ebook img

Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons PDF

89 Pages·2022·2.725 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons

BestMasters Julian Knaup Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons BestMasters Mit „BestMasters“ zeichnet Springer die besten Masterarbeiten aus, die an renom- mierten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachter zur Veröf- fentlichung empfohlen und behandeln aktuelle Themen aus unterschiedlichen Fachgebieten der Naturwissenschaften, Psychologie, Technik und Wirtschaftswis- senschaften. Die Reihe wendet sich an Praktiker und Wissenschaftler gleicherma- ßen und soll insbesondere auch Nachwuchswissenschaftlern Orientierung geben. Springer awards „BestMasters“ to the best master’s theses which have been com- pleted at renowned Universities in Germany, Austria, and Switzerland. The studies received highest marks and were recommended for publication by supervisors. They address current issues from various fields of research in natural sciences, psychology, technology, and economics. The series addresses practitioners as well as scientists and, in particular, offers guidance for early stage researchers. Julian Knaup Impact of Class Assignment on Multinomial Classification Using Multi-Valued Neurons Julian Knaup Lemgo, Germany ISSN 2625-3577 ISSN 2625-3615 (electronic) BestMasters ISBN 978-3-658-38954-3 ISBN 978-3-658-38955-0 (eBook) https://doi.org/10.1007/978-3-658-38955-0 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2022 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Responsible Editor: Stefanie Eggert This Springer Vieweg imprint is published by the registered company Springer Fachmedien Wiesbaden GmbH, part of Springer Nature. The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany Abstract Multilayerneuralnetworksbasedonmulti-valuedneurons(MLMVNs)havebeenproposed to combine the advantages of complex-valued neural networks with a plain derivative- free learning algorithm. In addition, multi-valued neurons (MVNs) offer a multi-valued threshold logic resulting in the ability to replace multiple conventional output neurons in classification tasks. Therefore, several classes can be assigned to one output neuron. ThisthesisintroducesanovelapproachtoassignmultipleclassesonnumerousMVNsin theoutputlayer. Itwasfoundthatclassesthatpossesssimilarityshouldbeallocatedto thesameneuronandarrangedadjacenttoeachotherontheunitcircle. SinceMLMVNs require input data located on the unit circle, two employed transformations are reeval- uated. The min-max scaler utilizing the exponential function obtains decent results for numerical data. The 2D discrete Fourier transform restricting to the phase information was found to be unsuitable for image recognition. Even if this transformation approach could be improved, it loses key properties such as translational invariance by discarding themagnitudeinformation. TheevaluationwasperformedontheSDDandtheFashion MNISTdataset. V Contents Abstract V Table of Contents VII List of Abbreviations IX List of Symbols XI 1 Introduction 1 1.1 ResearchObjectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 ScopeofWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 StructureoftheWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Preliminaries 4 2.1 MachineLearningBasics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 ArtificialNeuralNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 ArchitectureandTraining . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Multi-ValuedNeuron . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 MultilayerNeuralNetworkBasedonMulti-ValuedNeurons. . . . . 13 2.3 LossFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Scientific State of the Art 16 3.1 MultinomialClassificationinReal-ValuedNeuralNetworks . . . . . . . . . 17 3.2 MultinomialClassificationinComplex-ValuedNeuralNetworks . . . . . . 19 3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Approach 26 4.1 DataPreparationandProcessing . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 FeatureEngineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.1 ClassAllocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.2 ClassArrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 ModelTraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 VII Contents 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 Evaluation 39 5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.1 SensorlessDriveDiagnosis . . . . . . . . . . . . . . . . . . . . . . . 40 5.2.2 FashionMNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.1 ClassAllocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3.2 ClassArrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Conclusion and Outlook 50 6.1 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 A Results 52 A.1 BinaryClassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 A.2 ClassAllocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 A.3 ClassArrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Bibliography 65 List of Figures 72 List of Tables 76 VIII List of Abbreviations 2D DFT TwoDimensionalDiscreteFourierTransform Adam AdaptiveMomentEstimation AI ArtificialIntelligence ANN ArtificalNeuralNetwork AutASS AutonomousDriveTechnologybySensorFusionforIntelligent, Simulation-basedProductionFacilityMonitoringandControl(abbr. fromGerman) BP Backpropagation CNN ConvolutionalNeuralNetwork CPU CentralProcessingUnit CVNN Complex-ValuedArtificalNeuralNetwork DT DecisionTree FDR FisherDiscriminantRatio FN FalseNegative FP FalsePositive GD GradientDescent GPU GraphicsProcessingUnit LDA LinearDiscriminantAnalysis LSTM LongShort-TermMemory MLMVN MultilayerFeedforwardNeuralNetworkBasedonMulti-ValuedNeurons MNIST ModifiedNationalInstituteofStandardsandTechnology MSE Mean-Square-Error MVN Multi-ValuedNeuron NLP NaturalLanguageProcessing PCA PrincipalComponentAnalysis ReLU RectifiedLinearUnit RMSE Root-Mean-Square-Error RNN RecurrentNeuralNetworks IX ListofAbbreviations RVNN Real-ValuedArtificalNeuralNetwork SDD SensorlessDriveDiagnosis SVD SingularValueDecomposition SVM Support-VectorMachine t-SNE t-DistributedStochasticNeighborEmbedding TN TrueNegative TP TruePositive UMAP UniformManifoldApproximationandProjectionforDimension Reduction XOR ExclusiveDisjunction X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.