) bounce false 3 Itisworthnotingthat,duetotheparticulardependenceon the coupling g of the potential V(φ) in (2), it is possible to where dΩ is the element of distance on a unit three-sphere 3 re-expressEqs.(5)and(6)intermsoftherescaledquantities andρ(r)theradiusofcurvatureofeachthree-sphere. rˆ=gr,ρˆ =gρ andVˆ =V/g2,sothatnoexplicitdependence Withthemetric(4),theEinsteinequationG =−κT re- rr rr ducestothefollowingequationforρ(r)(the (cid:48)denotesderiva- on g is left. Accordingly, the dependence on g of the action canbefactoredout: S=Sˆ/g2andB=Bˆ/g2. tionwithrespecttor): TocalculatethetransitionrateΓfordifferentpotentialsof κ (cid:18)1 (cid:19) the kind given in Eq.(2), i.e. for different values of the pa- ρ(cid:48)2=1+ ρ2 φ(cid:48)2−V(φ) , (5) 3 2 rametersaandb,weneedfirsttosolvethesystemofcoupled differentialequations(5)and(6)withtheboundaryconditions whereκ≡8πG≡8π/M2,andM isthePlanckscale.Eq.(5) givenabove. P P iscoupledtothescalarfieldequationderivedfrom(1), Wedothatwiththehelpofanumericalshootingprocedure. The typical bounces are decreasing profiles φ (r), such that b φ(cid:48)(cid:48)+3ρ(cid:48)φ(cid:48)= dV . (6) φb(r→∞)→−a,andcanbeparametrizedbytheirsizer,the ρ dφ value of the radial coordinate where the height of the profile isdecreasedofonehalf. Forlargevaluesofr,i.e. forr>>r, Thefalsevacuumsolutiontothesecoupledequationsconsists thesolutionfortheradiusofcurvatureρ(r)approachestheflat oftheflatspace-timemetric, ρ(cid:48) (r)=1, togetherwiththe false space-time solution, ρ(cid:48)(r)=1, while for r<<r, i.e. inside constantsolutionfortheprofile,φ (r)=−a. false thebubbleoftruevacuum,thepresenceofanegativeenergy In order to compute Γ, we have to select the classical so- densitycreatesadistortionofthissolution. lutionsofEqs.(5)and(6)thatfulfilltheboundaryconditions Bydefiningρ asthevalueofthecurvatureatr=r,thatis φ(+∞)=−a, φ(cid:48)(0)=0 and ρ(0)=0.Inourcase,theaction ρ ≡ρ(r),asimplewayofdisplayingourfindingsistocom- inEq.(1)canbewrittenas: pare the results obtained for B and ρ with the corresponding (cid:90) ∞ (cid:34) (cid:18)1 (cid:19) quantitiesderivedintheflatspace-timecase,thatwillbeindi- S= 2π2 dr ρ3 φ(cid:48)2+V(φ) + catedasB0 andr0 respectively(needlesstosay, inthislatter 2 0 caseρ(r)coincideswithr). (cid:35) Inthethinwallregime,thatforourpotentialisthecaseof 3(cid:16) (cid:17) ρ2ρ(cid:48)(cid:48)+ρρ(cid:48)2−ρ = smallvaluesoftheparameterb,itwasshownin[20]that: κ ρ=r (cid:2)1−(r /(2Λ))2(cid:3)−1 and B=B (cid:104)1−(r /(2Λ))2(cid:105)−2, (cid:90) ∞ (cid:18) 3ρ(cid:19) 0 0 0 0 4π2 dr ρ3V(φ)− +B.T., (7) i.e.ρandBhaveapoleatr /2=Λ≡(cid:112)3/(8πG|V(a)|.The 0 κ 0 corresponding curves are reported in Figs.1, 2, 3, 4 as solid wheretherighthandsideisobtainedbymakinguseofEqs.(5) lineshavinganasymptoteatr /(2Λ)=1. 0 and(6),andtheboundarytermsB.T.appearafterintegrating Ournumericalapproachallowstochecktheaccuracyofthe bypartsρ2ρ(cid:48)(cid:48)inthesecondlineofEq. (7). thinwallpredictions,andbeforemovingtothecasesofpartic- 4 ularinteresttous,wecalculateρ/r andB/B forsomesmall stressed above, this is expected to hold even out of the thin 0 0 values of b (thin wall regime). To facilitate the comparison wallregime,andmodelsofBSMphysicsandconclusionson with[20], we present our results by plotting ρ/r and B/B thevacuumstabilityanalysisareoftenbasedonthisexpecta- 0 0 against r /(2Λ), that is an increasing function of a for each tion[23–25]. 0 fixed value of b. The parameter a gives the location of the However, we have seen that, when the energy density dif- minima, and increasing values of a toward the Planck scale ference between the two vacua of the potential increases (so (andbeyond)markthetransitionfromtheweaktothestrong that the conditions of[20] are no longer verified), the gravi- gravitationalregime. TheresultsareplottedinFigs.1and2. tationalcontributiontothetransitionrateΓbecomessmaller Notethattherescalingtothehattedquantitiesdiscussedabove and smaller. Moreover, when this difference becomes suffi- shows that all variables on the x and y axes of the figures do cientlylarge,thatforourmodeloccursforb→1,thequenc- notdependonthecouplingg. ing of the vacuum decay does not occur even in very strong For the smallest value considered for b, b = 0.001, the gravityregimes! pointspracticallysitonthethinwallcurve(blueonlinesolid Asmentionedbefore, theseresultsareverysurprisingand curve),andarenotreportedinFigs.1and2. Atb=0.01(red unexpected, and also very important for phenomenological onlinecircles)westarttoobserveasmalldeviationfromthe applications. In fact, extrapolating from[20], it was thought thinwallcurve,thatbecomesmoresizableforb=0.13(green thatwheneverweenterinastronggravityregime, i.e. when onlinesquares). Figs.1and2showthatforsmallvaluesofb, weapproach(andpossiblygobeyond)thePlanckscale,there when the two minima of the potential are almost degenerate shouldalwaysbeastrongsuppressionandevenavanishingof (thin wall regime), starting from r0/(2Λ)∼0.5 the effect of thefalsevacuumdecayprobability,resultinginastabilization gravitygrowsrapidlyforincreasingvaluesofr0/(2Λ). ofthefalsevacuum.Onthecontrary,weseethatforpotentials We now consider larger values of b, thus leaving the thin wherethedifferenceinthedepthoftheminimaissufficiently wall regime. Some of the curves for ρ/r0 and B/B0 versus large,thissuppression(ifstillpresent)ispushedtoveryhigh r0/(2Λ)resultingfromournumericalanalysis,namelythose regimes,even(much)abovethePlanckscale,sothatthepres- obtained for b=0.4,0.7,0.85, are reported in Figs.3 and 4. enceofapoleofB/B becomesphysicallyirrelevant1. 0 These figures clearly show that for increasing values of b, Moreover,thefactthatintheseconditionsthetransitionrate i.e. when the difference in height between the two minima fromthefalsetothetruevacuumissoclosetotheflatspace- increases,bothcurvesB/B0andρ/r0getflattened. timeresultisofcrucialimportanceforphenomenologicalap- Moreover, for larger and larger values of b (b→1), both plications. In fact, the case that we have studied is relevant curves get closer and closer to the orizontal lines B/B0 =1 for the stability analysis of the electroweak vacuum, also in andρ/r0=1. WehavenotaddedothercurvesinFigs.3and4 connection with present searches for BSM physics, where a astheywouldunnecessarilyclutterthesefigures.Forthesame stabilityanalysisandaclearunderstandingoftheroleplayed reason,wehavealsolimitedtherangeofvaluesofr0/(2Λ)to bygravityisgreatlyneeded. 0<r /(2Λ)<1.5. Infact, theColeman-DeLucciapole(of 0 the thin wall case) occurs at r0/(2Λ)=1, and Figs.3 and4 b gr0a g2B0 clearlyshowthatthispointisnotapoleforlargevaluesofb. 0.001 2121.32 4.44132×1010 Finally, for b→1 these curves reach the horizontal lines 0.01 212.113 4.44094×107 B/B0 =1 and ρ/r0 =1 for the whole range of values 0< 0.13 16.2379 19921.0 r /(2Λ)<∞. Thislatterresultisimmediatelyfoundbycon- 0.4 3.93098 276.288 0 sidering the bounce profile function φ (r), that connects the 0.7 2.73633 70.9009 b center of the bounce, φ (0), with the false vacuum state at 0.85 2.51328 22.2602 b r→∞, φ (∞)=−a, and seeking for the numerical solution b ofEq.(6). Forsmallvaluesofb,φ (0)isclosetoa,thetrue b TABLEI:Setofvaluesofgr aandg2B computedatdifferentb. vacuum,whileforincreasingvaluesofb,φ (0)decreasesto- 0 0 b wardφ (0)∼−a. Inthelimitb→1,φ (0)reachesthislatter b b For the reader’s convenience, in Table I some values of value,sothat gr a and g2B for different values of b are reported. These 0 0 limφ (r)=−a (8) areusefulparameterstoreconstructphysicalquantitiesrelevat b b→1 totheanalysisthatwehavepresentedandtobetterappreciate the results reported in the figures (see below). These quan- inthewholerangeofr. Inthislimit,Eq.(5)becomesρ(cid:48)(r)= tities are obtained in the flat space-time case, and are both 0,andwerecovertheflatspace-timeresult. g-independent(ascanbeseenbyresortingtothehattedvari- These are the central results of the present Letter. In fact, thelessonfrom[20](seeFigs.1and2)isthatwhenwemove from weak to strong gravity regime, the impact of gravity becomes enormous, to the point that, for the critical value 1In[27]argumentsaregiveninfavouroftheexistenceofsuchapole.How- r /(2Λ) = 1, B diverges and the corresponding rate Γ for 0 ever,inthecasesofinterestconsideredinthepresentpaper,thispolewould the materialization of a bubble of true vacuum vanishes. As beinaregionwherethetheoryisnolongervalid. 5 ables introduced before) and a-independent (they are dimen- problemandforsearchesofnewphysicsbeyondtheStandard sionlessquantities,andintheabsenceofgravitythatbringsin Model. They represent a real progress in understanding the thedimensionfulNewtonconstantG, theycannotdependon impactofgravityonthestabilityofthevacuum. Inthepast, theonlydimensionfulvariablea). Therefore,theyareunivo- despiteattemptstostudythisquestion[28],theroleofgravity callydeterminedoncebisgiven. beyondthethinwallcasewaspoorlyunderstood. In particular, the values of gr a in Table I are useful to 0 establishtherelationbetweenr /(2Λ),thatappearsinthex- 0 axisofallfigures,andtheratioa/M (whereM isthePlanck P P mass)foreachvalueofb,thatisforeachsinglecurveinthe [1] J. Olsen, CMS physics results from Run 2 presented on Dec. figures. In fact, by recalling the definition of Λ, one obtains √ 15th,2015,https://indico.cern.ch/event/442432/;CMSCollab- thefollowingrelationr /(2Λ)=(2/3) 2πb(gr a)(a/M ). 0 0 P oration,CMSPASEXO-15-004,https://cds.cern.ch/record/ Then,forinstance,thepointr /(2Λ)=1correspondsforb= 0 2114808/files/EXO-15-004-pas.pdf. 0.001toa∼MP/100,andforb=0.85toa∼MP/4(i.e. we [2] M.Kado,ATLASphysicsresultsfromRun2presentedonDec. arealreadyinasronggravityregime). 15th, 2015, https://indico.cern.ch/event/442432/; ATLASCol- If we now look at the curves in Fig.4, these examples laboration,ATLAS-CONF-2015-081,https://atlas.web.cern.ch/ clearly illustrate the central results of our work. In fact, we Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF- 2015-081/. seethatforincreasingvaluesofb,atfixedvaluesofr /(2Λ) 0 [3] N. Cabibbo, L. Maiani, G. Parisi, R. Petronzio, Nucl. Phys. (e.g.r /(2Λ)=1),thesuppressionofthegravitationaleffects 0 B158(1979)295. islargerwhenthestronggravityPlanckianregime(a→M ) P [4] R.A.Flores,M.Sher,Phys.Rev.D27(1983)1679;M.Lindner, isapproached. Proceedingtoconsiderhighervaluesofb(not Z.Phys.31(1986)295; M.Sher, Phys.Rep.179(1989)273; displayedinthefigure),theactionB,andthenthedecayrate M.Lindner,M.Sher,H.W.Zaglauer,Phys.Lett.B228(1989) ofthefalsevacuum, stayscloserandclosertotheflatspace- 139. timeresultforlargerandlargervaluesofa(seethediscussion [5] C.Ford, D.R.T.Jones, P.W.Stephenson, M.B.Einhorn, Nucl. Phys.B395(1993)17. above in relation with Eq.(8)), even for a>>M ! Finally, P [6] M.Sher,Phys.Lett.B317(1993)159. withthehelpofgr aandg2B inTableI,onecanderivethe 0 0 [7] G.Altarelli,G.Isidori,Phys.Lett.B337(1994)141. valuesofρ andBfromthevariouscurvesinthefigures. [8] J.A.Casas,J.R.Espinosa,M.Quiro´s,Phys.Lett.B342(1995) Before ending this Letter, we have to say some words on 171;Phys.Lett.B382(1996)374. previous work[28] on the role of gravity on the EW vac- [9] G.Isidori,G.Ridolfi,A.Strumia,Nucl.Phys.B609(2001)387. uumdecay,whereaperturbativeexpansionofφ (r)andρ(r) [10] L.N.Mihaila,J.SalomonandM.Steinhauser,Phys.Rev.Lett. b 108 (2012) 151602; K. Chetyrkin and M. Zoller, JHEP 06 in powers of κ around the flat space-time solution was at- (2012)033;F.Bezrukov,M.Yu.Kalmykov,B.A.Kniehl,M. tempted. Actually, this analytical method seems to have a Shaposhnikov,JHEP1210(2012)140. seriousdrawback,astheboundaryconditions(seeabove),es- [11] J.Elias-Miro,J.R.Espinosa,G.F.Giudice,G.Isidori,A.Riotto, sentialfortheclassicalsolutiontobeabounceandinturnfor A.Strumia,Phys.Lett.B709(2012)222. ΓinEq.(3)tobethebubblenucleationrate,arenotrespected [12] G.Degrassi,S.DiVita,J.Elias-Miro,J.R.Espinosa,G.F.Giu- alreadyatfirstorderinκ. Therefore,theoutputofthisanaly- dice,G.Isidori,A.Strumia,JHEP1208(2012)098. siscannotbetrustedandafortioricannotbeusedforcompar- [13] D.Buttazzo,G.Degrassi,P.P.Giardino,G.F.Giudice,F.Sala, A.Salvio,A.Strumia,JHEP1312(2013)089. ison. Adetailedstudyofthisissuegoesbeyondthescopeof [14] V.Branchina,E.Messina,Phys.Rev.Lett.111(2013)241801. thepresentpaperandwillbepresentedelsewhere. [15] V.Branchina,E.Messina,A.Platania,JHEP1409(2014)182. Conclusions – We have studied the decay of a false [16] V. Branchina, E. Messina, M. Sher, Phys. Rev. D91 (2015) MinkowskivacuumtoatrueAdSvacuumbytakingintoac- 013003. counttheimpactofgravity. [17] V.Branchina,E.Messina,“StabilityandUVcompletionofthe When the energy density difference between the false and StandardModel”,arXiv:1507.08812. the true vacuum is large compared to the height of the po- [18] T.Banks,C.M.Bender,T.T.Wu,Phys.Rev.D8(1973)3346; Phys.Rev.D8(1973)3366. tential barrier (a condition that in the model discussed in the [19] S.Coleman,Phys.Rev.D15(1977)2929;C.G.Callan,S.Cole- presentLetterisobtainedforb→1inthepotentialofEq.(2)), man,Phys.Rev.D16(1977)1762. wefindthattheeffectofgravityonthebubbleproductionrate [20] S.Coleman,F.DeLuccia,Phys.Rev.D21(1980)3305. practically disappears even in the strong gravity regime, and [21] G. Aad et al. (ATLAS Collaboration, CMS Collaboration), theflatspace-timeresultisrecovered. Phys.Rev.Lett.114(2015)19. From a phenomenological point of view, the case that we [22] ATLASandCDFandCMSandD0Collaborations,“Firstcom- havestudiedisofparticularinterest,asitisclosetowhathap- binationofTevatronandLHCmeasurementsofthetop-quark mass”,arXiv:1403.4427[hep-ex]. pensinthestabilityanalysisoftheelectroweakvacuum,and [23] J.R.Espinosa,J.F.Fortin,M.Tre´panier,“ConsistencyofScalar several models considered for physics beyond the Standard PotentialsfromQuantumdeSitterSpace”,arXiv:1508.05343. Model require a stability analysis where the role played by [24] L.DiLuzio,G.Isidori,G.Ridolfi,Phys.Lett.B753(2016)150. gravityneedstobecarefullyunderstood. [25] J. R.Espinosa, “Implications ofthetop(and Higgs)massfor Therefore,thenewresultspresentedinthisworkareofthe vacuumstability”,arXiv:1512.01222. greatest importance for present studies on the SM stability [26] E.J.Weinberg,“ClassicalsolutionsinQuantumFieldTheory”, 6 CambridgeUniversityPress(2012). [28] G. Isidori, V. S. Rychkov, A. Strumia, N. Tetradis, Phys.Rev. [27] A. Aguirre, T. Banks, M. Johnson, JHEP 0608 (2006) 065. D77(2008)025034 arXiv:hep-th/0603107.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.