ebook img

Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and ... PDF

16 Pages·2014·0.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and ...

JournalofMedicalMicrobiology(2014),63,293–308 DOI10.1099/jmm.0.064220-0 Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease Ravi Kant,1 Willem M. de Vos,1,2,3 Airi Palva1 and Reetta Satokari1 Correspondence 1Department ofVeterinary Biosciences, University of Helsinki,PO Box 66,FI-00014, Helsinki, ReettaSatokari Finland [email protected] 2Haartman Institute, University ofHelsinki,PO Box 21, FI-00014,Helsinki, Finland 3Laboratory of Microbiology, Wageningen University, Dreijenplein 10,6703 HBWageningen, The Netherlands Toll-like receptor (TLR) signalling playsan important role inepithelialand immunecells ofthe intestine. TLR9 recognizesunmethylated CpGmotifs inbacterial DNA,andTLR9 signalling maintains the gutepithelial homeostasis. Here,we carried out abioinformatic analysis ofthe frequencyofCpGmotifsinthegenomesofgutcommensalbacteriaacrossmajorbacterialphyla. ThefrequencyofpotentiallyimmunostimulatoryCpGmotifs(allCpGhexamers)orpurine-purine- CG-pyrimidine-pyrimidine hexamerswaslinearly dependent onthe genomic G+Ccontent. We found thatspecies belonging toProteobacteria,Bacteroidetes andActinobacteria (including bifidobacteria) carried high counts ofGTCGTT, the optimalmotif stimulating humanTLR9. We alsofound thatEnterococcus faecalis,Lactobacillus casei,Lactobacillusplantarum and Lactobacillusrhamnosus,whosestrainshave been marketed as probiotics,had highcounts of GTCGTT motifs. As gutbacterial species differ significantly intheir genomic content of CpG motifs, the overallloadofCpG motifs intheintestine depends onthe species assembly of microbiotaandtheircellnumbers.TheoptimalCpGmotifcontentofmicrobiotamaydependon the host’sphysiological statusand, consequently, on anadequate level ofTLR9signalling. We speculate thatmicrobiota withincreased numbers ofmicrobes withCpG motif-rich DNA could better support mucosal functions inhealthy individuals andimprove the T-helper 1(Th1)/Th2 imbalance inallergicdiseases. In autoimmunedisorders, CpG motif-rich DNA could, however, further increase theTh1-type immune responsiveness. Estimation ofthe loadofmicrobe- Received 12June2013 associated molecularpatterns, including CpGmotifs, ingutmicrobiota could shednewlight on Accepted 18November2013 host–microbe interactions across arange ofdiseases. INTRODUCTION during intestinal ulceration (Abreu, 2010; Maynard et al., 2012; Wells et al., 2011). Inthemammalianintestine,asinglelayerofepithelialcells separatesthegutlumenanditsdensemicrobialpopulation The immediate recognition of microbes by the innate (microbiota) from the rest of the body. The monolayer of immune system plays an important role in immune intestinal epithelial cells (IECs) acts both as a physical responsiveness and homeostasis in the intestine (Abreu, barrier and as a regulator of the immune responses by 2010; Maynard et al., 2012; Wells et al., 2011). As part of sensing contents in the gut lumen and transferring signals the innate immune system, Toll-like receptors (TLRs) totheimmunecellsresidinginthelaminapropria(Abreu, recognize conserved microbial structures, so-called micro- 2010; Maynard et al., 2012; Wells et al., 2011). Immune bial-associated molecular patterns (MAMPs) such as cells can also get in contact with intestinal microbiota by lipoteichoid acids (TLR2), LPS (TLR4), flagellin (TLR5) directly sampling the gut lumen (dendritic cells) via the and nucleic acids (TLR3, -7, -8 and -9) (Abreu, 2010; transepithelial transport of antigens by microfold cells or Maynard et al., 2012; Wells et al., 2011). TLRs were first found in immune cells but later were also discovered in epithelialcellsincludingIECs.UponTLRstimulation,IECs respond by transcriptional changes and can also transfer Abbreviations:IEC,intestinalepithelialcell;MAMP,microbe-associated signals to the lamina propria compartment (Abreu, 2010; molecular pattern; NEC, necrotizing enterocolitis; Pu, purine; Py, pyrimidine;Th,T-helper;TLR,Toll-likereceptor. Maynard etal.,2012;Wellsetal.,2011).Theexpressionof 064220G2014SGM PrintedinGreatBritain 293 R.Kantandothers TLRs in IECs is polarized in order to provide adequate WhilsttheroleofTLR9inmaintaining homeostasisinthe responses depending on whether the signals come from gut epithelium is well recognized, the CpG motif content luminal or invading microbes (i.e. pathogens) (Abreu, of microbiota has received little attention. However, the 2010;deKivitetal.,2011;LeeJ.etal.,2006;Maynardetal., composition of gut microbiota could have a significant 2012; Wells et al., 2011). It has been demonstrated that effect on the load of TLR9 ligands in the intestine. In this TLR stimulation affects enterocyte proliferation (Gribar study, we explored the immunostimulatory CpG motifs in et al., 2008), enhances intestinal epithelial barrier function thegenomesofcommensalintestinalbacteriaacrossmajor (Cario et al., 2004; O’Hara et al., 2012) and affects the bacterial phyla inhabiting the intestine. We studied the productionofantimicrobialpeptides(Foureauetal.,2010, relationshipbetweenCpGmotifcontentandG+Ccontent LeeJ.etal.,2006).Furthermore,TLRstimulationproduces (GC%) or the size of bacterial genomes. Furthermore, we tolerance in IECs towards subsequent challenges with the discuss the CpG motif content of various bacteria and same or other TLR ligands, i.e. induces cross-tolerance microbiota in the context of human health and disease. andreducesintestinalinflammation (Ghadimi etal.,2010; Lee J. et al., 2006). Furthermore, TLR signalling has an important role in instruction of the adaptive immune METHODS system and maintaining the gut epithelial homeostasis Bacterial genomes. Complete or almost complete bacterial and (Maynard et al., 2012). Importantly, dysregulation of TLR archaeal genome sequences, totalling 67 genomes from 59 species, signalling can lead to an inappropriate reaction towards weredownloadedinFASTAformatfromGenBank.Theselectedspecies gutcommensals,aswellasinflammationoftheepithelium comprised 43 bacterial and three Archaea species found in the (Abreu, 2010; Maynard et al., 2012; Wells et al., 2011). intestine and representing different phyla and genomic G+ C content, two dairy starter species, six intestinal pathogens, four ThecanonicalligandsforTLR9includeunmethylatedCpG Corynebacterium sp. that are not typical gut inhabitants including motifsprevalentinbacterialbutnotinvertebrate genomic the pathogen Corynebacterium diphtheriae, and the respiratory DNAs (Hemmi et al., 2000; Krieg, 2002; Yu et al., 2007). pathogen Mycobacterium tuberculosis. The bacterial strains and genomesequencesarecompiledinTables1and2. The optimal motif for activating human cells has been foundtohavethesequenceGTCGTT(Hartmann&Krieg, CpG motifs and motif search. The following CpG motifs were 2000), whereas the general motif formula for activating searched for in the bacterial genome sequences: all possible CpG mouseandrabbitcellsisPuPuCGPyPy(wherePuispurine motifs,i.e.allCG-containinghexamers(inpractice,asearchforCG) and Py is pyrimidine) (Krieg et al., 1995; Rankin et al., (Lee K.W. et al., 2006), the general motif formula for activating mouseandrabbitcells(PuPuCGPyPy)(Kriegetal.,1995;Rankinet 2001; Yi et al., 1998). Like most TLRs, TLR9 is expressed al.,2001;Yietal.,1998)andtheoptimalmotifforactivatinghuman both by immune cells including dendritic cells, macro- cells(GTCGTT))(Hartmann&Krieg,2000).Toidentifythedifferent phagesandB-cells,andbyIECs(Abreu,2010;Krieg,2002). motifsandpatternsinthebacterialgenomesequences,FUZZNUCwas In immune cells, TLR9 is expressed intracellularly in the used from the EMBOSS (European Molecular Biology Open Software endosomes, whereas IECs display TLR9 on the cell surface Suite) package (Rice et al., 2000). Additionally, custom-made in- (Barton et al., 2006; Lee J. et al., 2006). CpG-induced housescriptswereusedintheanalysis. activationofimmunecellstriggersaT-helper1(Th1)-type immune response (Hemmi et al., 2000; Krieg, 2002; Yu RESULTS etal.,2007),whichhasbeenutilizedinthedevelopmentof vaccineadjuvantsandimmunotherapiesforallergy,cancer In this study, we bioinformatically analysed the frequency and infectious diseases (Krieg, 2012). IECs express TLR9 of potent immunostimulatory CpG motifs (Hartmann & on both the apical and basolateral sides, and distinct Krieg,2000;Kriegetal.,1995;LeeK.W.etal.,2006;Rankin responses occur depending on which side the stimulus et al., 2001; Yi et al., 1998) in bacterial genomes. We comes from (Lee J. et al., 2006). Stimulation of TLR9 on included in the analysis: (i) CG dinucleotides (i.e. all the apical side inhibits the inflammatory response of IECs possibleCpGhexamers);(ii)PuPuCGPyPyhexamers,which and induces tolerance towards other MAMPs. Basolateral representageneralformulaforCpGmotifsactivatingmouse stimulation, on the other hand, leads to the NF-kB or rabbit immune cells; and (iii) the GTCGTT hexamer, pathway activation and the release of pro-inflammatory whichisanoptimalmotifforactivatinghumancells(Tables IL-8 (Lee J. et al., 2006). A recent in vitro study 1 and 2). First, we analysed the genomes of several strains demonstrated that apical stimulation of TLR9 of IECs of three species, Clostridium perfringens (three strains), triggered a Th1-type immune response and concurrent Escherichia coli (five strains) and Bifidobacterium bifidum regulatory IL-10 secretion of peripheral blood mono- (threestrains),inordertoassessthepossiblestrainvariance nuclear cells on the basolateral side (de Kivit et al., 2011). ingenomicCpGcontentwithinthesamespecies(Table1). In general, apical stimulation of TLR9 is considered to We found that different strains of the same species had improve the barrier functions of mucosa (O’Hara et al., highly similar genomic CpG content with respect to all 2012). Furthermore, TLR9-deficient mice are more sus- studied motifs (Table 1). Furthermore, we studied the ceptibletodextransodiumsulfate-inducedcolitis(LeeJ.et genomesof43bacterialandthreeArchaeaspeciesfoundin al., 2006), which also underlines the importance of TLR9 the intestine and representing different phyla and genomic signallinginpromotinghomeostasisinthegutepithelium. G+C content (Table 2). In addition to the intestinal 294 JournalofMedicalMicrobiology63 CpGmotifsingutmicrobes Table1.Comparison ofCpG motif content amongstrains belonging tothe same species Species Strain GC% Size(Mb) MotiffrequencyperMb Motifcountpergenome Referencefor thegenome CpG PuPuCGPyPy GTCGTT CpG PuPuCGPyPyGTCGTT Clostridium SM101 28 2.9 11218 928 23 32532 2690 68 Myersetal.(2006) perfringens ATCC13124 28 3.3 9511 823 23 31386 2716 76 Myersetal.(2006) str.13 28 3.0 10467 884 22 31402 2652 67 Shimizuetal.(2002) Escherichiacoli UMN026 50 5.2 147886 11864 494 769008 61692 2569 Touchonetal.(2009) IAI39 50 5.1 147371 11735 512 751592 59846 2610 Touchonetal.(2009) 55989 50 5.2 145190 11530 491 754990 59956 2552 Touchonetal.(2009) ED1a 50 5.2 146073 11658 498 759582 60622 2587 Touchonetal.(2009) S88 50 5.0 147853 11866 505 739264 59330 2525 Touchonetal.(2009) Bifidobacterium S17 63 2.2 248567 15006 671 549334 33164 1483 Zhurinaetal.(2011) bifidum PRL2010 63 2.2 248562 14992 671 544350 32832 1469 Turronietal.(2010) BGN4 63 2.2 248611 14888 681 551916 33052 1512 Yuetal.(2012) commensal species, two dairy starter species and six Roseburia hominis and Lactobacillus delbrueckii had a intestinal pathogens were included in the analysis. We also frequency above the median value of PuPuCGPyPy motifs. included four Corynebacterium sp. that are not typical gut The highest PuPuCGPyPy motif frequencies were found in inhabitantsandMycobacteriumtuberculosis,whichbelongto Escherichia coli, Shigella dysenteriae, Salmonella enterica, the Actinobacteria and are high G+C content bacteria, for Enterobacter aerogenes, K. pneumoniae, Pseudomonas aerugi- comparison(Table2). nosaandsomeActinobacteria,i.e.Bifidobacteriumadolescentis, Bifidobacterium longum subsp. infantis, Bifidobacterium The CpG hexamer frequency (CpG motifs per Mb of bifidum, Corynebacterium jeikeium, Corynebacterium urealy- genomic DNA) increased linearly with the genomic G+C ticumandMycobacteriumtuberculosis. content as expected (R250.94, Fig. 1a). There was no linear dependency (R2,0.80) between the total number of The total amount or frequency of GTCGTT (the optimal motif stimulating human TLR9) showed an increase CpG motifs and the genome size (Fig. 1b), but large (although not linear) with the increase in genomic G+C genomes (over ~4.8 Mb) contained higher numbers of content (Fig. 1e). Several species showed an exceptionally CpG motifs. highfrequencyorcountsofthesemotifsasexplainedinmore The PuPuCGPyPy motifs (the general motif formula for detailbelow.SimilarlytoallCpGhexamersandPuPuCGPyPy activatingmouseandrabbitcells)showedalinearincreasein motifs,therewasnolineardependencybetweenthenumber their relative frequency (per Mb) with increasing genomic ofGTCGTTmotifsandgenomesize(Fig.1f).However,large G+C content (R250.80, Fig. 1c). There was no linear genomesofover~4.8 Mbhadhighercountsofthe‘human- dependencybetweenthenumberofPuPuCGPyPymotifsand specific’ motif compared with the smaller genomes (Fig. 1f, the genome size, but large genomes of over ~4.8 Mb were Table 2). Bacteria with more than the median value of notedtohavehighercountsofthesemotifs(Fig.1d,Table2). GTCGTT motifs per genome included species belonging to Bacteria with more than the median value of PuPuCGPyPy the phylum Bacteroidetes (mostly having large genomes), motifspergenomeincludedallActinobacteria,allProteobac- ProteobacteriawiththeexceptionofCampylobacterjejuniand teriaexceptforAcinetobactercalcoaceticusandCampylobacter Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus jejuni, Bacteroides thetaiotaomicron and Parabacteroides dis- rhamnosus, Lactobacillus casei and Bacillus cereus within tasonis within the Bacteroidetes, Lactobacillus casei, Lacto- the Bacillus subgroup of Firmicutes (Table 2). Among bacillus rhamnosus and Lactobacillus plantarum within the Actinobacteria (high G+C content bacteria), all studied Bacillus subgroup of Firmicutes, Eubacterium limosum and Bifidobacterium spp. were found to have GTCGTT motif FaecalibacteriumprausnitziiwithintheFirmicutesClostridium countsabovethemedianvalue.Incontrast,withinthegenus clusters XV and IV, respectively, and Akkermansia mucini- Corynebacterium, only two species (Corynebacterium gluta- phila (Verrucomicrobia). Six species belonging to Proteo- micumandCorynebacteriumdiphtheriae)hadGTCGTTmotif bacteria, Escherichia coli, Shigella dysenteriae, Salmonella countsabovethemedianvalue.Threeotherspecieswithinthe enterica, Enterobacter aerogenes, Klebsiella pneumoniae and same genus, Corynebacterium jeikeium, Corynebacterium Pseudomonas aeruginosa, stood out for having exceptionally urealyticum and Corynebacterium efficiens, had much lower high counts of PuPuCGPyPy motifs (Table 2). The above- countsofthismotif,despitehavingcomparableG+Ccontent mentioned bacteria with the exception of Bacteroides and size to Corynebacterium glutamicum, Corynebacterium thetaiotaomicron also hada high frequency of PuPuCGPyPy diphtheriae and bifidobacteria (Table 2). K. pneumoniae, motifs (motifs per Mb of genomic DNA). In addition, Enterobacter aerogenes, Escherichia coli, Shigella dysenteriae, http://jmm.sgmjournals.org 295 2 R 9 . 6 K a Table2.CpGmotif content inprokaryotic genomes n t a n d Bacteria Speciesand GC% Size Motifcount Motiffrequency GTCGTT Referencefor o strain (Mb) pergenome perMb frequency thegenome th e per rs Phylum/subgroup CpG PuPuCGPyPy GTCGTT CpG PuPuCGPyPyGTCGTT Mb(cid:2)GC% Firmicutes/Bacilli Staphylococcus 32 2.9 146732 12876 1192 50597 4440 411 13 Neohetal.(2008) aureusMu3 Firmicutes/Bacilli Staphylococcus 32 2.7 131822 11900 1058 48823 4407 392 12 Takeuchietal.(2005) haemolyticus JCSC1435 Firmicutes/Bacilli Staphylococcus 32 2.5 109898 9512 897 43959 3805 359 11 Zhangetal.(2003) epidermidis ATCC12228 Firmicutes/Bacilli Lactobacillus 34 2.0 93054 6714 544 46527 3357 272 8 Altermannetal.(2005) acidophilus NCFM Firmicutes/Bacilli Lactococcus 35 2.5 128128 9678 947 51251 3871 379 11 Wegmannetal.(2007) lactisMG1363* Firmicutes/Bacilli Bacilluscereus 35 5.4 338112 22926 2097 62267 4222 386 11 Ivanovaetal.(2003) ATCC14579 Firmicutes/Bacilli Lactobacillus 37 2.1 117914 9446 621 56150 4498 296 8 Callananetal.(2008) helveticus DPC4571 Firmicutes/Bacilli Enterococcus 37 3.2 225216 19166 1675 70380 5989 523 14 Paulsenetal.(2003) faecalisV583 Firmicutes/Bacilli Listeria 38 3.0 239154 15662 1302 79718 5221 434 11 Gilmouretal.(2010) monocytogenes 08-5923D Firmicutes/Bacilli Streptococcus 39 1.9 102542 8232 789 53969 4333 415 11 Makarovaetal.(2006) thermophilus LMD-9* J Firmicutes/Bacilli Streptococcus 40 2.2 119418 8366 789 55543 3891 367 9 Denapaiteetal.(2010) o urn mitisB6 al Firmicutes/Bacilli Streptococcus 43 2.4 157740 10336 801 65725 4307 334 8 XuP.etal.(2007) o f sanguinisSK36 M e Firmicutes/Bacilli Lactobacillus 44 3.4 366552 28602 2834 108127 8437 836 19 Kleerebezemetal.(2003) d ic plantarum a l M WCFS1 icro Firmicutes/Bacilli Lactobacillus 46 3.1 346378 25098 1678 111735 8096 541 12 Maze´ etal.(2010) b caseiBL23 io lo g y 6 3 h ttp :/ / jm m .s Table2.cont. g m jo u Bacteria Speciesand GC% Size Motifcount Motiffrequency GTCGTT Referencefor rn a strain (Mb) pergenome perMb frequency thegenome ls .o per rg Phylum/subgroup CpG PuPuCGPyPy GTCGTT CpG PuPuCGPyPyGTCGTT Mb(cid:2)GC% Firmicutes/Bacilli Lactobacillus 47 3.0 360288 26338 2278 119697 8750 757 16 Kankainenetal.(2009) rhamnosusGG Firmicutes/Bacilli Lactobacillus 49 1.8 189146 12630 999 105081 7017 555 11 vandeGuchteetal. delbrueckii (2006) ATCC11842 Firmicutes/Clostridium Clostridium 28 3.3 31386 2716 76 9511 823 23 1 Myersetal.(2006) clusterI perfringens ATCC13124 Firmicutes/Clostridium Clostridium 42 3.0 274600 14982 811 92458 5044 273 6 Poehleinetal.(2013) clusterIII stercorariumDSM 8532 Firmicutes/Clostridium Faecalibacterium 56 3.2 449598 28532 1112 140062 8888 346 6 A.Pajon,K.Turner,J. clusterIV prausnitziiSL3/3 Parkhill,S.Duncan&H. Flint,unpublished Firmicutes/Clostridium Ruminococcus 41 2.3 207116 8946 502 92052 3976 223 5 A.Pajon,K.Turner,J. clusterIV bromiiL2-63 Parkhill,S.Duncan&H. Flint,unpublished Firmicutes/Clostridium Clostridium 29 4.3 61950 4452 342 14407 1035 80 3 Sebaihiaetal.(2006) clusterXI difficile630D Firmicutes/Clostridium Finegoldiamagna 32 2.0 76826 3850 451 38606 1935 227 7 Gotoetal.(2008) clusterXIII ATCC29328 Firmicutes/Clostridium Butyrivibrio 39 3.2 133190 8734 502 42149 2764 159 4 A.Pajon,K.Turner,J. clusterXIVa fibrisolvens16/4 Parkhill,S.Duncan&H. Flint,unpublished Firmicutes/Clostridium Ruminococcus 43 3.8 298074 12036 952 79275 3201 253 6 A.Pajon,K.Turner,J. clusterXIVa obeumA2-162 Parkhill,S.Duncan&H. Flint,unpublished C Firmicutes/Clostridium Eubacterium 42 3.5 223334 9772 598 64734 2832 173 4 Mahowaldetal.(2009) p G clusterXIVa rectaleATCC m 33656 otifs in g u t m ic 29 robe 7 s 2 R 9 . 8 Table2.cont. K a n t a Bacteria Speciesand GC% Size Motifcount Motiffrequency GTCGTT Referencefor n d strain (Mb) pergenome perMb frequency thegenome o th per e Phylum/subgroup CpG PuPuCGPyPy GTCGTT CpG PuPuCGPyPyGTCGTT rs Mb(cid:2)GC% Firmicutes/Clostridium Clostridium 45 4.7 353358 17988 633 75828 3860 136 3 S.Lucas,A.Copeland,A. clusterXIVa saccharolyticum Lapidus,J.F.Cheng,D. WM1 Bruce,L.Goodwin,S. Pitluck,O.Chertkov, J.C.Detter,C.Han,R. Tapia,M.Land,L. Hauser,Y.J.Chang,C. Jeffries,N.Kyrpides,N. Ivanova,N.Mikhailova, H.Mouttaki,L.Lin,J. Zhou,C.L.Hemme& T.Woyke,unpublished Firmicutes/Clostridium Roseburia 49 3.6 447556 24014 940 124667 6689 262 5 I.E.Mulder,R.I. clusterXIVa hominisA2183 Aminov,A.J.Travis, A.Lan,V.Gaboriau- Routhiau,K.Garden, E.Logan,M.Delday, A.G.P.Coutts,G. Grant,A.M.Patterson, N.Cerf-Bensussan&D. Kelly,unpublished Firmicutes/Clostridium Eubacterium 48 4.3 455480 37892 1167 106421 8853 273 6 Rohetal.(2011) clusterXV limosumKIST612 Proteobacteria Campylobacter 31 1.6 47246 3524 180 28809 2149 110 4 Parkhilletal.(2000) jejuniNCTC 11168D Proteobacteria Acinetobacter 39 3.9 258684 18792 1453 67017 4868 376 10 Zhanetal.(2011) Jo calcoaceticus u rn PHEA-2 a l Proteobacteria Proteus 39 4.1 295416 24422 1645 72053 5957 401 10 Pearsonetal.(2008) o f M mirabilis ed HI4320 ic a Proteobacteria Yersinia 47 4.7 504190 34436 1393 107733 7358 298 6 Thomsonetal.(2006) l M enterocolitica icro 8081D b io lo g y 6 3 h ttp Table2.cont. :/ / jm Bacteria Speciesand GC% Size Motifcount Motiffrequency GTCGTT Referencefor m .s strain (Mb) pergenome perMb frequency thegenome g m per jou Phylum/subgroup CpG PuPuCGPyPy GTCGTT CpG PuPuCGPyPyGTCGTT Mb(cid:2)GC% rn a ls Proteobacteria Escherichia 50 5.2 769008 61692 2569 147886 11864 494 10 Touchonetal.(2009) .o rg coli/UMN026 Proteobacteria Shigella 51 4.6 653436 54768 2155 143297 12011 473 9 Yangetal.(2005) dysenteriae Sd197D Proteobacteria Salmonella 52 4.6 777938 70348 2229 169485 15326 486 9 McClellandetal.(2004) entericaATCC 9150D Proteobacteria Enterobacter 55 5.3 972776 85598 2468 184238 16212 467 12 Shinetal.(2012) aerogenes KCTC2190 Proteobacteria Klebsiella 57 5.4 1016530 91182 2337 188596 16917 434 8 Linetal.(2012) pneumoniae 1084 Proteobacteria Desulfovibrio 58 3.9 820924 38116 1879 212675 9875 487 8 Brownetal.(2011) desulfuricans ND132 Proteobacteria Pseudomonas 67 6.3 1526246 121866 3106 243809 19467 496 7 Stoveretal.(2000) aeruginosaPAO1 Bacteroidetes Prevotella 41 3.2 209866 13482 1595 66204 4253 503 12 D.M.Harkins, melaninogenica R.Madupu, ATCC25845 A.S.Durkin,M. Torralba,B.Methe,G. G.Sutton&K.E. Nelson,unpublished Bacteroidetes Bacteroides 42 6.2 579932 26668 2479 93537 4301 400 10 Xuetal.(2003) thetaiotaomicron VPI-5482 Bacteroidetes Bacteroides 42 5.2 418768 18816 1452 80532 3618 279 7 XuJ.etal.(2007) vulgatus C ATCC8482 p G Bacteroidetes Bacteroides 43 5.2 489410 19700 1900 94117 3788 365 8 Cerden˜o-Ta´rragaetal. m fragilisNCTC (2005) o 9343 tifs in Bacteroidetes Parabacteroides 45 4.8 581492 29726 2189 120892 6180 455 10 XuJ.etal.(2007) g distasonis ut m ATCC8503 ic 29 robe 9 s 3 R 0 Table 2.cont. . 0 K a n t Bacteria Speciesand GC% Size Motifcount Motiffrequency GTCGTT Referencefor a n strain (Mb) pergenome perMb frequency thegenome d o per th Phylum/subgroup CpG PuPuCGPyPy GTCGTT CpG PuPuCGPyPyGTCGTT Mb(cid:2)GC% ers Actinobacteria Corynebacterium 53 3.3 467022 33978 1503 141522 10296 455 9 Ikeda&Nakagawa(2003) glutamicum ATCC13032d Actinobacteria Corynebacterium 53 2.4 375648 26286 1546 156520 10953 644 12 Cerden˜o-Ta´rragaetal. diphtheriaeNCTC (2003) 13129d§ Actinobacteria Bifidobacterium 59 2.3 458450 25740 1381 196760 11047 593 10 A.S.Durkin,M.Kim,D. breveACS-071 Radune,J.Hostetler,M. V-Sch8b Torralba,M.Gillis,B. Methe,G.Sutto&K.E. Nelson,unpublished Actinobacteria Bifidobacterium 59 2.8 604886 33922 1732 216031 12115 619 10 Selaetal.(2008) longumsubsp. infantisATCC 15697 Actinobacteria Bifidobacterium 59 2.1 467150 27266 1342 223517 13046 642 11 T.Suzuki,Y.Tsuda,N. adolescentis Kanou,T.Inoue,K. ATCC15703 Kumazaki,S.Nagano,S. Hirai,K.Tanaka&K. Watanabe,unpublished Actinobacteria Bifidobacterium 60 2.4 506276 27898 1385 210948 11624 577 10 Leeetal.(2008) longumDJO10A Actinobacteria Corynebacterium 61 2.4 492366 30430 1274 205153 12679 531 9 Tauchetal.(2005) jeikeiumK411d Actinobacteria Bifidobacterium 63 2.2 551916 33052 1512 248611 14888 681 11 Yuetal.(2012) bifidumBGN4 Actinobacteria Corynebacterium 63 3.1 596944 29358 1047 192563 9470 338 5 Nishioetal.(2003) efficiensYS-314d J o u Actinobacteria Corynebacterium 64 2.4 518856 32276 1019 216190 13448 425 7 Tauchetal.(2008) rn a urealyticumDSM l of 7109 M Actinobacteria Mycobacterium 66 4.4 1123610 73812 2794 254787 16737 634 10 Coleetal.(1998) e d ic tuberculosis al H37Rv§ M ic Verrucomicrobia Akkermansia 56 2.7 388570 27780 678 146079 10444 255 5 vanPasseletal.(2011) rob muciniphilaATCC iolo BAA-835 g y Medianvalue 363420 24218 1322 99599 6085 401 9 6 3 h ttp :/ / jm m .s g m jo u rn als Table2. cont. .o rg Bacteria Speciesand GC% Size Motifcount Motiffrequency GTCGTT Referencefor strain (Mb) pergenome perMb frequency thegenome per Phylum/subgroup CpG PuPuCGPyPy GTCGTT CpG PuPuCGPyPyGTCGTT Mb(cid:2)GC% Archaea Euryarcheota/ Methanobrevibacter 31 1.9 40592 1450 109 21942 784 59 Samueletal.(2007) Methanobacteria smithiiATCC 35061 Euryarcheota/ Methanobacterium 36 2.6 80308 3998 397 31127 1550 154 S.Lucas,A.Copeland,A. Methanobacteria sp.AL-21 Lapidus,J.F.Cheng,L. Goodwin,S.Pitluck,O. Chertkov,J.C.Detter, C.Han,R.Tapia,M. Land,L.Hauser,N. Kyrpides,N.Ivanova,N Mikhailova,I.Pagani, H.Cadillo-Quiroz,H. Imachi,S.Zinder,W. Liu&T.Woyke, unpublished Euryarcheota/ Methanoculleus 61 2.8 548746 34030 1293 196683 12197 463 Mausetal.(2012) Methanomicrobia bourgensisMS2 *Dairystarter,notconsideredasanindigenousintestinalspecies. DSpeciesprimarilyconsideredasapathogeninthehumanintestine. dNotmajorintestinalCorynebacteriumsp.butincludedintheanalysisasrepresentativesofthephylum. §Pathogen/otherthanintestinal. C p G m o tifs in g u t m ic 30 robe 1 s R.Kantandothers Frequency Per genome (a) 300000 (b) 1800000 R2=0.94 1600000 250000 1400000 200000 1200000 b M G 1000000 G/ 150000 P p C 800000 C 100000 600000 400000 50000 200000 0 0 25 30 35 40 45 50 55 60 65 70 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 (c) 25000 (d) 140000 R2=0.80 120000 20000 PyPy/Mb 15000 GPyPy 10800000000 G C uPuC 10000 PuPu 6400000000 P 5000 20000 0 0 25 30 35 40 45 50 55 60 65 70 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 (e) 900 (f) 3500 800 3000 700 b 600 2500 M T TCGTT/ 540000 GTCGT 21050000 G 300 1000 200 100 500 0 0 25 30 35 40 45 50 55 60 65 70 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 GC% Genome size (Mb) Actinobacteria Firmicutes/Bacilli Actinobacteria** Firmicutes/Bacilli Firmicutes/Clostridium cluster XIVa Firmicutes/Other Clostridium clusters Bacteroidetes Verrucomicrobia Proteobacteria Pathogens Fig.1.FrequencyandcountsofCpGmotifsinbacterialgenomes.(a,c,e)ThedependenceofCpGmotiffrequency(i.e.the CpGmotifcountsperMb)ontheG+Ccontent(GC%)ofgenomicDNA.(b,d,f)ThedependenceofCpGmotifcounton genomesize(Mb).CpGstandsforallpossibleCpGmotifs(i.e.allCG-containinghexamers),PuPuCGPyPyisthegeneralmotif formulaforactivatingmouseandrabbitcells,andGTCGTTistheoptimalmotifforactivatinghumancells.R2valuesforlinear correlation(R2¢0.80)areshown.Squaresrepresentnon-pathogenicbacteriaregularlyfoundinthehealthyhumanintestinal tract.DairystarterspecieswithinBacilli(*)andnotmajorintestinalspecieswithinActinobacteria(**)areshadedalightercolour. Trianglesrepresentpathogenicspecies.ThebacterialspeciesandtheirCpGmotifcountsarecompiledinTable2. Salmonella enterica, P. aeruginosa, Bacillus cereus, Lactobacillus value. The highest frequency of GTCGTT motifs was found plantarum, Lactobacillus rhamnosus, Parabacteroides distasonis, in Lactobacillus plantarum, Lactobacillus rhamnosus, Bifido- Bacteroides thetaiotaomicron and Mycobacterium tuberculosis bacterium sp., Corynebacterium diphtheriae and Mycobac- were found to carry the highest GTCGTT motifs count per terium tuberculosis. In general, most species belonging to genome. Bacteria with a high frequency of ‘human-specific’ Actinobacteria or Firmicutes/Bacillus, four out of 11 species CpG motifs (motifs per Mb of genomic DNA) included the within Proteobacteria and three out of five species within above-mentionedbacteriawithsomeexceptions:Bacilluscereus, Bacteroidetes showed a higher than median frequency of YersiniaenterocoliticaandBacteroidesthetaiotaomicrondidnot GTCGTT motifs when the frequency was normalized against show a high frequency of GTCGTT motifs, whereas an the genomic G+C content, i.e. frequency per (Mb6GC%) additional four species, Staphylococcus aureus, Streptococcus (Table2,Fig.2).Thus,specificspecieshadahigherfrequencyof thermophilus, Lactobacillus delbrueckii and Corynebacterium GTCGTT motifs than could be expected by their genomic efficiens, showed a frequency that was above the median G+Ccontent. 302 JournalofMedicalMicrobiology63

Description:
Lactobacillus rhamnosus, whose strains have been marketed as probiotics, had high . motifs per genome included all Actinobacteria, all Proteobac-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.